首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome P-450scc, which catalyses the conversion of cholesterol to pregnenolone in steroidogenic tissues, can be incorporated into artificial phospholipid vesicles and cholesterol binding to the cytochrome is affected by the composition of the vesicles. We have purified the phospholipids from the inner mitochondrial membrane fraction of the bovine corpus luteum where the cytochrome is located. The composition in mol % was 49% phosphatidylcholine, 34% phosphatidylethanolamine, 8.7% cardiolipin, 6.4% lysophosphatidylethanolamine and 1.5% phosphatidylinositol. The ratio of cholesterol to phospholipid (mol/mol) in the inner membrane fraction was 0.14 to 1. The Km for cholesterol of purified luteal cytochrome P-450scc incorporated into vesicles prepared from the total inner mitochondrial membrane phospholipids was 0.063 mol of cholesterol per mol of phospholipid. Removal of the cardiolipin component of the inner mitochondrial membrane phospholipids prior to preparation of vesicles caused a four fold increase in the Kd of cytochrome P-450 for cholesterol and a two fold increase in Km. The data suggests that in the inner mitochondrial membrane of the bovine corpus luteum the cholesterol concentration is less than saturating for cytochrome P-450scc.  相似文献   

2.
Cytochrome P-450scc can be reconstituted into a phospholipid bilayer in the absence of added detergent by incubation of purified hemoprotein with preformed phosphatidylcholine vesicles. Salt effects demonstrate that the primary interaction between the cytochrome and phospholipid vesicles is hydrophobic rather than ionic; in contrast, neither adrenodoxin reductase nor adrenodoxin will bind to phosphatidylcholine vesicles by hydrophobic interactions. Insertion of cytochrome P-450scc into a phospholipid bilayer results in conversion of the optical spectrum to a low spin type, but this transition is markedly diminished if cholesterol is incorporated within the bilayer. Vesicle-reconstituted cytochrome P-450scc metabolizes cholesterol within the bilayer (turnover = 13 nmol/min/nmol of cytochrome P-450scc); virtually all (greater than 94%) of the cholesterol within the vesicle is accessible to the enzyme. "Dilution" of cholesterol within the bilayer by increasing the phospholipid/cholesterol ratio at a constant amount of cholesterol and cytochrome P-450scc results in a decreased rate of side chain cleavage, and cytochrome P-450scc incorporated into a cholesterol-free vesicle cannot metabolize cholesterol within a separate vesicle. In addition, activity of the reconstituted hemoprotein is sensitive to the fatty acid composition of the phospholipid. These results indicate that the cholesterol binding site on vesicle-reconstituted cytochrome P-450scc is in communication with the hydrophobic bilayer of the membrane. The reducibility of vesicle-reconstituted cytochrome P-450scc as well as spectrophotometric and activity titration experiments show that all of the reconstituted cytochrome P-450scc molecules possess an adrenodoxin binding site which is accessible from the exterior of the vesicle. Activity titrations with adrenodoxin reductase also demonstrate that a ternary or quaternary complex among adrenodoxin reductase, adrenodoxin, and cytochrome P-450scc is not required for catalysis, a finding consistent with our proposed mechanism of steroidogenic electron transport in which adrenodoxin acts as a mobile electron shuttle between adrenodoxin reductase and cytochrome P-450 (Lambeth, J.D., Seybert, D.W., and Kamin, H. (1979) J. Biol. Chem. 254, 7255-7264.  相似文献   

3.
Binary and ternary complexes of bovine adrenocortical mitochondrial cytochrome P-450scc with adrenodoxin and adrenodoxin reductase.adrenodoxin complex are formed in the presence of cholesterol and Emulgen 913. Both cholesterol and Emulgen 913 are required for the binding of cytochrome P-450scc with adrenodoxin. Since phospholipids are able to replace Emulgen 913 in this reaction, in vivo phospholipids of the mitochondrial inner membrane appear to play the function of the detergent. The dissociation constants of the cytochrome.adrenodoxin complex are 0.3 to 0.4 microM at 130 microM dimyristoylphosphatidylcholine and 0.9 microM at 120 microM Emulgen 913, whereas the dissociation constant for the ternary complex of cytochrome P-450scc with adrenodoxin reductase and adrenodoxin is 4.0 microM at 150 microM Emulgen 913. The stoichiometry of binary and ternary complexes reveals the 1:1 and 1:1:1 molar ratios, respectively, judging from chemical analyses after the fractionation of the complexes by gel filtration. Emulgen 913, Tween 20, ethylene glycol, myristoyllysophosphatidylcholine, dimyristoylphosphatidylcholine, and phosphatidylethanolamine show the enhanced activity of cholesterol side chain cleavage reaction with cytochrome P-450scc, adrenodoxin, adrenodoxin reductase, and NADPH. These results, in conjunction with earlier experiments, lead us to the proposal on the structure of the hydroxylase complex in the membrane and to the hypothesis on the regulation of the enzymatic activity by the availability of substrate cholesterol to the cytochrome. Hence, we propose a mobile P-450scc hypothesis for the response of the mitochondrion to adrenocorticotropic hormone stimuli.  相似文献   

4.
The steroidogenic acute regulatory protein (StAR) mediates the acute stimulation of steroid synthesis by tropic hormones in steroidogenic cells. StAR interacts with the outer mitochondrial membrane and facilitates the rate-limiting transfer of cholesterol to the inner mitochondrial membrane where cytochrome P-450scc converts this cholesterol into pregnenolone. We tested the ability of N-62 StAR to transfer cholesterol from donor vesicles containing cholesterol but no cytochrome P-450scc to acceptor vesicles containing P-450scc but no cholesterol, using P-450scc activity as a reporter of the cholesterol content of synthetic phospholipid vesicles. N-62 StAR stimulated P-450scc activity in acceptor vesicles 5-10-fold following the addition of donor vesicles. Transfer of cholesterol to acceptor vesicles was rapid and sufficient to maintain a linear rate of pregnenolone synthesis for 10 min. The effect of N-62 StAR in stimulating P-450scc activity was specific for cholesterol transfer and was not due to vesicle fusion or P-450scc exchange between vesicles. Maximum stimulation of P-450scc activity in acceptor vesicles required preincubation of N-62 StAR with phospholipid vesicles prior to adding donor vesicles. The amount of N-62 StAR causing half-maximum stimulation of P-450scc activity in acceptor vesicles was 1.9 microm. Half-maximum stimulation required more than a 10-fold higher concentration of R182L N-62 StAR, a mutant associated with congenital lipoid adrenal hyperplasia. N-62 StAR-mediated transfer of cholesterol between vesicles showed low dependence on the cholesterol concentration in the donor vesicles. Thus StAR can transfer cholesterol between synthetic membranes without other protein components found in mitochondria.  相似文献   

5.
An inner mitochondrial membrane fraction was prepared from porcine corpus luteum. The concentrations of the respiratory cytochromes, cytochrome P-450scc, cholesterol, ubiquinone, cardiolipin and the total phospholipids were measured. The fatty acid compositions of cardiolipin and the total phospholipid fraction were determined. Comparative data from porcine heart and liver were obtained using the same methods. Differences in both the concentration and the fatty acid composition of the phospholipids were observed between the tissues. It appeared that the phospholipid bilayer was expanded relative to haem a in luteal mitochondria. It is proposed that in the ovary this expansion may be necessary to accommodate cytochrome P-450scc and its substrate, cholesterol.  相似文献   

6.
Addition of bovine adrenal cytochrome P-450scc to small unilamellar dioleoylphosphatidylcholine vesicles (DOPC-SUV) produces a complex sequence of interactions, indicating exceptional cytochrome mobility. First, cholesterol transfer from cytochrome to vesicles indicated rapid dissociation of P-450scc oligomers and integration of monomers into the membrane (delta A 390-420 nm; t1/2 = 2 s). After 10-15 s, P-450scc-induced aggregation of the vesicles starts, as indicated by increased turbidity (delta A 448 or 520 nm; complete in 6-8 min). Fluorescence quenching experiments indicate that this aggregation does not lead to measurable vesicle fusion during this period. Aggregation is prevented by mild heat denaturation of P-450scc, by addition of anti-P-450scc IgG, and also by 1:1 complex formation with the electron donor adrenodoxin (ADX). P-450scc, therefore, links two vesicles through two separate domains involved in, respectively, membrane integration (lipophilic) and ADX binding (charged). Although completely bound by DOPC-SUV, as evidenced by Sephadex elution, P-450scc has access within 1 min to cholesterol in secondary SUV. This is indicated by spectral changes (cholesterol complex formation) and by metabolism of secondary vesicle cholesterol. Since cholesterol equilibrates slowly between vesicles (t1/2 = 1-2 h), these changes arise from P-450scc transfer. This transfer was maximally slowed after a 5-min preincubation with primary vesicles, reflecting more extensive integration into the membrane than is necessary for the rapid initial cholesterol transfer to P-450scc. P-450scc transfer probably results from simultaneous interaction of P-450scc with two vesicles that may also initiate aggregation. Weaker integration into primary dimyristoylphosphatidylcholine vesicles facilitates exchange but prevents aggregation. Integration and aggregation are both enhanced by incorporation of 10% phosphatidylinositol into SUV, while exchange is slowed. This mobility of P-450scc is most probably a consequence of the absence of amino-terminal anchoring. P-450scc-induced association of inner mitochondrial membrane segments may contribute to the exceptionally vesiculated structure of adrenal and ovarian mitochondria that parallels increased P-450scc content.  相似文献   

7.
This study compares the side-chain cleavage of aqueous suspensions of cholesterol sulfate with the side-chain cleavage of cholesterol sulfate which is incorporated into phospholipid vesicles. Three different cholesterol desmolase systems are examined: the membrane-bound cholesterol side-chain cleavage system present in inner mitochondrial membranes isolated from bovine adrenal mitochondria; a soluble, lipid-depleted, reconstituted side-chain cleavage system prepared from cytochrome P-450scc, adrenodoxin and adrenodoxin reductase; a membrane associated side-chain cleavage system prepared by adding phospholipid vesicles, prepared from adrenal mitochondrial, to the reconstituted system. Soluble cholesterol sulfate, in low concentration, is a good substrate for the lipid-depleted reconstituted side chain cleavage system. However, at concentrations above 2 microM, in the absence of phospholipids, the sterol sulfate appears to bind at a non-productive site on cytochrome P-450scc which leads to substrate inhibition. Phospholipids, while inhibiting the binding of cholesterol sulfate to the cytochrome, also appear to prevent non-productive binding of the sterol sulfate to the cytochrome. Thus the addition of phospholipids to the lipid-depleted enzyme system leads to an activation of side-chain cleavage of high concentrations of the sterol sulfate. Soluble cholesterol sulfate is a good substrate for both the native and reconstituted membrane-bound systems and no substrate inhibition is observed when the membrane bound enzyme systems are employed in the assay of side-chain activity. However, the cleavage of cholesterol sulfate, which is incorporated into phospholipid vesicles, by both membrane bound enzyme systems appears to be competitively inhibited by the phospholipids of the vesicles. The results of this study suggest that the regulation of the side-chain cleavage of cholesterol sulfate may be entirely different than the regulation of the side-chain cleavage of cholesterol, if cholesterol sulfate exists intracellularly as a soluble non-complexed substrate. If, on the other hand, cholesterol sulfate is present in the cell in lipid droplets as a complex with phospholipids, its metabolism may be under the same constraints as the side-chain cleavage of cholesterol.  相似文献   

8.
Addition of homogeneous rat liver sterol carrier protein2 (SCP2) or an adrenal cytosolic fraction enhanced pregnenolone production by adrenal mitochondria. Pretreatment of SCP2 or adrenal cytosol with anti-SCP2 IgG abolished the stimulatory effect of both preparations on mitochondrial pregnenolone output. Incubation of mitochondria with aminoglutethimide, which blocks interaction of cholesterol with inner membrane cytochrome P-450scc, resulted in decreased pregnenolone production and a decreased level of mitoplast cholesterol. Addition of SCP2 to the incubation media caused an almost 2-fold increase in cholesterol associated with the mitoplast, but did not enhance mitochondrial pregnenolone production. Studies with reconstituted cytochrome P-450scc in phospholipid vesicles also suggested that SCP2 did not affect interaction of cholesterol with the hemoprotein. Treatment of rats with cycloheximide alone or with adrenocorticotropic hormone resulted in a dramatic increase in mitochondrial cholesterol. However, these mitochondria did not exhibit increased levels of pregnenolone output under control incubation conditions. When SCP2 was included in the mitochondrial incubation media, pregnenolone production was significantly increased over that observed with adrenal mitochondria from untreated or adrenocorticotropic hormone-treated rats. The results imply that SCP2 enhances mitochondrial pregnenolone production by improving transfer of mitochondrial cholesterol to cytochrome P-450scc on the inner membrane, but does not directly influence the interaction of substrate with the hemoprotein.  相似文献   

9.
Rotation of cytochrome P-450 was examined in bovine adrenocortical mitochondria before and after an enzymatic transformation of cholesterol into pregnenolone by cytochrome P-450scc in the presence of malate. Rotational diffusion was measured by observing the decay of absorption anisotropy, r(t), after photolysis of the heme.CO complex by a vertically polarized laser flash. Analysis of r(t) was based on a "rotation-about-membrane normal" model. The measurements were used to investigate substrate-dependent intermolecular interactions of cytochrome P-450 with other redox components. Rotational mobility of cytochrome P-450 was significantly dependent on the decrease in cholesterol content by side chain cleavage reaction catalyzed by cytochrome P-450scc. In a typical experiment, the observed value for the normalized time-independent anisotropy r(infinity)/r(0) was decreased from 0.78 in control mitochondria to 0.60 after conversion of 21% of cholesterol to pregnenolone, while no significant change was observed for the average rotational relaxation time phi of about 700 microseconds. Significantly high values of r(infinity)/r(0) = 0.78 and 0.60 imply co-existence of mobile and immobile populations of cytochrome P-450. Since we observed that the heme angle tilted 55 degrees from membrane plane, 22% (control mitochondria) and 40% (after conversion of cholesterol to pregnenolone) of cytochrome P-450 in mitochondria are calculated to be mobile in the preparation. The significant mobilization of cytochrome P-450scc molecules caused by the conversion of cholesterol to pregnenolone is likely due to changes in protein-protein interactions with its redox partners, since the lipid fluidity was kept unchanged by the cholesterol depletion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Highly purified beef adrenal cytochrome P-450 specific for cholesterol side chain cleavage (P-450-scc) has been reconstituted with sonicated vesicles containing cholesterol and either dimyristoyl phosphatidylcholine (DMPC) or dioleoyl phosphatidylcholine (DOPC). When cholesterol was present in DMPC vesicles at 1:15 molar ratio, cardiolipin and L-alpha-phosphatidylinositol 4-monophosphate (DPI) increased side chain cleavage by at least 5-fold (0.7 min-1-3.5 min-1). In DOPC vesicles, a smaller increase was observed (2.8 min-1-5.0 min-1). Activator phospholipids increased the rate of transference of cholesterol both to and from the cytochrome when, respectively, cholesterol-free P-450scc and cholesterol-P-450scc complex are combined with either DMPC or DOPC vesicles. Transfer of cholesterol to and from cytochrome P-450 occurred with similar first order rate constants and was also independent of the concentrations of cholesterol vesicles and P-450. It is suggested that transfer in both directions is limited by the rate of insertion of P-450scc into the membrane. Phospholipid stimulatory effects for both cholesterol transfer and for activation of side chain cleavage occurred with the same ranking, even though cholesterol transfer, following reconstitution, was 5-10 times slower than the turnover of side chain cleavage. DPI increased Vmax for side chain cleavage in both DMPC and DOPC vesicles to the same rate (12 min-1) without effect on the Km for cholesterol, while cardiolipin both produced a similar increase in Vmax and decreased Km (cholesterol). This activation by DPI is attributed to more favorable incorporation of P-450scc in these membranes and is consistent with previously reported effects of acidic phospholipids on other mitochondrial proteins.  相似文献   

11.
Chemical modifications of cytochrome P-450scc and cytochrome P-450(11) beta with fluorescein-, diiodofluorescein-, eosine- and rhodamine isothiocyanate have been carried out. At a low reagent/protein ratio and neutral pH, a selective chemical modification was known to take place which did not affect the spectral properties of cytochrome P-450scc. Covalent chromatography was found useful to discriminate between covalent modification of cytochrome P-450scc and non-specific binding of FITC with cytochrome P-450scc. Proteolytic modification of cytochrome P-450scc and structural analysis indicate that a lysine residue of the C-terminal sequence of cytochrome P-450scc is accessible to FITC. The residue was shown, by the analysis of the chymotryptic hydrolysate of the fragment F2, to be Lys338. Effect of modification with FITC on the interaction of cytochrome P-450scc with cholesterol or adrenodoxin, on the reduction kinetics and on the conversion of cholesterol to pregnenolone was also studied.  相似文献   

12.
Cytochrome P-450scc was isolated from mitochondria of bovine adrenal cortex by hydrophobic chromatography on octyl Sepharose followed by affinity chromatography on cholesterol-7-(thiomethyl)carboxy-3 beta-acetate-Sepharose. The partially purified eluate from the octyl Sepharose resin was free of adrenodoxin and adrenodoxin reductase and displayed biphasic binding characteristics for cholesterol, cholesterol sulfate, and cholesterol acetate (CA). Chromatography of the octyl Sepharose eluate on CA-Sepharose removed extraneous proteins and resolved the cytochrome P-450scc into two fractions, each of which displayed monophasic binding with all three substrates. These fractions behaved identically with respect to their ability to bind substrates, their kinetic properties, and their rate of migration during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The dissociation constants of the cytochrome P-450scc.substrate complexes are 1.1, 2.6, and 1.3 microM for cholesterol, cholesterol sulfate, and cholesterol acetate, respectively. Addition of phospholipids isolated from adrenal cortex mitochondria or adrenodoxin had no effect on the equilibrium binding constants. Addition of Emulgen 913, however, decreased the binding affinities 10-20-fold. Emulgen 913 also inhibited the interaction of adrenodoxin with the cytochrome. An active side chain cleavage system was reconstituted with purified P-450 by addition of saturating amounts of adrenodoxin, adrenodoxin reductase, and NADPH-generating system. The apparent Km values for this reconstituted system of cholesterol, cholesterol sulfate, and cholesterol acetate are 1.8, 1.9, and 0.6 microM, respectively. Since the Km values of substrate oxidation are similar to the Kd values of the cytochrome P-450.substrate complexes, it seems likely that the binding of substrates, particularly when the side chain cleavage system is free of mitochondrial membranes, is not rate-limiting. Based on these results and electrophoretic data, it appears that one cytochrome P-450 present in adrenal mitochondria can oxidize cholesterol, its sulfate, and its acetate. This enzyme represented about 60% of the cytochrome P-450 present in the octyl Sepharose eluate. The factors responsible for the biphasic kinetics of oxidation by intact mitochondria and biphasic binding of sterol substrates by partially purified preparations of cytochrome P-450scc are still unknown.  相似文献   

13.
Adrenodoxin, purified from bovine adrenal cortex, was subjected to trypsin cleavage to yield a trypsin-resistant form, designated TT-adrenodoxin. Sequencing with carboxypeptidase Y identified the trypsin cleavage site as Arg-115, while Edman degradation indicated no NH2-terminal cleavage. Native adrenodoxin and TT-adrenodoxin exhibited similar affinity for adrenodoxin reductase as determined in cytochrome c reductase assays. In side chain cleavage assays using cytochrome P-450scc, however, TT-adrenodoxin demonstrated greater activity than adrenodoxin with cholesterol, (22R)-22-hydroxycholesterol, or (20R,22R)-20,22-dihydroxycholesterol as substrate. This enhanced activity is due to increased affinity of TT-adrenodoxin for cytochrome P-450scc; TT-adrenodoxin exhibits a 3.8-fold lower apparent Km for the conversion of cholesterol to pregnenolone. TT-Adrenodoxin was also more effective in coupling with cytochrome P-450(11) beta, exhibiting a 3.5-fold lower apparent Km for the 11 beta-hydroxylation of deoxycorticosterone. In the presence of partially saturating cholesterol, TT-adrenodoxin elicited a type I spectral shift with cytochrome P-450scc similar to that induced by adrenodoxin, and spectral titrations showed that oxidized TT-adrenodoxin exhibited a 1.5-fold higher affinity for cytochrome P-450scc. These results establish that COOH-terminal residues 116-128 are not essential for the electron transfer activity of bovine adrenodoxin, and the differential effects of truncation at Arg-115 on interactions with adrenodoxin reductase and cytochromes P-450 suggest that the residues involved in the interactions are not identical.  相似文献   

14.
Covalent modification of cytochrome P-450scc (purified from bovine adrenocortical mitochondria) with pyridoxal 5'-phosphate (PLP) was found to cause inhibition of the electron-accepting ability of this enzyme from its physiological electron donor, adrenodoxin, without conversion to the "P-420" form. Reaction conditions leading to the modification level of 0.82 and 2.85 PLP-Lys residues per cytochrome P-450scc molecule resulted in 60% and 98% inhibition, respectively, of electron-transfer rate from adrenodoxin to cytochrome P-450scc (with beta-NADPH as an electron donor via NADPH-adrenodoxin reductase and with phenyl isocyanide as the exogenous heme ligand of the cytochrome). It was found that covalent PLP modification caused a drastic decrease of cholesterol side-chain cleavage activity when the cholesterol side-chain cleavage enzyme system was reconstituted with native (or PLP-modified) cytochrome P-450scc, adrenodoxin, and NADPH-adrenodoxin reductase. Approximately 60% of the original enzymatic activity of cytochrome P-450scc was protected against inactivation by covalent PLP modification when 20% mole excess adrenodoxin was included during incubation with PLP. Binding affinity of substrate (cholesterol) to cytochrome P-450scc was found to be increased slightly upon covalent modification with PLP by analyzing a substrate-induced spectral change. The interaction of adrenodoxin with cytochrome P-450scc in the absence of substrate (cholesterol) was analyzed by difference absorption spectroscopy with a four-cuvette assembly, and the apparent dissociation constant (Ks) for adrenodoxin binding was found to be increased from 0.38 microM (native) to 33 microM (covalently PLP modified).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Molecular modeling of the 3-D structure of cytochrome P-450scc.   总被引:1,自引:0,他引:1  
Sequence-alignment studies of the bovine mitochondrial cholesterol side-chain cleavage enzyme cytochrome P-450scc with the bacterial cytochrome P-450cam (camphor hydroxylating enzyme) have been undertaken. Our novel alignment of the sequences revealed 69 identical residues and many highly conserved regions. The results of the sequence alignment studies were used to model the 3-D structure of P-450scc based on the available crystal structure of P-450cam. The major insertions in the sequence are found mainly on four external-loop regions of the molecule, while the core structure of P-450cam is retained with subtle internal modifications. The most hydrophobic of these four external loops is proposed as a candidate for membrane attachment.  相似文献   

16.
The binding of cholest-5-ene-3beta,20alpha-diol (20alpha-hydroxycholesterol), 11-deoxycorticosterone, and aminoglutethimide to cytochrome P-450 in bovine adrenal mitochondria was measured by changes in optical spectra at room temperature and by EPR spectra at 14 K. The two methods provided nearly identical quantitation of these interactions with cytochrome P-450. Two distinct high spin forms of cytochrome P-450 were revealed by EPR spectra. The predominant high spin species (g = 8.2) was decreased by addition of 20alpha-hydroxycholesterol and elevated pH but was increased by addition of cholesterol. The minor high spin species (g = 8.1) was incrreased by addition of deoxycorticosterone but decreased by low concentrations of metyrapone. The two forms were evidently not in equilibrium and have been assigned to distinct forms of cytochrome P-450 involved in, respectively, cholesterol side chain cleavage (P-450scc) and steroid 11beta hydroxylation (P-450(11)beta). The high spin states are derived from complexes of these P-450 cytochromes with endogenous substrates, which are, respectively, cholesterol and deoxycorticoids. A high to low spin transition was observed when these complexes were turned over by initiating hydroxylation with malate. The contributions of cytochromes P-450(11)beta and P-450scc to the low spin spectrum were also resolved by similar means. At least 20% of P-450scc is in the low spin state while about 90% of P-450(11)beta is low spin in isolated beef adrenal mitochondria. Low spin complexes of cytochrome P-450scc with 20alpha-hydroxycholesterol and 3beta-hydroxypregn-5-ene-20-one (pregnenolone) gave distinct EPR spectra. Aminoglutethimide interacted with the total cytochrome P-450 content of the bovine adrenal mitochondria forming low spin complexes. Both optical and EPR data indicated binding to two forms of cytochrome P-450. These results suggest a detailed correlation between the spin state and absorbance changes seen at room temperature, illustrate that EPR allows the distinction of two principal forms of P-450, and suggest that there is no appreciable change in the spin state of either cytochrome between 14 K and 300 K.  相似文献   

17.
Bovine adrenal P-45011 beta catalyzes the 11 beta- and 18-hydroxylation of corticosteroids as well as aldosterone synthesis. These activities of P-45011 beta were found to be modulated by another mitochondrial cytochrome P-450 species, P-450scc. The presence together of P-45011 beta and P-450scc in liposomal membranes was found to remarkably stimulate the 11 beta-hydroxylase activity of P-45011 beta and also stimulate the cholesterol desmolase activity of P-450scc. The stimulative effect of P-450scc on 11 beta-hydroxylase activity diminished by the addition of protein-free liposomes to proteoliposomes containing P-45011 beta and P-450scc, thus showing P-450scc to interact with P-45011 beta in the same membranes. Kinetic analysis of this effect indicated the formation of an equimolar complex between P-45011 beta and P-450scc on liposomal membranes. P-45011 beta in the complex had not only stimulated activity for 11 beta- and 18-hydroxylation of 11-deoxycorticosterone but also suppressed activity for production of 18-hydroxycorticosterone and aldosterone. When the inner mitochondrial membranes of zona fasciculata-reticularis from bovine adrenal were treated with anti-P-450scc IgG, aldosterone formation was stimulated to a greater extent than that of zona glomerulosa. This indicates the aldosterone synthesizing activity of P-45011 beta in the zona fasciculata-reticularis to be suppressed by interaction with P-450scc. The zone-specific aldosterone synthesis of P-45011 beta in bovine adrenal may possibly be induced by differences in interactions with P-450scc of mitochondrial membranes in each zone.  相似文献   

18.
We have previously reported that the steroidogenic activity of the bovine placentome is stimulated by a calcium-mediated, cyclic nucleotide-independent mechanism and that this steroidogenesis is limited by the availability of sterol substrate to the side-chain cleavage enzyme. We have recently established that the antibody against bovine adrenal cytochrome P-450 cholesterol side-chain cleavage enzyme (P-450scc) can be used to specifically detect P-450scc in both bovine placentome and corpus luteum. In the present study, we used an immunogold technique to localize the P-450scc in the bovine placentome by electron microscopy. The mononucleate cell of the cotyledon showed both giant and normal-sized mitochondria, with the latter, predominating. Both mitochondrial types found in the mononucleate cells clearly displayed gold particles located on the cristae; in contrast, these particles were absent in the binucleate cells. It is worth noting that giant mitochondria were found exclusively in the placental mononucleate cells in both the fetal and maternal sites but not in the binucleate cells. These findings suggest that the cholesterol side-chain cleavage enzyme is present in bovine cotyledon cells, primarily in mononucleate cells. The variations in P-450scc immunoreactivity among different cells of the placenta are suggestive of different steroidogenetic capacities of the cells.  相似文献   

19.
Immunohistochemical and biochemical studies were performed on the brains of adult female and male rats using a specific antibody against bovine adrenocortical cytochrome P-450scc. The results showed that in both male and female rats, the myelinated regions of the white matter are selectively immunostained throughout the brain and that even in rats pretreated with colchicine, there is never positive staining of neuronal cell bodies and their dendrites in any brain region. Western immunoblotting with the P-450scc antibody and enzymatic assays revealed that P-450scc and cholesterol side-chain cleavage activity were present in a homogenate derived from the cortical white matter, but not detectable in that from the cerebral cortex. Furthermore, quantitation of the P-450scc protein in the immunoblots indicated that the concentration of P-450scc in the cortical white matter of both female and male rat brains is approx. 3-4 pmol per mg tissue protein. Thus it could be concluded that in the adult rat brain, P-450scc and cholesterol side-chain cleavage activity are selectively localized only in the myelinated region of the white matter.  相似文献   

20.
Highly specific antibodies against hemeprotein were obtained by immunizing rabbits with a highly purified cholesterol-hydroxylating cytochrome P-450scc from adrenocortical mitochondria. The antibodies do not specifically interact with other components of the adrenocortical electron transport chain, e. g., adrenodoxin reductase and adrenodoxin. Using double immunodiffusion technique (Ouchterlony method), it was shown that the antibodies did not precipitate the microsomal cytochromes P-450 LM2 and LM4, cytochrome b5 and 11 beta-hydroxylating cytochrome P-450 from adrenocortical mitochondria. Antibodies against cytochrome P-450scc inhibited the cholesterol side chain cleavage activity of cytochrome P-450scc in a reconstituted system. Limited proteolysis with trypsin and immunoelectrophoresis in the presence of specific antibodies revealed that antigenic determinants are present of the heme-containing catalytic domain of cytochrome P-450scc (F1) as well as on the domain responsible for the interaction with the phospholipid membrane (F2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号