首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用Cy3标记的阴性对照小干扰RNA(siRNA)转染小鼠附植前胚胎,建立向小鼠附植前胚胎导入siRNA的电穿孔方法。通过控制透明带弱化程度、电压、脉冲时间和脉冲次数等条件,采用不同参数组合并结合使用不同介质作为电转缓冲液将Cy3标记的阴性对照siRNA转染小鼠附植前胚胎。在荧光倒置显微镜下,观察胚胎的存活率、siRNA转染率以及阳性转染存活胚胎的囊胚发育率。结果显示小鼠附植前胚胎在使用台氏液消化胚胎透明带10 s后,以opti-MEM作为电转缓冲液,电穿孔参数设置为30 V,1 ms,3次的条件下取得最佳转染效果。总之,电穿孔方法可实现siRNA简便、高效地转染小鼠附植前胚胎。  相似文献   

2.
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system is a powerful tool for genome editing in animals. Recently, new technology has been developed to genetically modify animals without using highly skilled techniques, such as pronuclear microinjection of endonucleases. Technique for animal knockout system by electroporation (TAKE) method is a simple and effective technology that produces knockout rats by introducing endonuclease mRNAs into intact embryos using electroporation. Using TAKE method and CRISPR/Cas system, the present study successfully produced knockout and knock-in mice and rats. The mice and rats derived from embryos electroporated with Cas9 mRNA, gRNA and single-stranded oligodeoxynucleotide (ssODN) comprised the edited targeted gene as a knockout (67% of mice and 88% of rats) or knock-in (both 33%). The TAKE method could be widely used as a powerful tool to produce genetically modified animals by genome editing.  相似文献   

3.
Recent advances with the type II clustered regularly interspaced short palindromic repeats (CRISPR) system promise an improved approach to genome editing. However, the applicability and efficiency of this system in model organisms, such as zebrafish, are little studied. Here, we report that RNA-guided Cas9 nuclease efficiently facilitates genome editing in both mammalian cells and zebrafish embryos in a simple and robust manner. Over 35% of site-specific somatic mutations were found when specific Cas/gRNA was used to target either etsrp, gata4 or gata5 in zebrafish embryos in vivo. The Cas9/gRNA efficiently induced biallelic conversion of etsrp or gata5 in the resulting somatic cells, recapitulating their respective vessel phenotypes in etsrpy11 mutant embryos or cardia bifida phenotypes in fautm236a mutant embryos. Finally, we successfully achieved site-specific insertion of mloxP sequence induced by Cas9/gRNA system in zebrafish embryos. These results demonstrate that the Cas9/gRNA system has the potential of becoming a simple, robust and efficient reverse genetic tool for zebrafish and other model organisms. Together with other genome-engineering technologies, the Cas9 system is promising for applications in biology, agriculture, environmental studies and medicine.  相似文献   

4.
CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Even for the laboratory mouse, a model that has thrived under the benefits of embryonic stem (ES) cell knockout capabilities for nearly three decades, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 technology enables one to manipulate the genome with unprecedented simplicity and speed. It allows generation of null, conditional, precisely mutated, reporter, or tagged alleles in mice. Moreover, it holds promise for other applications beyond genome editing. The crux of this system is the efficient and targeted introduction of DNA breaks that are repaired by any of several pathways in a predictable but not entirely controllable manner. Thus, further optimizations and improvements are being developed. Here, we summarize current applications and provide a practical guide to use the CRISPR/Cas9 system for mouse mutagenesis, based on published reports and our own experiences. We discuss critical points and suggest technical improvements to increase efficiency of RNA-guided genome editing in mouse embryos and address practical problems such as mosaicism in founders, which complicates genotyping and phenotyping. We describe a next-generation sequencing strategy for simultaneous characterization of on- and off-target editing in mice derived from multiple CRISPR experiments. Additionally, we report evidence that elevated frequency of precise, homology-directed editing can be achieved by transient inhibition of the Ligase IV-dependent nonhomologous end-joining pathway in one-celled mouse embryos.  相似文献   

5.
Cystinuria Type A is a relatively common genetic kidney disease occurring in 1 in 7,000 people worldwide that results from mutation of the cystine transporter rBAT encoded by Slc3a1. We used CRISPR/Cas9 technology to engineer cystinuria Type A mice via genome editing of the C57BL/6NHsd background. These mice are an improvement on currently available models as they are on a coisogenic genetic background and have a single defined mutation. In order to use albinism to track Cas9 activity, we co‐injected gRNAs targeting Slc3a1 and tyrosinase (Tyr) with Cas9 expressing plasmid DNA into mouse embryos. Two different Slc3a1 mutational alleles were derived, with homozygous mice of both demonstrating elevated urinary cystine levels, cystine crystals, and bladder stones. We used whole genome sequencing to evaluate for potential off‐target editing. No off‐target indels were observed for the top 10 predicted off‐targets for Slc3a1 or Tyr. Therefore, we used CRISPR/Cas9 to generate coisogenic albino cystinuria Type A mice that could be used for in vivo imaging, further study, or developing new treatments of cystinuria.  相似文献   

6.
Sperm preservation is a useful technique for maintaining valuable animal strains. Rat sperm could be frozen or freeze-dried in a simple Tris-EDTA solution (TE buffer), and oocytes that were fertilized with these sperm by intracytoplasmic sperm injection (ICSI) developed into offspring. Genome editing with the clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein 9 (Cas9) system enables the rapid production of genetically modified rats. The recent innovative method, named the TAKE method, could easily produce genome edited rats by electroporation of endonucleases into embryos. Although various rat strains have been applied for genome editing, genome editing using strains that were preserved as sperm took longer because it required collecting embryos after maturation of animals regenerated from sperm. To reduce the production period, we directly electroporated Cas9 protein and gRNA into oocytes that were injected with frozen or freeze-dried sperm in TE buffer. No effect of electroporation until 30 V to ICSI-embryos derived from frozen or freeze-dried sperm were shown in the development of offspring. Furthermore, the rate of genome editing in offspring was high (56% for frozen and 50% for freeze-dried sperm). These results concluded that the combination of ICSI and the TAKE method was useful for the rapid production of genome-edited animals from sperm that have been preserved as genetic resources.  相似文献   

7.
The CRISPR/Cas9 system has been adapted as an efficient genome editing tool in laboratory animals such as mice, rats, zebrafish and pigs. Here, we report that CRISPR/Cas9 mediated approach can efficiently induce monoallelic and biallelic gene knockout in goat primary fibroblasts. Four genes were disrupted simultaneously in goat fibroblasts by CRISPR/Cas9-mediated genome editing. The single-gene knockout fibroblasts were successfully used for somatic cell nuclear transfer (SCNT) and resulted in live-born goats harboring biallelic mutations. The CRISPR/Cas9 system represents a highly effective and facile platform for targeted editing of large animal genomes, which can be broadly applied to both biomedical and agricultural applications.  相似文献   

8.
CRISPR/Cas9 and Cas12a (Cpf1) nucleases are two of the most powerful genome editing tools in plants. In this work, we compared their activities by targeting maize glossy2 gene coding region that has overlapping sequences recognized by both nucleases. We introduced constructs carrying SpCas9‐guide RNA (gRNA) and LbCas12a‐CRISPR RNA (crRNA) into maize inbred B104 embryos using Agrobacterium‐mediated transformation. On‐target mutation analysis showed that 90%–100% of the Cas9‐edited T0 plants carried indel mutations and 63%–77% of them were homozygous or biallelic mutants. In contrast, 0%–60% of Cas12a‐edited T0 plants had on‐target mutations. We then conducted CIRCLE‐seq analysis to identify genome‐wide potential off‐target sites for Cas9. A total of 18 and 67 potential off‐targets were identified for the two gRNAs, respectively, with an average of five mismatches compared to the target sites. Sequencing analysis of a selected subset of the off‐target sites revealed no detectable level of mutations in the T1 plants, which constitutively express Cas9 nuclease and gRNAs. In conclusion, our results suggest that the CRISPR/Cas9 system used in this study is highly efficient and specific for genome editing in maize, while CRISPR/Cas12a needs further optimization for improved editing efficiency.  相似文献   

9.
白敏  李崎  邵艳姣  黄元华  李大力  马燕琳 《遗传》2015,37(10):1029-1035
CRISPR/Cas9技术是新近发展起来的对细胞和动物模型进行基因编辑的重要方法。本文利用DNA双链断裂(Double-strand breaks, DSBs)引起的同源重组(Homologous recombination, HR)依赖与非依赖的修复机制,建立基于CRISPR/Cas9核酸酶技术构建定点突变小鼠品系的技术体系。针对赖氨酸特异脱甲基化酶2b(Lysine (K)-specific demethylase 2b, Kdm2b)酶活关键位点对应的基因组DNA序列设计单一导向RNA(Single-guide RNA, sgRNA),通过与Cas9 mRNA共显微注射,分别得到Kdm2b基因发生移码突变的基因失活品系及关键位点氨基酸缺失的酶活突变型小鼠品系。此外,利用HR介导的修复机理,将黄素单加氧酶3(Flavin containing monooxygenases3, Fmo3)基因的sgRNA序列及对应的点突变单链寡脱氧核苷(Single strand oligonucleotides, ssODN)修复模板共注射到小鼠受精卵雄原核。对F0小鼠基因测序分析显示,成功构建了Fmo3基因移码突变的基因敲除和单碱基定点突变的基因敲入小鼠,这些突变能够稳定遗传给子代。本研究利用CRISPR/Cas9技术,通过同源重组依赖与非依赖两种DNA损伤修复方式,成功构建了特定位点突变的小鼠品系。  相似文献   

10.
Yan  Xiaoru  Yang  Junting  Xiao  Lanfei  Gao  Jiping  Xu  Guoqiang  Wang  Liang  Qi  Yang  Song  Guohua 《Molecular biology reports》2022,49(10):9575-9584
Molecular Biology Reports - The CRISPR/Cas9 system is widely used for genome editing in human, rat and mouse cells. In this study, we established Fzd6 mutant mice using CRISPR/Cas9 technology, and...  相似文献   

11.
Knockout of genes with CRISPR/Cas9 is a newly emerged approach to investigate functions of genes in various organisms. We demonstrate that CRISPR/Cas9 can mutate endogenous genes of the ascidian Ciona intestinalis, a splendid model for elucidating molecular mechanisms for constructing the chordate body plan. Short guide RNA (sgRNA) and Cas9 mRNA, when they are expressed in Ciona embryos by means of microinjection or electroporation of their expression vectors, introduced mutations in the target genes. The specificity of target choice by sgRNA is relatively high compared to the reports from some other organisms, and a single nucleotide mutation at the sgRNA dramatically reduced mutation efficiency at the on‐target site. CRISPR/Cas9‐mediated mutagenesis will be a powerful method to study gene functions in Ciona along with another genome editing approach using TALE nucleases.  相似文献   

12.
The CRISPR/Cas9 system has been developed as an easy-handle and multiplexable approach for engineering eukaryotic genomes by zygote microinjection of Cas9 and sgRNA, while preparing Cas9 for microinjection is laborious and introducing inconsistency into the experiment. Here, we describe a modified strategy for gene targeting through using oocyte-specific Cas9 transgenic mouse. With this mouse line, we successfully achieve precise gene targeting by injection of sgRNAs only into one-cell-stage embryos. Through comprehensive analysis, we also show allele complexity and off-target mutagenesis induced by this strategy is obviously lower than Cas9 mRNA/sgRNA injection. Thus, injection of sgRNAs into oocyte-specific Cas9 transgenic mouse embryo provides a convenient, efficient and reliable approach for mouse genome editing.  相似文献   

13.
该文主要分析音猬因子(Sonic Hedgehog,Shh)在鸡胚发育过程中对脊髓形态结构的形成和相关蛋白表达的影响。实验过程采用鸡胚带壳开窗培养技术,待胚胎发育至第3 d,将2μg/μL pCAGGS-Shh和0.25μg/μL pCAGGS-GFP质粒以1:8浓度混合,将0.1~0.5μL混合液准确地注射到神经管,在电压18 V、每次脉冲60 ms、间隔100 ms、电脉冲6次的条件下进行定时定位活体电转基因,电转后6 h开始到5 d分别收集胚胎,冰冻切片,采用荧光免疫组化和DAPI染色观察组织形态结构及相关蛋白的变化。结果表明,电转后6 h便可以观察到GFP的表达,24 h时Shh在脊髓中的异位表达能够诱导转录因子Nkx2.2(NK2 homeobox 2)的表达,并且能够抑制Pax7(paired-type homeobox 7)的表达,而Shh异位表达时脊髓的结构发生了明显的改变;说明Shh作为脊髓发育过程重要的信号分子,其异位表达能够诱导和抑制相关蛋白的表达,影响脊髓正常发育。  相似文献   

14.
为获得猪胎儿成纤维细胞(porcine fetal fibroblasts, PFFs)最佳的电转染效率,本研究利用荧光激活细胞分选技术(fluorescence activated cell sorting, FACS)辅助优化NEPA 21和Nucleofector? 2b两种电转仪电转染PFFs细胞的参数,比较不同质粒用量和拓扑结构在ECM? 830、NEPA 21和Nucleofector? 2b中的转染效率。结果显示:NEPA 21电转PFFs的最佳穿孔参数为脉冲电压200 V,脉冲长度3 ms,脉冲间隔50 ms,脉冲次数3次,脉冲电压衰减幅度10%;Nucleofector? 2b在U-023的转染参数下达到最高转染效率。ECM? 830和Nucleofector? 2b的最适质粒用量都为10 μg,而NEPA 21为8 μg;超螺旋质粒比线性化质粒的转染效率更高,且3种仪器中Nucleofector? 2b转染效果最佳。本研究综合考虑电转仪、电转参数、质粒用量和拓扑结构的影响因素以优化PFFs的电转条件,为高效制备转基因猪及基因编辑猪的研究奠定基础。  相似文献   

15.

Background

Oxygen-evolving photosynthetic microorganisms, collectively termed as microalgae, are gaining attention as alternative fuel sources. The unicellular alga Coccomyxa sp. strain KJ that belongs to the class Trebouxiophyceae can grow rapidly in minimal mineral media and accumulate triacylglycerols at levels?>?60% (w/w) of its dry weight under nitrogen depletion conditions. Thus, the strain can be a good candidate for biofuel production. Still, substantial improvements in lipid productivity and other traits of this strain are needed to meet commercial production requirements. Consequently, the development of new genetic tools including genome editing that are applicable to this strain is highly desired.

Results

In this paper, we report successful genome editing of strain KJ by intracellular delivery of a ribonucleoprotein complex comprising recombinant Cas9 protein and guide RNA. For introduction of Cas9-guide RNA ribonucleoprotein into strain KJ cells, we used an electroporator with a short (2.5 ms) electric pulse at a high field strength (7500 V cm?1) followed by multiple 50-ms electric pulses at low field strength (250 V cm?1). Under these conditions, we successfully isolated several knockout lines of the FTSY gene of strain KJ, encoding a signal recognition particle-docking protein at a frequency of 0.01%.

Conclusions

Our study shows applicability of DNA-free genome editing in Coccomyxa, which may be applicable in other Trebouxiophyceae species.
  相似文献   

16.
The developmental competence of in vitro cultured embryos vitrified-warmed at an early cleavage stage (2- or 4, 8-cell stage) was examined by both direct transfer into recipient animals and after in vitro manipulation for chimeric mice production using embryonic stem (ES) cells. Vitrified-warmed embryos transferred at the morulae and blastocyst stages showed fetus development comparable to control embryos, although blastocyst development of vitrified-warmed embryos was significantly slower than that of controls. When vitrified-warmed early cleavage stage embryos were used for chimeric mouse production using ES cells, 1 to 10% of the injected or aggregated embryos developed into chimeric neonates and germ-line chimeric mice were obtained from all ES cell lines. This study indicates that embryos developed in vitro from vitrified-warmed embryos have equivalent competence with unvitrified embryos irrespective of stage of vitrification and that these vitrified-warmed embryos maintain adequate viability even after in vitro manipulation such as aggregation and microinjection with ES cells.  相似文献   

17.
Genome editing tools such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated system (Cas) have been widely used to modify genes in model systems including animal zygotes and human cells, and hold tremendous promise for both basic research and clinical applications. To date, a serious knowledge gap remains in our understanding of DNA repair mechanisms in human early embryos, and in the efficiency and potential off-target effects of using technologies such as CRISPR/Cas9 in human pre-implantation embryos. In this report, we used tripronuclear (3PN) zygotes to further investigate CRISPR/Cas9-mediated gene editing in human cells. We found that CRISPR/Cas9 could effectively cleave the endogenous β-globin gene (HBB). However, the efficiency of homologous recombination directed repair (HDR) of HBB was low and the edited embryos were mosaic. Off-target cleavage was also apparent in these 3PN zygotes as revealed by the T7E1 assay and whole-exome sequencing. Furthermore, the endogenous delta-globin gene (HBD), which is homologous to HBB, competed with exogenous donor oligos to act as the repair template, leading to untoward mutations. Our data also indicated that repair of the HBB locus in these embryos occurred preferentially through the non-crossover HDR pathway. Taken together, our work highlights the pressing need to further improve the fidelity and specificity of the CRISPR/Cas9 platform, a prerequisite for any clinical applications of CRSIPR/Cas9-mediated editing.  相似文献   

18.
The voltage-dependent activity of prestin, the outer hair cell (OHC) motor protein essential for its electromotility, enhances the mammalian inner ear's auditory sensitivity. We investigated the effect of prestin's activity on the plasma membrane's (PM) susceptibility to electroporation (EP) via cell-attached patch-clamping. Guinea pig OHCs, TSA201 cells, and prestin-transfected TSA cells were subjected to incremental 50 mus and/or 50 ms voltage pulse trains, or ramps, at rates from 10 V/s to 1 kV/s, to a maximum transmembrane potential of +/-1000 mV. EP was determined by an increase in capacitance to whole-cell levels. OHCs were probed at the prestin-rich lateral PM or prestin-devoid basal portion; TSA cells were patched at random points. OHCs were consistently electroporated with 50 ms pulses, with significant resistance to depolarizing pulses. Although EP rarely occurred with 50 mus pulses, prior stimulation with this protocol had a significant effect on the sensitivity to EP with 50 ms pulses, regardless of polarity or PM domain. Consistent with these results, resistance to EP with depolarizing 10-V/s ramps was also found. Our findings with TSA cells were comparable, showing resistance to EP with both depolarizing 50-ms pulses and 10 V/s ramps. We conclude prestin significantly affects susceptibility to EP, possibly via known biophysical influences on specific membrane capacitance and/or membrane stiffness.  相似文献   

19.
电穿孔介导质粒DNA肿瘤内转移抑制恶性肿瘤生长与转移   总被引:3,自引:0,他引:3  
利用携带绿色荧光蛋白(green fluorescent protein, GFP)编码基因的表达质粒,测试电穿孔方法介导目的基因活体组织内转移的效率并优化电击参数.在此基础上采用电穿孔技术直接将编码白介素12(IL-12)、白介素2(IL-2)、粒单细胞克隆刺激因子(GM-CSF)等免疫调节因子或反义血管内皮细胞生长因子121(VEGF121)、可溶性血管内皮细胞膜受体(sFlk-1及ExTek)等血管生成抑制因子表达质粒转移至肿瘤局部.实验结果表明电穿孔介导GFP表达质粒肌肉内转移的效率较高,GFP可在肌细胞内持续高水平表达3周以上,而在肿瘤细胞内只能表达4~6 d,但高电压短脉冲电击组肿瘤内GFP阳性细胞数比低电压长脉冲组高2.68倍.多次电击介导IL-12表达质粒转移至肿瘤组织内,可有效地抑制小鼠膀胱癌BTT-gfp、人乳腺癌MCF-7及肝癌SMMC 7721-gfp的生长.MCF-7对血管生成抑制因子基因转移治疗较敏感,单独应用反义VEGF121、sFlk-1或ExTek即显示明确的治疗效果.SMMC 7721-gfp单独应用sFlk-1有效.小鼠膀胱癌对单独应用反义VEGF121、sFlk-1或ExTek治疗效果不理想,但联合应用sFlk-1和ExTek仍然可以有效地抑制肿瘤生长与转移,甚至使肿瘤缩小或消失.提示电穿孔技术是一项高效、安全、经济的体内基因转移方法.  相似文献   

20.
汪启翰  怀聪  孙瑞林  庄华  陈红岩  费俭  卢大儒 《遗传》2015,37(11):1143-1148
血友病乙是由凝血因子Ⅸ(Factor Ⅸ,FⅨ)缺乏或功能缺陷导致的出血性疾病,为伴X染色体隐性遗传病。小鼠模型对于血友病乙的研究具有十分重要的意义,而基因组编辑技术又为小鼠模型的构建提供了一种快捷而且高效的途径。本文利用CRISPR/Cas系统,在小鼠FⅨ基因第8外显子上选择靶位点,将Cas9 mRNA和带有靶位点的sgRNA显微注射到C57BL/6品系小鼠的受精卵中,获得基因修饰的小鼠。利用高分辨率熔解曲线分析(High resolution melting, HRM)技术进行精确基因分型,并通过测序验证,在60只小鼠中,总共有51只小鼠的靶位点发生了突变,突变率高达85%,其中雄鼠的突变率为79.5%,雌鼠的突变率为95.2%;未检测到非目标位置的基因编辑脱靶。凝血活性实验显示,突变小鼠的FⅨ活性值(Factor Ⅸ coagulant activity, FⅨ: C)是非突变小鼠的6.82%,大大低于非突变小鼠,表明突变小鼠的凝血活性缺失。本研究表明,利用CRISPR/Cas系统成功构建了人类血友病乙遗传病小鼠模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号