首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress is involved in the pathogenesis of chemically mediated liver injury. Since glycosaminoglycans possess antioxidant activity, the aim of this work was to assess the protective effects of hyaluronic acid and chondroitin-4-sulphate treatment in a model of carbon tetrachloride-induced liver injury. Liver damage was induced in male rats by an intraperitoneal injection of carbon tetrachloride (1 ml/kg in vegetal oil). Serum alanine aminotransferase and aspartate aminotransferase, hepatic malondialdehyde, plasma TNF-alpha, hepatic reduced glutathione and catalase, and myeloperoxidase, an index of polymorphonuclear infiltration in the jeopardised hepatic tissue, were evaluated 24 h after carbon tetrachloride administration. Carbon tetrachloride produced a marked increase in serum alanine aminotransferase and aspartate aminotransferase activities, primed lipid peroxidation, enhanced plasma TNF-alpha levels, induced a severe depletion of reduced glutathione and catalase, and promoted neutrophil accumulation. Intraperitoneal treatment of rats with hyaluronic acid (25 mg/kg) or chondroitin-4-sulphate (25 mg/kg) failed to exert any effect in the considered parameter, while the combination treatment with both glycosaminoglycans (12,5 + 12,5 mg/kg) decreased the serum levels of alanine aminotransferase and aspartate aminotransferase, inhibited lipid peroxidation by reducing hepatic malondialdehyde, reduced plasma TNF-alpha, restored the endogenous antioxidants, and finally decreased myeloperoxidase activity. These results suggest that hyaluronic acid and chondroitin-4-sulphate possess a different antioxidant mechanism and consequently the combined administration of both glycosaminoglycans exerts a synergistic effect with respect to the single treatment.  相似文献   

2.
The effects of ozone treatment on the injury associated to hepatic ischemia-reperfusion (I/R) was evaluated. Ozone treatment (1 mg/kg daily during 10 days by rectal insufflation) is shown to be protective as it attenuated the increases in transaminases (AST, ALT) and lactate levels observed after I/R. I/R leads to a decrease in endogenous antioxidant (SOD and glutathione) and an increase in reactive oxygen species (H2O2) with respect to the control group. However, ozone treatment results in a preservation (glutathione) or increase (SOD) in antioxidant defense and maintains H2O2 at levels comparable to those in the control group. The present study reports a protective effect of ozone treatment on the injury associated to hepatic I/R. The effectiveness of ozone could be related to its action on endogenous antioxidants and prooxidants balance in favour of antioxidants, thus attenuating oxidative stress.  相似文献   

3.
K W Kang  Y M Pak  N D Kim 《Nitric oxide》1999,3(3):265-271
Diethylmaleate (DEM) and buthionine sulfoximine (BSO), glutathione (GSH)-depleting agents, reduced the metabolic activity and the protein level of iNOS in both macrophages and hepatocytes activated by lipopolysaccharide (LPS). In this study, we examined the effects of DEM and BSO on iNOS expression in LPS-treated mice under the assumption that the level of GSH may alter the expression of nitric oxide synthase. Serum levels of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) were also determined. DEM markedly decreased the levels of hepatic GSH in response to LPS. Treatment of mice with DEM significantly reduced serum nitrite/nitrate levels and hepatic iNOS protein and mRNA induction by LPS. Although BSO inhibited the level of hepatic GSH in LPS-treated mice, the agent did not alter serum nitrite/nitrate levels and hepatic iNOS expression. DEM completely inhibited an increase of serum IL-1beta level by LPS, whereas BSO failed to inhibit it. Neither DEM nor BSO significantly affected the induction of serum TNF-alpha level by LPS. These results showed that DEM and BSO differentially affect the expression of iNOS in endotoxemic mice, suggesting the possibility that suppression of iNOS expression by DEM may be associated with the inhibition of IL-1beta but not of TNF-alpha.  相似文献   

4.
Ascorbic acid (AA) is an important cytoplasmic antioxidant that mice synthesize in the liver, the intracellular levels of which decrease in an oxidative stress situation such as endotoxic shock. The present work deals with the changes in AA levels, that modulate the immune function, in the two main immune cells, namely macrophages and lymphocytes, from female BALB/c mice suffering endotoxic shock caused by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS) (100 mg/kg). The intake by cells of this antioxidant present in vitro at different concentrations was also studied. The animals show an oxidative stress, standardized in previous studies, that causes mortality at 30 h after LPS injection. The cells were obtained from the peritoneum at 2, 4, 12 and 24 h after LPS or PBS (control) injections and were incubated without or with AA at 0.01, 0.1 and 1 mM for 10, 30, 60, 120 or 180 min. The hepatic AA levels were also studied at 0, 2, 4, 12 and 24 h after LPS injection. The peritoneal cells obtained from animals injected with LPS showed increased AA levels in relation to the control cells at all times after LPS injection, with maximal effect at 12h. The AA levels decreased after this time, in agreement with changes in the AA hepatic levels. The increase was due to the AA of lymphocytes since macrophages showed a decrease in AA at different times after LPS injection. Both cells showed an increase in the intracellular levels of AA when this antioxidant was added in vitro. This takes place mainly at 30-60 min of incubation in cells from controls and at 10 min in cells from treated mice 12-24 h after LPS injection. The incorporation decreased at these times of endotoxic shock, a few hours before death. In all cases AA levels were higher in lymphocytes than in macrophages, and 1 mM was the most effective concentration. These results suggest that the immune cells need appropriate levels of antioxidants, such as AA, under oxidative stress conditions, and that while lymphocytes take and accumulate AA, macrophages use it.  相似文献   

5.
The effects of ozone treatment on the injury associated to hepatic ischemia-reperfusion (I/R) was evaluated. Ozone treatment (1 mg/kg daily during 10 days by rectal insufflation) is shown to be protective as it attenuated the increases in transaminases (AST, ALT) and lactate levels observed after I/R. I/R leads to a decrease in endogenous antioxidant (SOD and glutathione) and an increase in reactive oxygen species (H2O2) with respect to the control group. However, ozone treatment results in a preservation (glutathione) or increase (SOD) in antioxidant defense and maintains H2O2 at levels comparable to those in the control group. The present study reports a protective effect of ozone treatment on the injury associated to hepatic I/R. The effectiveness of ozone could be related to its action on endogenous antioxidants and prooxidants balance in favour of antioxidants, thus attenuating oxidative stress.  相似文献   

6.
Ascorbic acid (AA) is an important cytoplasmic antioxidant that mice synthesize in the liver, the intracellular levels of which decrease in an oxidative stress situation such as endotoxic shock. The present work deals with the changes in AA levels, that modulate the immune function, in the two main immune cells, namely macrophages and lymphocytes, from female BALB/c mice suffering endotoxic shock caused by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS) (100 mg/kg). The intake by cells of this antioxidant present in vitro at different concentrations was also studied. The animals show an oxidative stress, standardized in previous studies, that causes mortality at 30h after LPS injection. The cells were obtained from the peritoneum at 2, 4, 12 and 24h after LPS or PBS (control) injections and were incubated without or with AA at 0.01, 0.1 and 1 mM for 10, 30, 60, 120 or 180 min. The hepatic AA levels were also studied at 0, 2, 4, 12 and 24h after LPS injection. The peritoneal cells obtained from animals injected with LPS showed increased AA levels in relation to the control cells at all times after LPS injection, with maximal effect at 12h. The AA levels decreased after this time, in agreement with changes in the AA hepatic levels. The increase was due to the AA of lymphocytes since macrophages showed a decrease in AA at different times after LPS injection. Both cells showed an increase in the intracellular levels of AA when this antioxidant was added in vitro. This takes place mainly at 30–60 min of incubation in cells from controls and at 10 min in cells from treated mice 12–24 h after LPS injection. The incorporation decreased at these times of endotoxic shock, a few hours before death. In all cases AA levels were higher in lymphocytes than in macrophages, and 1 mM was the most effective concentration. These results suggest that the immune cells need appropriate levels of antioxidants, such as AA, under oxidative stress conditions, and that while lymphocytes take and accumulate AA, macrophages use it.  相似文献   

7.
Tamoxifen citrate is an anti-estrogenic drug used for the treatment of breast cancer. It showed a degree of hepatic carcinogenesis, when it used for long term as it can decrease the hexose monophosphate shunt and thereby increasing the incidence of oxidative stress in liver rat cells leading to liver injury. In this study, a model of liver injury in female rats was done by intraperitoneal injection of tamoxifen in a dose of 45 mg/kg body weight for 7 successive days. This model produced a state of oxidative stress accompanied with liver injury as noticed by significant declines in the antioxidant enzymes (glutathione-S-transferase, glutathione peroxidase and catalase) and reduced glutathione concomitant with significant elevations in TBARS (thiobarbituric acid reactive substance) and liver transaminases; sGPT (serum glutamate pyruvate transaminase) and sGOT (serum glutamate oxaloacetate transaminase) levels. The oral administration of dimethyl dimethoxy biphenyl dicarboxylate (DDB) in a dose of 200 mg/kg body weight daily for 10 successive days, resulted in alleviation of the oxidative stress status of tamoxifen-intoxicated liver injury in rats as observed by significant increments in the antioxidant enzymes (glutathione-S-transferase, glutathione peroxidase and catalase) and reduced glutathione concomitant with significant decrements in TBARS and liver transaminases; sGPT and sGOT levels. The administration of DDB before tamoxifen intoxication (as protection) is more little effective than its curative effect against tamoxifen-induced liver injury. The data obtained from this study speculated that DDB can mediate its biochemical effects through the enhancement of the antioxidant enzyme activities and reduced glutathione level as well as decreasing lipid peroxides.  相似文献   

8.
This study examined in healthy male Wistar rats the in vivo antioxidant effect of dehydroepiandrosterone (DHEA) and 7alpha-hydroxy-DHEA administered by intraperitoneal injections (50 mg/kg body weight) for 2 or 7 days. Markers of oxidative damage to lipids (thiobarbituric acid-reacting substances, TBARS) and to proteins (protein carbonyls) were assessed in colon, small intestine, and liver homogenates. DHEA and 7alpha-hydroxy-DHEA caused a decrease in body weight. DHEA treatment significantly increased liver, colon, and small intestine cell weights. After 7 days, DHEA exerted an antioxidant effect in all organs studied. In the colon, oxidative damage protection was accompanied by a goblet cell proliferation and increase in acidic mucus production. After 2 days, the antioxidant effect of 7alpha-hydroxy-DHEA was mainly observed in the liver. Nonprotein sulfhydryl groups (mostly glutathione levels) were altered by DHEA in the liver whereas they remained unchanged after 7alpha-hydroxy-DHEA treatment. The results indicate that in healthy animals, DHEA exerts a protective effect, particularly in the colon, by reducing the tissue susceptibility to oxidation of both lipids and proteins. This effect was not limited to a specific tissue, whereas the metabolite 7alpha-hydroxy-DHEA exerted its antioxidant effect towards the two markers of oxidative damage earlier than DHEA, and mainly in the liver.  相似文献   

9.
This study investigates whether ozone could confer protection from hepatic ischemia reperfusion by modifying the accumulation of adenosine and xanthine during ischemia. A significant increase in both adenosine and xanthine accumulation was observed as a consequence of ATP degradation during hepatic ischemia. Adenosine exerts a protective effect on hepatic ischemia reperfusion injury since the elimination of endogenous adenosine accumulation with adenosine deaminase increased the hepatic injury associated with this process. On the other hand, the high xanthine levels observed after ischemia could exert deleterious effects during reperfusion due to reactive oxygen species generation from xanthine oxidase. The administration of allopurinol, an inhibitor of xanthine oxidase, attenuated the increase in reactive oxygen species and transaminase levels observed after hepatic reperfusion. Ozone treatment in liver maintained adenosine levels similar to those found after ischemia but led to a marked reduction in xanthine accumulation. In order to evaluate the role of both adenosine and xanthine, we tried to modify the protection confered by ozone, by modifying the concentrations of adenosine and xanthine. The metabolization of endogenous adenosine after ischemia abolished the protective effect conferred by ozone. When xanthine was administered previous to ozone treatment, the protection conferred by adenosine disappeared, showing both postischemic reactive oxygen species and transaminase levels similar to those found after hepatic ischemia reperfusion. Ozone would confer protection against the hepatic ischemia reperfusion injury by the accumulation of adenosine that in turns benefits the liver and by blocking the xanthine/xanthine oxidase pathway for reactive oxygen species generation.  相似文献   

10.
This study investigates whether ozone could confer protection from hepatic ischemia reperfusion by modifying the accumulation of adenosine and xanthine during ischemia. A significant increase in both adenosine and xanthine accumulation was observed as a consequence of ATP degradation during hepatic ischemia. Adenosine exerts a protective effect on hepatic ischemia reperfusion injury since the elimination of endogenous adenosine accumulation with adenosine deaminase increased the hepatic injury associated with this process. On the other hand, the high xanthine levels observed after ischemia could exert deleterious effects during reperfusion due to reactive oxygen species generation from xanthine oxidase. The administration of allopurinol, an inhibitor of xanthine oxidase, attenuated the increase in reactive oxygen species and transaminase levels observed after hepatic reperfusion. Ozone treatment in liver maintained adenosine levels similar to those found after ischemia but led to a marked reduction in xanthine accumulation. In order to evaluate the role of both adenosine and xanthine, we tried to modify the protection confered by ozone, by modifying the concentrations of adenosine and xanthine. The metabolization of endogenous adenosine after ischemia abolished the protective effect conferred by ozone. When xanthine was administered previous to ozone treatment, the protection conferred by adenosine disappeared, showing both postischemic reactive oxygen species and transaminase levels similar to those found after hepatic ischemia reperfusion. Ozone would confer protection against the hepatic ischemia reperfusion injury by the accumulation of adenosine that in turns benefits the liver and by blocking the xanthine/xanthine oxidase pathway for reactive oxygen species generation.  相似文献   

11.
Tamoxifen citrate (TAM), is widely used for treatment of breast cancer. It showed a degree of hepatic carcinogenesis. The purpose of this study was to elucidate the antioxidant capacity of green tea (Camellia sinensis) extract (GTE) against TAM-induced liver injury. A model of liver injury in female rats was done by intraperitoneal injection of TAM in a dose of 45mg Kg(-1) day(-1), i.p. for 7 successive days. GTE in the concentration of 1.5 %, was orally administered 4 days prior and 14 days after TAM-intoxication as a sole source of drinking water. The antioxidant flavonoid; epicatechin (a component of green tea) was not detectable in liver and blood of rats in either normal control or TAM-intoxicated group, however, TAM intoxication resulted in a significant decrease of its level in liver homogenate of tamoxifenintoxicated rats. The model of TAM-intoxication elicited significant declines in the antioxidant enzymes (glutathione-S-transferase,glutathione peroxidase, superoxide dismutase and catalase) and reduced glutathione concomitant with significant elevations in TBARS (thiobarbituric acid reactive substance) and liver transaminases; sGPT (serum glutamate pyruvate transaminase) and sGOT (serum glutamate oxaloacetate transaminase) levels. The oral administration of 1.5 % GTE to TAM-intoxicated rats, produced significant increments in the antioxidant enzymes and reduced glutathione concomitant with significant decrements in TBARS and liver transaminases levels. The data obtained from this study speculated that 1.5 % GTE has the capacity to scavenge free radical and can protect against oxidative stress induced by TAM intoxication. Supplementation of GTE could be useful in alleviating tamoxifen-induced liver injury in rats.  相似文献   

12.
We investigated the effect of tumor necrosis factor-alpha (TNF-alpha), a member of the proinflammatory cytokine family, on steatosis of the mouse liver by analyzing morphological changes and hepatic triglyceride content in response to TNF-alpha. We also examined expression of the sterol regulatory element binding protein-1c gene. Intraperitoneal injection of TNF-alpha acutely and dramatically accelerated the accumulation of fat in the liver, as evidenced by histological analysis and hepatic triglyceride content. This treatment increased liver weight, increased serum levels of free fatty acids, and increased fatty acid synthase and sterol regulatory element binding protein-1c mRNA expression. Furthermore, intraperitoneal injection of lipopolysaccaride (LPS) to induce TNF-alpha expression also accelerated hepatic fat accumulation. Pretreatment with anti-TNF-alpha antibody attenuated the development of LPS-induced fatty change in the liver. Antibody pretreatment not only decreased sterol regulatory element binding protein-1c expression in LPS-treated mice but also attenuated the expression of suppressors of cytokine signaling-3 mRNA. This study suggests that TNF-alpha, acting downstream of LPS, increases intrahepatic fat deposition by affecting hepatic lipogenetic metabolism involving sterol regulatory element binding protein-1c.  相似文献   

13.
14.
Farnesol is an isoprenoid found in essential oils of ambrette seeds, citronella and in various aromatic plants. Exposure to cadmium from various sources affects the renal system adversely and Cd is an established genotoxic agent. In the present study, we evaluated the antigenotoxic and antioxidant efficacy of farnesol against cadmium chloride (CdCl2)-induced renal oxidative stress and genotoxicity in Swiss albino mice. Single, intraperitoneal doses of CdCl2(5 mg/kg body weight) for 24 h resulted in a significant (P < 0.001) increase in chromosomal aberration and micronuclei formation. The oral administration of farnesol at two doses (1% and 2% per kg body weight) for seven consecutive days showed significant (P < 0.05) suppression of the genotoxic effects of CdCl2 in the modulator groups. To study the mechanism by which farnesol exerts its antigenotoxic potential, enzymes involved in metabolism and detoxification were estimated. CdCl2 intoxication adversely affected the renal antioxidant armory and increased TBARS formation and xanthine oxidase levels significantly (P < 0.001). Farnesol showed a significant (P < 0.001) recovery in antioxidant status viz, GSH content (and its dependent enzymes) and catalase activity. Farnesol pretreatment in CdCl2-intoxicated mice showed marked (P < 0.001) suppression of TBARS' formation and XO activity. Our results support the conclusion that the anticlastogenic effect of farnesol could be due to restoration of antioxidants and inhibition of oxidative damage.  相似文献   

15.
Acute lung injury (ALI) or its severe form, acute respiratory distress syndrome (ARDS) is an important cause of mortality in the human population. Despite significant advances made, the mortality associated with ALI remains unchanged. The objective of the present study was to evaluate the role of oxidative stress, alveolar antioxidant status and multiple organ injury in ARDS induced by lipopolysaccharide (LPS) in rats. Rats were divided into 4 groups, group I control rats were given saline intraperitoneally, whereas groups II, III and IV (LPS-treated) rats received an intraperitoneal injection of LPS (10 mg/kg body weight) and sacrificed after various time intervals. In LPS-treated rats, we observed increased levels of oxidative products, decreased levels of antioxidants in lung tissues and increased levels of serum marker enzymes, suggesting multiple organ injury. Bronchoalveolar lavage fluid (BALF) neutrophil content and protein concentration in LPS-treated rats were significantly elevated in a time-dependent manner. Histological studies revealed neutrophil influx and diffused alveolar damage in LPS-administered rats. These results clearly suggested that increased oxidant levels led to oxidative stress, antioxidant deficiency attenuating lung inflammation and tissue damage. LPS administration resulted in multiple organ failure, leading to increased mortality.  相似文献   

16.
Mice challenged with lipopolysaccharide (LPS) produce variable serum levels of pro-inflammatory cytokines, and particularly low levels of interleukin-1 beta (IL-1 beta). Interferon-gamma (IFN-gamma) has been shown to be an important mediator of bacteria-induced hypersensitivity to LPS in mice. In the present study, we show that mice pretreated with IFN-gamma exhibit an enhanced capacity to produce serum IL-1 beta, IL-1 alpha, tumour necrosis factor (TNF-alpha) as well as IL-6 in response to LPS. Priming with intraperitoneal (i.p.) injection of 15 mg rat recombinant IFN-gamma, 18 hours prior to the i.p. LPS (300 mg) challenge resulted in a 4-fold increase in the LPS-stimulated release of IL-1 beta and a 2- to 7-fold increase in the release of IL-1 alpha, TNF-alpha, as well as IL-6 into the serum. LPS induced a concentration-dependent increase in the release of IL-1 beta in isolated peritoneal macrophages from IFN-gamma-primed mice whereas macrophages from unprimed mice released minute amounts of IL-1 beta. In addition, nigericin markedly enhanced the release of IL-1 beta in unprimed mice but not in macrophages from IFN-gamma primed mice. The cytokine synthesis inhibitor SK&F 86002, administered per os (100 mg/kg), 1 hour prior to LPS challenge, strongly inhibited the rise in serum levels of the four cytokines. Furthermore, treatment with the IL-1 beta converting enzyme (ICE) specific reversible inhibitor YVAD-CHO resulted in a sharp dose- and time-dependent inhibition of IL-1 beta secretion in the serum, whereas the other cytokines were not affected. In conclusion, IFN-gamma priming strongly potentiates the release of proinflammatory cytokines in the serum of mice as compared to LPS stimulation alone, and provides therefore a useful way to test the in vivo potency and selectivity of cytokine synthesis inhibitors.  相似文献   

17.
The phagocytosis of IgG-coated erythrocytes (EIgG) has been shown to augment the bacterial lipopolysaccharide (LPS)-stimulated increase in serum tumor necrosis factor-alpha (TNF-alpha) levels. The present study evaluated the role of Fcgamma-receptor (FcgammaR) signaling and complement activation in the effect of EIgG on the TNF-alpha response to LPS. The role of FcgammaR was determined using FcR gamma-chain knockout mice that lack functional FcgammaRI and FcgammaRIII. In wild-type animals, EIgG caused a 16-fold augmentation of the serum TNF-alpha response to LPS, whereas there was no augmentation in the FcgammaR-deficient animals. Heat-damaged erythrocytes also augmented the TNF-alpha response to LPS. This effect was absent in FcgammaR-deficient animals. An IgG antibody against heated erythrocytes was detected in mouse serum. The complement activation caused by EIgG had little effect on the LPS-stimulated increase in serum TNF-alpha levels as indicated by activation of complement with cobra venom factor or IgM-coated erythrocytes as well as studies with C5-deficient mice. These results indicate that FcgammaR signaling primarily mediates the augmented serum TNF-alpha response to LPS caused by EIgG.  相似文献   

18.
The aim of this study was to assess the antioxidant and antifibrotic effects of chronic administration of aqueous garlic extract on liver fibrosis induced by biliary obstruction in rats. Liver fibrosis was induced in male Wistar albino rats by bile duct ligation and scission (BDL). Aqueous garlic extract (AGE, 1 ml/kg, i.p., corresponding to 250 mg/kg) or saline was administered for 28 days. At the end of the experiment, rats were killed by decapitation. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) levels were determined to assess liver functions and tissue damage, respectively. Tumor necrosis factor-alpha (TNF-alpha) was also assayed in serum samples. Liver tissues were taken for determination of the free radicals, renal malondialdehyde (MDA) levels, an end product of lipid peroxidation; glutathione (GSH) levels, a key antioxidant; and myeloperoxidase (MPO) activity, as an indirect index of neutrophil infiltration. Hepatic collagen content, as a fibrosis marker was also determined. Serum AST, ALT, LDH, and TNF- alpha levels were elevated in the BDL group as compared to control group, while this increase was significantly decreased by AGE treatment. Hepatic GSH levels, significantly depressed by BDL, were elevated back to control levels in AGE-treated BDL group. Increases in tissue free radical and MDA levels and MPO activity due to BDL were reduced back to control levels by AGE treatment. Similarly, increased hepatic collagen content in the BDL rats was reduced to the level of the control group with AGE treatment. Since AGE administration alleviated the BDL-induced oxidative injury of the liver and improved the hepatic structure and function, it seems likely that AGE with its antioxidant and antifibrotic properties, may be of potential therapeutic value in protecting the liver fibrosis and oxidative injury due to biliary obstruction.  相似文献   

19.
The aim of the present study was to evaluate the potential pharmacological and toxicological properties of (E)-1-(1-(methylthio)-1-(selenopheny) hept-1-en-2-yl) pyrrolidin-2-one (compound 1), an organoselenium compound. In vitro experiments showed that compound 1 presented a reduction in the lipid peroxidation induced by Fe2? in thiobarbituric acid-reactive species (TBARS) production, and in the generation of reactive species caused by Fe2?/malonate in DCFH-DA oxidation. The high dose (500 mg/kg) induced an increase on ALT but not on AST activity. Hepatic, but not cerebral, δ-ALA-D activity from mice treated with 500 mg/kg presented a significant inhibition. Brain catalase activity was significantly inhibited by 100 mg/kg whereas hepatic catalase activity showed a significant increase at all doses. Hepatic lipid peroxidation was diminished only at lowest dose (100 mg/kg) whereas for brain tissue, all doses induced a significant reduction in TBARS levels. Brain and liver ascorbic acid contents were increased only at highest dose of compound 1. Urea and creatinine levels were not significantly altered by treatments. This is a promising compound with antioxidant activity and low toxicity, suggesting the potential beneficial activity of compound 1 against oxidative damage in many parameters studied in rats and mice.  相似文献   

20.
The antihyperglycemic, antihyperlipidemic and antioxidative properties of hydroethanolic extract of Butea monosperma bark were investigated in alloxan-induced diabetic mice. Alloxan administration resulted in higher blood glucose level and reduced hepatic glycogen content as compared to normal animals. Besides, serum lipid profile parameters such as total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL) and very low density lipoprotein (VLDL) cholesterol were also found to be significantly elevated, whereas the level of high density lipoprotein (HDL) cholesterol was markedly reduced in diabetic animals. Oxidative damage in the tissues of diabetic mice was evidenced by a marked increase in the level of thiobarbituric acid reactive substances (TBARS), distinct decrease in reduced glutathione (GSH) content and declined activity of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). The daily treatment of diabetic animals with crude extract of B. monosperma bark (300 mg kg(-1)) for 45 days significantly lowered blood glucose level and elevated hepatic glycogen content, bringing the values close to those observed in normal control and glibenclamide-treated diabetic mice. Furthermore, the level of various lipid profile parameters was also reversed towards normal. TBARS and GSH also restored towards normal and the declined activity of antioxidant enzymes in diabetic animals was also normalized in crude extract administered mice, thus indicating the antioxidant efficacy of the drug in diabetes-induced oxidative damage. Significant antihyperglycemic and antioxidant potential of the crude extract of B. monosperma bark indicated that it may find use in the management of diabetes and resultant oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号