首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H Weber  S Schultze    A J Pfitzner 《Journal of virology》1993,67(11):6432-6438
The Tm-2(2) resistance gene is used in most commercial tomato cultivars for protection against infection with tobacco mosaic virus and its close relative tomato mosaic virus (ToMV). To study the mechanism of this resistance gene, cDNA clones encompassing the complete genome of a ToMV strain (ToMV-2(2)) that was able to break the Tm-2(2) resistance were generated. Chimeric full-length viral cDNA clones were constructed under the control of the cauliflower mosaic virus 35S RNA promoter, combining parts of the wild-type virus and ToMV-2(2). Using these clones in cDNA infection experiments, we showed that the 30-kDa movement protein of ToMV-2(2) is responsible for overcoming the Tm-2(2) resistance gene in the tomato. DNA sequence analysis revealed four amino acid exchanges between the 30-kDa proteins from wild-type ToMV and ToMV-2(2), Lys-130 to Glu, Gly-184 to Glu, Ser-238 to Arg, and Lys-244 to Glu. To clarify the involvement of the altered amino acid residues in the resistance-breaking properties of the ToMV-2(2) movement protein, different combinations of these amino acid exchanges were introduced in the genome of wild-type ToMV. Only one mutant strain which contained two amino acid substitutions, Arg-238 and Glu-244, was able to multiply in Tm-2(2) tomato plants. Both amino acid exchanges are found within the carboxy-terminal region of the movement protein, which displays a high variability among different tobamoviruses and has been shown to be dispensable for virus transport in tobacco plants. These observations suggest that the resistance conferred by the Tm-2(2) gene against ToMV depends on specific recognition events in this host-pathogen interaction rather than interfering with fundamental functions of the 30-kDa protein.  相似文献   

2.
A resistance-breaking strain of tobacco mosaic virus (TMV), Ltb1, is able to multiply in tomatoes with the Tm-2 gene, unlike its parent strain, L. Nucleotide sequence analysis of Ltb1 RNA revealed two amino acid changes in the 30-kD protein: from Cys68 to Phe and from Glu133 to Lys (from L to Ltb1). Strains with these two changes generated in vitro multiplied in tomatoes with the Tm-2 gene and induced essentially the same symptoms as those caused by Ltb1. Strains with either one of the two changes did not overcome the resistance as efficiently as Ltb1, although increased levels of multiplication were observed compared with the L strain. Results showed that both mutations are involved in the resistance-breaking property of Ltb1. Sequence analysis indicated that another resistance-breaking strain and its parent strain had two amino acid changes in the 30-kD protein: from Glu52 to Lys and from Glu133 to Lys. The fact that the amino acid changes occurred in or near the well conserved regions in the 30-kD protein suggests that the mechanism of Tm-2 resistance may be closely related to the fundamental function of the 30-kD protein, presumably in cell-to-cell movement.  相似文献   

3.
4.
In tomato, infections by tomato mosaic virus are controlled by durable Tm-22 resistance. In order to gain insight into the processes underlying disease resistance and its durability, we cloned and analysed the Tm-22 resistance gene and the susceptible allele, tm-2. The Tm-22 gene was isolated by transposon tagging using a screen in which plants with a destroyed Tm-22 gene survive. The Tm-22 locus consists of a single gene that encodes an 861 amino acid polypeptide, which belongs to the CC-NBS-LRR class of resistance proteins. The putative tm-2 allele was cloned from susceptible tomato lines via PCR with primers based on the Tm-22 sequence. Interestingly, the tm-2 gene has an open reading frame that is comparable to the Tm-22 allele. Between the tm-2 and the Tm-22 polypeptide 38 amino acid differences are present of which 26 are located in the second half of the LRR-domain. Susceptible tomato plants, which were transformed with the Tm-22 gene, displayed resistance against ToMV infection. In addition, virus specificity, displayed by the Tm-22 resistance was conserved in these transgenic lines. To explain the durability of this resistance, it is proposed that the Tm-22-encoded resistance is aimed at the Achilles' heel of the virus.  相似文献   

5.
The tomato Tm-22 gene was considered to be one of the most durable resistance genes in agriculture, protecting against viruses of the Tobamovirus genus, such as tomato mosaic virus (ToMV) and tobacco mosaic virus (TMV). However, an emerging tobamovirus, tomato brown rugose fruit virus (ToBRFV), has overcome Tm-22, damaging tomato production worldwide. Tm-22 encodes a nucleotide-binding leucine-rich repeat (NLR) class immune receptor that recognizes its effector, the tobamovirus movement protein (MP). Previously, we found that ToBRFV MP (MPToBRFV) enabled the virus to overcome Tm-22-mediated resistance. Yet, it was unknown how Tm-22 remained durable against other tobamoviruses, such as TMV and ToMV, for over 60 years. Here, we show that a conserved cysteine (C68) in the MP of TMV (MPTMV) plays a dual role in Tm-22 activation and viral movement. Substitution of MPToBRFV amino acid H67 with the corresponding amino acid in MPTMV (C68) activated Tm-22-mediated resistance. However, replacement of C68 in TMV and ToMV disabled the infectivity of both viruses. Phylogenetic and structural prediction analysis revealed that C68 is conserved among all Solanaceae-infecting tobamoviruses except ToBRFV and localizes to a predicted jelly-roll fold common to various MPs. Cell-to-cell and subcellular movement analysis showed that C68 is required for the movement of TMV by regulating the MP interaction with the endoplasmic reticulum and targeting it to plasmodesmata. The dual role of C68 in viral movement and Tm-22 immune activation could explain how TMV was unable to overcome this resistance for such a long period.  相似文献   

6.
应用RNAi技术培育抗TMV病毒转基因烟草   总被引:5,自引:0,他引:5  
利用烟草花叶病毒(TMV)外壳蛋白基因构建RNAi干涉载体, 通过叶盘法转化至烟草K326 和龙江911两个栽培品种。对转基因株系的荧光定量PCR分析表明, 不同转基因株系的病毒RNA靶序列都得到一定程度的降解, 抗病性鉴定结果证实, 转基因K326和龙江911两个栽培品种的转基因材料分别有83%和90%转基因株系对TMV呈现免疫级抗性。  相似文献   

7.
8.
Arabidopsis thaliana represents a valuable and efficient model to understand mechanisms underlying plant susceptibility to viral diseases. Here, we describe the identification and molecular cloning of a new gene responsible for recessive resistance to several isolates of Watermelon mosaic virus (WMV, genus Potyvirus) in the Arabidopsis Cvi‐0 accession. rwm1 acts at an early stage of infection by impairing viral accumulation in initially infected leaf tissues. Map‐based cloning delimited rwm1 on chromosome 1 in a 114‐kb region containing 30 annotated genes. Positional and functional candidate gene analysis suggested that rwm1 encodes cPGK2 (At1g56190), an evolutionary conserved nucleus‐encoded chloroplast phosphoglycerate kinase with a key role in cell metabolism. Comparative sequence analysis indicates that a single amino acid substitution (S78G) in the N‐terminal domain of cPGK2 is involved in rwm1‐mediated resistance. This mutation may have functional consequences because it targets a highly conserved residue, affects a putative phosphorylation site and occurs within a predicted nuclear localization signal. Transgenic complementation in Arabidopsis together with virus‐induced gene silencing in Nicotiana benthamiana confirmed that cPGK2 corresponds to rwm1 and that the protein is required for efficient WMV infection. This work uncovers new insight into natural plant resistance mechanisms that may provide interesting opportunities for the genetic control of plant virus diseases.  相似文献   

9.
10.
11.
12.
R Pattanayek  M Elrod  G Stubbs 《Proteins》1992,12(2):128-132
Lead has been used as a substitute for calcium binding to tobacco mosaic virus (TMV). The high atomic number of lead has allowed us to use difference maps from X-ray fiber diffraction data to characterize a calcium-binding site in the virus. The metal ligands are slightly different from those previously believed to bind calcium to TMV, although the binding site is very close to one previously described. Two acetate groups are also bound to the lead atom. There is no significant backbone conformational change in the protein as a result of metal binding; the binding is accomplished by means of relatively small movements in amino acid side chains.  相似文献   

13.
14.
Tomato mosaic virus vectors were designed that produced, by a translational readthrough, a fusion protein consisting of coat protein and metal-binding peptide, as a result of which particles were expected to present the metal-binding peptides on their surface. When inoculated in plants, they were expected to replicate and form a metal-adsorbing artificial sink in the cytoplasm, so as to reduce metal toxicity. Vectors were constructed harbouring sequences encoding various lengths of polyhistidine as a metal-binding peptide. One of the vectors, TLRT6His, which contains a 6 x histidine sequence, moved systemically in tobacco plants, and its particles were shown to retain cadmium ions by an in vitro assay. When a toxic amount of cadmium was applied, the toxic effect was much reduced in TLRT6His-inoculated tobacco plants, probably as a result of cadmium adsorption by TLRT6His particles in the cytosol. This shows the possible use of an artificial sink for metal tolerance and the advantage of employing a plant viral vector for phytoremediation.  相似文献   

15.
Brome mosaic virus (BMV) is a representative member of positive-strand RNA viruses. The 1a replicase from BMV is a membrane protein of unknown structure with a methyltransferase N-terminal domain and a putative helicase activity in the C-terminal domain. In order to make a functional prediction of the helicase activity of the BMV 1a C-terminal domain, we have built a model of its structure. The use of fold recognition servers hinted at two different superfamilies of helicases [superfamily 1 (SF1) and superfamily 2 (SF2)] as putative templates for the C-terminal fragment of BMV 1a. A structural model of BMV 1a in SF2 was obtained by means of a fold recognition server (3D-PSSM). On the other hand, we used the helicase motifs described in the literature to construct a model of the structure of the BMV 1a C-terminal domain as a member of the SF1. The biological functionality and statistic potentials were used to discriminate between the two models. The results illustrate that the use of sequence profiles and patterns helps modeling. Accordingly, the C-terminal domain of BMV 1a is a potential member of the SF1 of helicases, and it can be modeled with the structure of a member of the UvrD family of helicases. The helicase mechanism was corroborated by the model and this supports the hypothesis that BMV 1a should have helicase activity.  相似文献   

16.
Canto T  Palukaitis P 《Journal of virology》2002,76(24):12908-12916
The N gene conditions for resistance to Tobacco mosaic virus (TMV) but only below 28 degrees C. However, a TMV-based vector expressing green fluorescent protein (TMV-GFP) showed only limited movement at 33 degrees C in tobacco plants harboring the N gene and other genes cointrogressed from Nicotiana glutinosa. TMV-GFP moved efficiently in tobacco plants that either lacked these genes or that contained the N gene but were transgenic for RNA1 of Cucumber mosaic virus. These findings identified novel temperature-independent resistance to the movement of TMV-GFP which could be neutralized by a different viral transgene. Using the N gene and nahG gene-transgenic tobacco, we show that this novel resistance is manifested specifically by the N gene itself and operates via a pathway independent of salicylic acid.  相似文献   

17.
Background

The apoplast plays an important role in plant defense against pathogens. Some extracellular PR-4 proteins possess ribonuclease activity and may directly inhibit the growth of pathogenic fungi. It is likely that extracellular RNases can also protect plants against some viruses with RNA genomes. However, many plant RNases are multifunctional and the direct link between their ribonucleolytic activity and antiviral defense still needs to be clarified. In this study, we evaluated the resistance of Nicotiana tabacum plants expressing a non-plant single-strand-specific extracellular RNase against Cucumber mosaic virus.

Results

Severe mosaic symptoms and shrinkage were observed in the control non-transgenic plants 10 days after inoculation with Cucumber mosaic virus (CMV), whereas such disease symptoms were suppressed in the transgenic plants expressing the RNase gene. In a Western blot analysis, viral proliferation was observed in the uninoculated upper leaves of control plants, whereas virus levels were very low in those of transgenic plants. These results suggest that resistance against CMV was increased by the expression of the heterologous RNase gene.

Conclusion

We have previously shown that tobacco plants expressing heterologous RNases are characterized by high resistance to Tobacco mosaic virus. In this study, we demonstrated that elevated levels of extracellular RNase activity resulted in increased resistance to a virus with a different genome organization and life cycle. Thus, we conclude that the pathogen-induced expression of plant apoplastic RNases may increase non-specific resistance against viruses with RNA genomes.

  相似文献   

18.
The tobacco N gene confers resistance to tobacco mosaic virus (TMV) and encodes a Toll-interleukin-1 receptor/nucleotide binding site/leucine-rich repeat (TIR-NBS-LRR) class protein. We have developed and used a tobacco rattle virus (TRV) based virus induced gene silencing (VIGS) system to investigate the role of tobacco candidate genes in the N-mediated signalling pathway. To accomplish this we generated transgenic Nicotiana benthamiana containing the tobacco N gene. The transgenic lines exhibit hypersensitive response (HR) to TMV and restrict virus spread to the inoculated site. This demonstrates that the tobacco N gene can confer resistance to TMV in heterologous N. benthamiana. We have used this line to study the role of tobacco Rar1-, EDS1-, and NPR1/NIM1- like genes in N-mediated resistance to TMV using a TRV based VIGS approach. Our VIGS analysis suggests that these genes are required for N function. EDS1-like gene requirement for the N function suggests that EDS1 could be a common component of bacterial, fungal and viral resistance signalling mediated by the TIR-NBS-LRR class of resistance proteins. Requirement of Rar1- like gene for N-mediated resistance to TMV and some powdery mildew resistance genes in barley provide the first example of converging points in the disease resistance signalling pathways mediated by TIR-NBS-LRR and CC-NBS-LRR proteins. The TRV based VIGS approach as described here to study N-mediated resistance signalling will be useful for the analysis of not only disease resistance signalling pathways but also of other signalling pathways in genetically intractable plant systems.  相似文献   

19.
MicroRNAs (miRNAs) regulate the abundance of target mRNAs by guiding cleavage at sequence complementary regions. In this study, artificial miRNAs (amiRNAs) targeting conserved motifs of the L (replicase) gene of Watermelon silver mottle virus (WSMoV) were constructed using Arabidopsis pre-miRNA159a as the backbone. The constructs included six single amiRNAs targeting motifs A, B1, B2, C, D of E, and two triple amiRNAs targeting motifs AB1E or B2DC. Processing of pre-amiRNAs was confirmed by agro-infiltration, and transgenic Nicotiana benthamiana plants expressing each amiRNA were generated. Single amiRNA transgenic lines expressing amiR-LB2 or amiR-LD showed resistance to WSMoV by delaying symptom development. Triple amiRNA lines expressing amiR-LB2, amiR-LD and amiR-LC provided complete resistance against WSMoV, with no indication of infection 28 days after inoculation. Resistance levels were positively correlated with amiRNA expression levels in these single and triple amiRNA lines. The triple amiR-LAB1E line did not provide resistance to WSMoV. Similarly, the poorly expressed amiR-LC and amiR-LE lines did not provide resistance to WSMoV. The amiR-LA- and amiR-LB1-expressing lines were susceptible to WSMoV, and their additional susceptibility to the heterologous Turnip mosaic virus harbouring individual target sequences indicated that these two amiRNAs have no effect in vivo. Transgenic lines expressing amiR-LB2 exhibited delayed symptoms after challenge with Peanut bud necrosis virus having a single mismatch in the target site. Overall, our results indicate that two amiRNAs, amiR-LB2 and amiR-LD, of the six designed amiRNAs confer moderate resistance against WSMoV, and the triple construct including the two amiRNAs provides complete resistance.  相似文献   

20.
The Cf-9 gene encodes an extracytoplasmic leucine-rich repeat protein that confers resistance in tomato to races of the fungus Cladosporium fulvum that express the corresponding avirulence gene Avr 9. We investigated whether the genomic Cf-9 gene functions in potato and tobacco. Transgenic tobacco and potato plants carrying Cf-9 exhibit a rapid hypersensitive cell death response (HR) to Avr 9 peptide injection. Cf 9 tobacco plants were reciprocally crossed to Avr 9-producing tobacco. A developmentally regulated seedling lethal phenotype occurred in F1 progeny when Cf9 was used as the male parent and Avr 9 as the female parent. However, when Cf9 was inherited in the maternal tissue and a heterozygous Avr 9 plant was used as the pollen donor, a much earlier reaction was caused, leading to no germination of any F1 seed. Detailed analysis of the Avr 9-induced responses in Cf 9 tobacco leaves revealed that (1) most mesophyll cells died within 3 hr (compared with 12 to 16 hr in tomato); (2) the macroscopic HR was visible at an Avr 9 titer five times lower than that which caused visible symptoms in tomato; (3) the HR invariably extended into noninjected panels of the tobacco leaf; (4) no HR occurred in leaves of young tobacco plants; (5) in older plants, the HR was dramatically enhanced by sequential Avr 9 challenges; and (6) coexpression of a salicylate hydroxylase transgene (nahG) from Pseudomonas putida reduced the severity of the macroscopic leaf HR and also restored germination to Cf 9 x 35S:Avr 9 F1 seedlings. Simultaneous introduction of Cf-9 homologs (Hcr 9-9 genes A and B or D) along with the native Cf-9 gene did not alter the responses that were specifically induced by Avr 9. Various ways to use the Cf-9-Avr 9 gene combination to engineer broad-spectrum disease resistance in several solanaceous species are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号