首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The disulfide bond structure of the extracellular domain of rat atrial natriuretic peptide (ANP) receptor (NPR-ECD) has been determined by mass spectrometry (MS) and Edman sequencing. Recombinant NPR-ECD expressed in COS-1 cells and purified from the culture medium binds ANP with as high affinity as the natural ANP receptor. Reaction with iodoacetic acid yielded no S-carboxymethylcysteine, indicating that all six Cys residues in NPR-ECD are involved in disulfide bonds. Electrospray ionization MS of NPR-ECD deglycosylated by peptide-N-glycosidase F gave a molecular mass of 48377.5+/-1.6 Da, which was consistent with the presence of three disulfide bonds. Liquid chromatography MS analysis of a lysylendopeptidase digest yielded three cystine-containing fragments with disulfide bonds Cys(60)-Cys(86), Cys(164)-Cys(213) and Cys(423)-Cys(432) based on their observed masses. These bonds were confirmed by Edman sequencing of each of the three fragments. No evidence for an inter-molecular disulfide bond was found. The six Cys residues in NPR-ECD, forming a 1-2, 3-4, 5-6 disulfide pairing pattern, are strictly conserved among A-type natriuretic peptide receptors and are similar in B-type receptors. We found that in other families of guanylate cyclase-coupled receptors, the Cys residues involved in 1-2 and 5-6 disulfide pairs are conserved in nearly all, suggesting an important contribution of these disulfide bonds to the receptor's structure and function.  相似文献   

2.
The most prevalent allergen from olive tree pollen, Ole e 1, consists of a single polymorphic polypeptide chain of 145 amino acids which includes six cysteine residues at positions 19, 22, 43, 78, 90 and 131. By using an homogeneous form of the allergen expressed in Pichia pastoris, the array of the disulfide bridges has been elucidated. Specific proteolysis with thermolysin and reverse-phase HPLC separation of the peptides allowed the determination of the disulfide bond between Cys43 and Cys78. Another thermolytic product, which contained three peptides linked by the remaining four cysteines, was digested with Glu-specific staphylococcal V8 protease and the products isolated by reverse-phase HPLC. Amino acid compositions and Edman degradation of the peptide products indicated the presence of the disulfide bonds at Cys19-Cys90 and Cys22-Cys131. These data can help in the analysis of the three-dimensional structure of the protein as well as in studies of its allergenic determinants.  相似文献   

3.
Methods are reported for the unambiguous syntheses of all three possible disulfide regioisomers with the sequence of alpha-conotoxin SI, a tridecapeptide amide from marine cone snail venom that binds selectively to the muscle subtype of nicotinic acetylcholine receptors. The naturally occurring peptide has two 'interlocking' disulfide bridges connecting Cys2-Cys7 and Cys3-Cys13 (2/7&3/13), while in the two mispaired isomers the disulfide bridges connect Cys2-Cys13 and Cys3-Cys7 (2/13 & 3/7, 'nested') and Cys2-Cys3 and Cys7-Cys13 (2/3 & 7/13, 'discrete'), respectively. Alignment of disulfide bridges was controlled at the level of orthogonal protection schemes for the linear precursors, assembled by Fmoc solid-phase peptide synthesis on acidolyzable tris(alkoxy)benzylamide (PAL) supports. Side-chain protection of cysteine was provided by suitable pairwise combination of the S-9H-xanthen-9-yl (Xan) and S-acetamidomethyl (Acm) protecting groups. The first disulfide bridge was formed from the corresponding bis(thiol) precursor obtained by selective deprotection of S-Xan, and the second disulfide bridge was formed by orthogonal co-oxidation of S-Acm groups on the remaining two Cys residues. It was possible to achieve the desired alignments with either order of loop formation (smaller loop before larger, or vice versa). The highest overall yields were obtained when both disulfides were formed in solution, while experiments where either the first or both bridges were formed while the peptide was on the solid support revealed lower overall yields and poorer selectivities towards the desired isomers.  相似文献   

4.
Murine interleukin 6 (mIL-6) has been synthesized as a fusion protein using a lac operon inducible plasmid in Escherichia coli. The first 8 amino acids are from the N-terminus of bacterial beta-galactosidase and the last 175 amino acids are from residue number 12 to the end of native mIL-6. This fusion protein is equipotent with the native molecule in the hybridoma growth factor assay and has comparable receptor binding characteristics. The two disulfide bridges in mIL-6 have been identified by Staphylococcus aureus V8 protease peptide mapping and Edman degradation of cystine-containing peptides. It has been shown that there are disulfide bonds between Cys46-Cys52 and Cys75-Cys85.  相似文献   

5.
Disease resistance in plants is commonly activated by the product of an avirulence (Avr) gene of a pathogen after interaction with the product of a matching resistance (R) gene in the host. In susceptible plants, Avr products might function as virulence or pathogenicity factors. The AVR9 elicitor from the fungus Cladosporium fulvum induces defense responses in tomato plants carrying the Cf-9 resistance gene. This 28-residue beta-sheet AVR9 peptide contains three disulfide bridges, which were identified in this study as Cys2-Cys16, Cys6-Cys19, and Cys12-Cys26. For this purpose, AVR9 was partially reduced, and the thiol groups of newly formed cysteines were modified to prevent reactions with disulfides. After HPLC purification, the partially reduced peptides were sequenced to determine the positions of the modified cysteines, which originated from the reduced disulfide bridge(s). All steps involving molecules with free thiol groups were performed at low pH to suppress disulfide scrambling. For that reason, cysteine modification by N-ethylmaleimide was preferred over modification by iodoacetamide. Upon (partial) reduction of native AVR9, the Cys2-Cys16 bridge opened selectively. The resulting molecule was further reduced to two one-bridge intermediates, which were subsequently completely reduced. The (partially) reduced cysteine-modified AVR9 species showed little or no necrosis-inducing activity, demonstrating the importance of the disulfide bridges for biological activity. Based on peptide length and cysteine spacing, it was previously suggested that AVR9 isa cystine-knotted peptide. Now, we have proven that the bridging pattern of AVR9 is indeed identical to that of cystine-knotted peptides. Moreover, NMR data obtained for AVR9 show that it is structurally closely related to the cystine-knotted carboxypeptidase inhibitor. However, AVR9 does not show any carboxypeptidase inhibiting activity, indicating that the cystine-knot fold is a commonly occurring motif with varying biological functions.  相似文献   

6.
Kaerner A  Rabenstein DL 《Biochemistry》1999,38(17):5459-5470
alpha-Conotoxin GI is a 13 residue snail toxin peptide cross-linked by Cys2-Cys7 and Cys3-Cys13 disulfide bridges. The formation of the two disulfide bonds by thiol/disulfide exchange with oxidized glutathione (GSSG) has been characterized. To characterize formation of the first disulfide bond in each of the two pathways by which the two disulfide bonds can form, two model peptides were synthesized in which Cys3 and Cys13 (Cono-1) or Cys2 and Cys7 (Cono-2) were replaced by alanines. Equilibrium constants were determined for formation of the single disulfide bonds of Cono-1 and Cono-2, and an overall equilibrium constant was measured for formation of the two disulfide bonds of alpha-conotoxin GI in pH 7.00 buffer and in pH 7. 00 buffer plus 8 M urea using concentrations obtained by HPLC analysis of equilibrium thiol/disulfide exchange reaction mixtures. The results indicate a modest amount of cooperativity in the formation of the second disulfide bond in both of the two-step pathways by which alpha-conotoxin GI folds into its native structure at pH 7.00. However, when considered in terms of the reactive thiolate species, the results indicate substantial cooperativity in formation of the second disulfide bond. The solution conformational and structural properties of Cono-1, Cono-2, and alpha-conotoxin GI were studied by 1H NMR to identify structural features which might facilitate formation of the disulfide bonds or are induced by formation of the disulfide bonds. The NMR data indicate that both Cono-1 and Cono-2 have some secondary structure in solution, including some of the same secondary structure as alpha-conotoxin GI, which facilitates formation of the second disulfide bond by thiol/disulfide exchange. However, both Cono-1 and Cono-2 are considerably less structured than alpha-conotoxin GI, which indicates that formation of the second disulfide bond to give the Cys2-Cys7, Cys3-Cys13 pairing induces considerable structure into the backbone of the peptide.  相似文献   

7.
F Li  S Liang 《Peptides》1999,20(9):1027-1034
The positions of the disulfide bonds of Selenocosmia huwena lectin-I (SHL-I) from the venom of the Chinese bird spider S. huwena have been determined. The existence of three disulfide bonds in the native SHL-I was proved by matrix-assisted laser desorption ionization time-of-flight mass spectroscopic analysis. To map the disulfide bonds, native SHL-I was proteolytically digested. The resulting peptides were separated by reverse phase high-performance liquid chromatography. Matrix-assisted laser desorption ionization time-of-flight mass spectroscopic analysis indicated the presence of one disulfide bond Cys7-Cys19. The partially reduced peptides by using Tris-(2-carboxyethyl)-phosphine at pH 3.0 were purified by reverse phase high-performance liquid chromatography. Four M Guanidine-HCl was found to increase the yields of partially reduced peptides prominently. The free thiols were carboxamidomethlate by iodoacetamide. The specific location of another disulfide bond Cys2-Cys14 was proved by comparing N-terminal sequencing analysis of the partially reduced and alkylated SHL-I with that of the intact peptide. Finally, the three disulfide linkage of SHL-I could be assigned as Cys2-Cys14, Cys7-Cys19, Cys13-Cys26.  相似文献   

8.
Amino-acid sequence of human alpha 2-antiplasmin   总被引:4,自引:0,他引:4  
The amino-acid sequence of human alpha 2-antiplasmin was determined by Edman degradation of peptides purified from CNBr, tryptic and chymotryptic digests. Of the total sequence of 452 amino acids of mature alpha 2-antiplasmin, as deduced from the cDNA sequence [Holmes et al. (1987) J. Biol. Chem. 262, 1659-1664], 444 residues were identified by amino-acid sequencing. Two differences were found between the peptide and cDNA analyses (Gly instead of Leu at position 10 and Gly instead of Ser at position 369). alpha 2-Antiplasmin contains two disulfide bridges (Cys64-Cys104 and Cys31-Cys113) and four glucosamine-based carbohydrate chains attached to Asn87, Asn256, Asn270 and Asn277. alpha 2-Antiplasmin is homologous with 12 other proteins belonging to the serine protease inhibitor (serpin) superfamily.  相似文献   

9.
Location of disulfide bonds within the sequence of human serum cholinesterase   总被引:10,自引:0,他引:10  
Human serum cholinesterase was digested with pepsin under conditions which left disulfide bonds intact. Peptides were isolated by high pressure liquid chromatography, and those containing disulfide bonds were identified by a color assay. Peptides were characterized by amino acid sequencing and composition analysis. Human serum cholinesterase contains 8 half-cystines in each subunit of 574 amino acids. Six of these form three internal disulfide bridges: between Cys65-Cys92, Cys252-Cys263, and Cys400-Cys519. A disulfide bond with Cys65 rather than Cys66 was inferred by homology with Torpedo acetylcholinesterase. Cys571 forms a disulfide bridge with Cys571 of an identical subunit. This interchain disulfide bridge is four amino acids from the carboxyl terminus. A peptide containing the interchain disulfide is readily cleaved from cholinesterase by trypsin (Lockridge, O., and La Du, B. N. (1982) J. Biol. Chem. 257, 12012-12018), suggesting that the carboxyl terminus is near the surface of the globular tetrameric protein. The disulfide bridges in human cholinesterase have exactly the same location as in Torpedo californica acetylcholinesterase. There is one potential free sulfhydryl in human cholinesterase at Cys66, but this sulfhydryl could not be alkylated. Comparison of human cholinesterase, and Torpedo and Drosophila acetylcholinesterases to the serine proteases suggests that the cholinesterases constitute a separate family of serine esterases, distinct from the trypsin family and from subtilisin.  相似文献   

10.
B Katz  A A Kossiakoff 《Proteins》1990,7(4):343-357
The X-ray structures of four genetically engineered disulfide variants of subtilisin have been analyzed to determine the energetic and structural constraints involved in inserting disulfide bonds into proteins. Each of the engineered disulfides exhibited atypical sets of dihedral angles compared with known structures of natural disulfide bridges in proteins and affected its local structural environment to a different extent. The disulfides located in buried regions, Cys26-Cys232 and Cys29-Cys119, induced larger changes than did Cys24-Cys87 and Cys22-Cys87, which are located on the surface of the molecule. An analysis of the concerted changes in secondary structure units such as alpha-helices and beta-sheets indicated systematic long-range effects. The observed changes in the mutants were largely distributed asymmetrically around the inserted disulfides, reflecting different degrees of inherent flexibility of neighboring secondary structure types. The disulfide substitution in each variant molecule created some invaginations or cavities, causing a reorganization of the surrounding water structure. These changes are described, as well as the changes in side chain positions of groups that border the cavities.  相似文献   

11.
Goat alpha-lactalbumin (GLA) contains four tryptophan (Trp) residues and four disulfide bonds. Illumination with near-UV light results in the cleavage of disulfide bridges and in the formation of free thiols. To obtain information about the reaction products, the illuminated protein was carbamidomethylated and digested with trypsin and the peptides were analyzed by mass spectrometry. Peptides containing Cys120Cam, Cys61Cam, or Cys91Cam were detected, as well as two peptides containing a new Cys-Lys cross-link. In one, Cys6 was cross-linked to Lys122, while the cross-link in the second was either a Cys91-Lys79 or Cys73-Lys93 cross-link; however, the exact linkage could not be defined. The results demonstrate photolytic cleavage of the Cys6-Cys120, Cys61-Cys77, and Cys73-Cys91 disulfide bonds. While photolysis of Cys6-Cys120 and Cys73-Cys91 disulfide bonds in GLA has been reported, cleavage of the Cys61-Cys77 disulfide bonds has not been previously detected. To examine the contribution of the individual Trp residues, we constructed the GLA mutants, W26F, W60F, W104F, and W118F, by replacing single Trp residues with phenylalanine (Phe). The substitution of each Trp residue led to less thiol production compared to that for wild-type GLA, showing that each Trp residue in GLA contributed to the photolytic cleavage of disulfide bridges. The specificity was expressed by the nature of the reaction products. No cleavage of the Cys6-Cys120 disulfide bridge was detected when the W26F mutant was illuminated, and no cleavage of the Cys73-Cys91 disulfide bridge was seen following illumination of W26F or W104F. In contrast, Cys61Cam, resulting from the cleavage of the Cys61-Cys77 disulfide bridge, was found following illumination of any of the mutants.  相似文献   

12.
Saxatilin is a 7.7 kDa disintegrin that belongs to a family of homologous protein found in several snake venoms. Six disulfide bond locations of the disintegrin were determined by enzymatic cleavage and matrix-assisted-laser-desorption-ionization time-of-flight mass spectrometry (MALDI-TOF). Functional implications of the disulfide bonds related to the biological activity of saxatilin were investigated with recombinant protein species produced by site-directed mutagenesis of saxatilin. Several lines of experimental evidence indicated that three disulfide bonds, Cys21-Cys35, Cys29-Cys59, and Cys47-Cys67, of the disintegrin are closely associated with its biological function such as its ability to block the binding of integrin GPIIb-IIIa and alpha(v)beta(3) with fibrinogen and extracellular matrix. Those disulfide linkages were also revealed to be important for maintaining the functional structure of the protein molecule. On the other hand, the disulfide bridges of Cys6-Cys15 and Cys8-Cys16 do not appear to be critical for the molecular structure and function of saxatilin.  相似文献   

13.
A new approach is described for analyzing disulfide linkage patterns in peptides containing tightly clustered cystines. Such peptides are very difficult to analyze with traditional strategies, which require that the peptide chain be split between close or adjacent Cys residues. The water-soluble tris-(2-carboxyethyl)-phosphine (TCEP) reduced disulfides at pH 3, and partially reduced peptides were purified by high performance liquid chromatography with minimal thiol-disulfide exchange. Alkylation of free thiols, followed by sequencer analysis, provided explicit assignment of disulfides that had been reduced. Thiol-disulfide exchange occurred during alkylation of some peptides, but correct deductions were still possible. Alkylation competed best with exchange when peptide solution was added with rapid mixing to 2.2 M iodoacetamide. Variants were developed in which up to three alkylating agents were used to label different pairs of thiols, allowing a full assignment in one sequencer analysis. Model peptides used included insulin (three bridges, intra- and interchain disulfides; -Cys.Cys- pair), endothelin and apamin (two disulfides; -Cys.x.Cys- pair), conotoxin GI and isomers (two disulfides; -Cys.Cys- pair), and bacterial enterotoxin (three bridges within 13 residues; two -Cys.Cys- pairs). With insulin, all intermediates in the reduction pathway were identified; with conotoxin GI, analysis was carried out successfully for all three disulfide isomers. In addition to these known structures, the method has been applied successfully to the analysis of several previously unsolved structures of similar complexity. Rates of reduction of disulfide bonds varied widely, but most peptides did not show a strongly preferred route for reduction.  相似文献   

14.
Disulfide bonds stabilize the structure and functions of the hemagglutinin neuraminidase attachment glycoprotein (HN) of Newcastle disease virus. Until this study, the disulfide linkages of this HN and structurally similar attachment proteins of other members of the paramyxoviridae family were undefined. To define these linkages, disulfide-linked peptides were produced by peptic digestion of purified HN ectodomains of the Queensland strain of Newcastle disease virus, isolated by reverse phase high performance liquid chromatography, and analyzed by mass spectrometry. Analysis of peptides containing a single disulfide bond revealed Cys(531)-Cys(542) and Cys(172)-Cys(196) linkages and that HN ectodomains dimerize via Cys(123). Another peptide, with a chain containing Cys(186) linked to a chain containing Cys(238), Cys(247), and Cys(251), was cleaved at Met(249) with cyanogen bromide. Subsequent tandem mass spectrometry established Cys(186)-Cys(247) and Cys(238)-Cys(251) linkages. A glycopeptide with a chain containing Cys(344) linked to a chain containing Cys(455), Cys(461), and Cys(465) was treated sequentially with peptide-N-glycosidase F and trypsin. Further treatment of this peptide by one round of manual Edman degradation or tandem mass spectrometry established Cys(344)-Cys(461) and Cys(455)-Cys(465) linkages. These data, establishing the disulfide linkages of all thirteen cysteines of this protein, are consistent with published predictions that the paramyxoviridae HN forms a beta-propeller structural fold.  相似文献   

15.
Selective reduction on the Cys28-Cys32 disulfide of Ophiophagus hannah neurotoxins, Oh-4 and Oh-5, revealed that isomerization of this disulfide linkage caused the two toxins to have distinct conformation and different retention time on a reversed-phase column. The Cys28-Cys32 disulfide of Oh-4 and Oh-5 was prone to form mixed disulfides with glutathione following pseudo-first-order kinetics. In addition to glutathionylated proteins, Oh-4 could be promoted to convert into Oh-5 by thiol compounds. Isomerization of Oh-5 into Oh-4 was not observed in the presence of thiol compounds. Dethiolation of glutathionylated proteins produced Oh-4 and Oh-5. Oxidation of the partially reduced toxin with reduced Cys28 and Cys32 was exclusively converted into Oh-5 regardless of the absence or presence of GSH/GSSG. Acrylamide quenching studies revealed difference in degree of exposure of the single Trp27 between Oh-4 and Oh-5. Synthesized peptides with substitution of Trp27 or Phe31 with Gly abolished entirely the formation of disulfide-linked dimeric product noted with the peptide of wild-type sequence. These results suggest that disulfide formation and isomerization of Cys28-Cys32 could be regulated by thiolation, and that the bulky aromatic residues Trp27 and Phe31 facilitate favorably the occurrence of disulfide isomerization of Cys28-Cys32.  相似文献   

16.
Echistatin is the smallest member of the disintegrin family of snake venom proteins, containing four disulfides in a peptide chain of 49 residues. Partial assignment of disulfides has been made previously by NMR and chemical approaches. A full assignment was made by a newly developed chemical approach, using partial reduction with tris-(2-carboxyethyl)-phosphine at acid pH. Reduction proceeded in a stepwise manner at pH 3, and the intermediates were isolated by high performance liquid chromatography. Alkylation of free thiols, followed by sequencer analysis, enabled all four bridges to be identified: (1) at 20 degrees C a single bridge linking Cys 2-Cys 11 was broken, giving a relatively stable intermediate; (2) with further treatment at 41 degrees C the bridges Cys 7-Cys 32 and Cys 8-Cys 37 became accessible to the reagent and were reduced at approx. equal rates; (3) the two bicyclic peptides produced in this manner were less stable and could be reduced at 20 degrees C to a peptide that retains a single bridge linking Cys 20-Cys 39; and (4) the monocyclic peptide can be reduced to the linear molecule at 20 degrees C. Some disulfide exchange occurred during alkylation of the bicyclic intermediates, but results unambiguously show the pattern to be [2-11; 7-32; 8-37; 20-39]. A comparison is made with kistrin, a longer disintegrin whose disulfide structure has been proposed from NMR analysis.  相似文献   

17.
Human alpha-thrombin is a very important plasma serine protease, which is involved in physiologically vital processes like hemostasis, thrombosis, and activation of platelets. Knowledge regarding the structural stability of alpha-thrombin is essential for understanding its biological regulation. Here, we investigated the structural and conformational stability of alpha-thrombin using the techniques of disulfide reduction and disulfide scrambling. alpha-Thrombin is composed of a light A-chain (36 residues) and a heavy B-chain (259 residues) linked covalently by an inter-chain disulfide bond (Cys(1)-Cys(122)). The B-chain is stabilized by three intra-chain disulfide bonds (Cys(42)-Cys(58), Cys(168)-Cys(182), and Cys(191)-Cys(220)) (Chymotrypsinogen nomenclature). Upon reduction with dithiothreitol (DTT), alpha-thrombin unfolded in a 'sequential' manner with sequential reduction of Cys(168)-Cys(182) within the B-chain followed by the inter-chain disulfide, generating two distinct partially reduced intermediates, I-1 and I-2, respectively. Conformational stability of alpha-thrombin was investigated by the technique of disulfide scrambling. alpha-Thrombin denatures by scrambling its native disulfide bonds in the presence of denaturant [urea, guanidine hydrochloride (GdmCl) or guanidine thiocyanate (GdmSCN)] and a thiol initiator. During the process, cleavage of the inter-chain disulfide bond and release of the A-chain from B-chain was the foremost event. The three disulfides in the B-chain subsequently scrambled to form three major isomers (designated as X-Ba, X-Bb, and X-Bc). Complete denaturation of alpha-thrombin was observed at low concentrations of denaturants (0.5 M GdmSCN, 1.5 M GdmCl, or 3 M urea) indicating low conformational stability of the protease.  相似文献   

18.
Fuc-9 is the mature form of a vacuolar alpha-L-fucosidase enzyme which seems to play an important role in plant growth regulation. Fuc-9 is a 202-residue protein containing five Cys residues located at positions 64, 109, 127, 162 and 169. In this study, the disulfide structure of Fuc-9 was determined by MALDI-TOF mass spectrometry (MS), with minimal clean-up of the samples and at a nanomolar scale. Two strategies, based on a specific chemical cleavage (with 2-nitro-5-thiocyanobenzoic acid and alkaline conditions) at the Cys residues and modification of Cys residues by acrylamide/deuterium labeled acrylamide alkylation, were used. Using these methods, the disulfide pairings Cys64-Cys109 and Cys162-Cys169 could be established. The advantages and limitations of our experimental approach are discussed.  相似文献   

19.
The determination of the disulfide pairings of SETI-II, a trypsin inhibitor isolated from Sechium edule, is described herein. The inhibitor contains 31 amino acid residues per mol, 6 of which are cysteine. Forty-five nmol (160 microg) of SETI-II was hydrolyzed with 20 microg thermolysin for 48 hr at 45 degrees C, and peptides were separated by reverse phase high performance liquid chromatography (RP-HPLC). The major products were identified by amino acid composition, Edman degradation, and on the basis of the sequence of the inhibitor. The disulfide bridge pairings and (yields) are: Cys1-Cys4 (79%), Cys2-Cys5 (21%) and Cys3-Cys6 (43%). When the reduced inhibitor was reoxidized with glutathione reduced form (GSH)/glutathione oxidized form (GSSG) at pH 8.5 for 3 hr, full activity was recovered. These data show that disulfide bridge pairing and oxidation can be determined at nanomole levels and that sensitive and quantitative Edman degradation can eliminate the final time- and material-consuming step of disulfide determinations by eliminating the need to purify and cleave each peptide containing a disulfide bridge.  相似文献   

20.
Functional structure of the somatomedin B domain of vitronectin   总被引:1,自引:0,他引:1  
The N-terminal somatomedin B domain (SMB) of vitronectin binds PAI-1 and the urokinase receptor with high affinity and regulates tumor cell adhesion and migration. We have shown previously in the crystal structure of the PAI-1/SMB complex that SMB, a peptide of 51 residues, is folded as a compact cysteine knot of four pairs of crossed disulfide bonds. However, the physiological significance of this structure was questioned by other groups, who disputed the disulfide bonding shown in the crystal structure (Cys5-Cys21, Cys9-Cys39, Cys19-Cys32, Cys25-Cys31), notably claiming that the first disulfide is Cys5-Cys9 rather than the Cys5-Cys21 bonding shown in the structure. To test if the claimed Cys5-Cys9 bond does exist in the SMB domain of plasma vitronectin, we purified mouse and rat plasma vitronectin that have a Met (hence cleavable by cyanogen bromide) at residue 14, and also prepared recombinant human SMB variants from insect cells with residues Asn14 or Leu24 mutated to Met. HPLC and mass spectrometry analysis showed that, after cyanogen bromide digestion, all the fragments of the SMB derived from mouse or rat vitronectin or the recombinant SMB mutants are still linked together by disulfides, and the N-terminal peptide (residue 1-14 or 1-24) can only be released when the disulfide bonds are broken. This clearly demonstrates that Cys5 and Cys9 of SMB do not form a disulfide bond in vivo, and together with other structural evidence confirms that the only functional structure of the SMB domain of plasma vitronectin is that seen in its crystallographic complex with PAI-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号