首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
INTRODUCTION: Previous studies have shown the presence of oxidative stress in hyperthyroid patients. The aim of this study was to evaluate the influence of hyperthyroidism on lipid peroxidation, plasma lipoprotein oxidation and antioxidant status. We have estimated the clinical utility of the biochemical parameters analysed as markers of oxidative stress in hyperthyroidism. MATERIAL AND METHODS: Twenty five patients with overt hyperthyroidism because of Graves' disease or toxic multinodular goitre and 20 healthy subjects were included in the study. Lipid peroxidation was evaluated by measurement of peroxides and malondialdehyde with 4-hydroxynonenal (MDA + 4-HNE) concentrations. Autoantibodies against oxidised LDL (anti-oxLDL) were assayed as a marker of lipoprotein oxidation. Changes in the antioxidant defence system were estimated by measurement of total antioxidant status in serum (TAS) and erythrocyte superoxide dismutase activity (SOD). RESULTS: A significant increase in serum concentration of peroxides and MDA + 4-HNE was observed in patients with hyperthyroidism. However, no difference was found in anti-oxLDL concentration and antioxidant status parameters (TAS, SOD) between the control group and the patient group. CONCLUSIONS: Our results indicate an intensification of the oxidative processes caused by an excess of thyroid hormones, which is not accompanied by a response from the antioxidant system. Elevated concentrations of lipid peroxidation products in serum, both peroxides and malondialdehyde with 4-hydroxynonenal, may be useful as markers of oxidative stress during the course of hyperthyroidism.  相似文献   

2.
In this study we assessed activities of antioxidant enzymes, lipid peroxidation end-products, and nitric oxide (NO) levels in women with postmenopausal osteoporosis (PMO). Relationship between oxidative stress parameters and NO levels with bone mineral density (BMD) and clinical variables influencing bone mass and health related quality of life measures was also investigated in women with PMO. Postmenopausal women (n = 87), aged 40–65, without previous diagnosis or treatment for osteoporosis and independent in daily living activities were included. BMD was measured at the lumbar spine and proximal femur using dual-X-ray absorptiometry (DXA). Erythrocyte catalase (CATe) enzyme activity, erythrocyte and plasma enzyme activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and lipid peroxidation end-product malondialdehyde (MDA) and nitrite/nitrate levels, by product of NO were studied. A total of 23 healthy non-porotic women were included as controls. Women with PMO had significantly lower erythrocyte CATe enzyme activity and higher erythrocyte malondialdehyde (MDAe) and erythrocyte nitric oxide (NOe) levels in comparison to controls whereas erythrocyte SODe and GSH-Px enzyme activity was similar. In plasma, osteporotic women had significantly higher SOD enzyme activity and higher MDA levels whereas similar GSH-Px enzyme activity and NO levels compared to non-porotic controls. Significant correlation was found between erythrocyte SODe, CATe enzyme activity and NOe levels with proximal femur BMD. Some of the quality of life scores as pain, mental, and social functions correlated with antioxidant enzyme activities and NO levels. Consequently, oxidative stress markers may be an important indicator for bone loss in postmenopausal women. Further researches assessing the oxidative stress markers and NO in bone tissue and changes with anti-osteoporotic drugs would be valuable to better understand the role of free radicals, antioxidants, and NO in the regulation of bone mass.  相似文献   

3.
Oxidative stress has been suggested as one of the physiopathologic conditions underlying the association of total plasma homocysteine (p-tHcy) with cardiovascular disease (CVD), but this hypothesis has not been validated in human epidemiological studies. We measured plasma and erythrocyte antioxidant enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD), along with serum lipid-soluble antioxidants alpha-tocopherol, beta-carotene, lycopene and retinol, in a sample of 123 healthy elderly subjects (54 men, 69 women). Plasma malondialdehyde (p-MDA) was determined as a marker of lipid peroxidation, and p-tHcy was quantified by HPLC. No significant differences were found for p-MDA, GPx or SOD activities or serum antioxidant concentrations, in subjects with elevated p-tHcy (≥15 μmol/l) as compared to those with lower plasma homocysteine. Hyperhomocysteinemia did not lead to increased risk of having the highest p-MDA values, in either sex. We found no evidence that p-tHcy was associated with lipid peroxidation in this elderly human sample. Our results do not support the view that hyperhomocysteinemia would induce an adaptive response of antioxidant systems, either. More epidemiologic and clinical research is needed to clarify whether homocysteine promotes atherosclerosis by means of an oxidative stress mechanism.  相似文献   

4.
The aim of the present study is to determine whether patients with primary spontaneous pneumothorax (PSP) are subject to oxidative stress. For this purpose, we measured the activities of red blood cell superoxide dismutase, which is an antioxidant enzyme, and the level of plasma malondialdehyde, which is one of the lipid peroxidation markers, in a group of patients with PSP. The study was carried out with 16 patients with PSP and 24 healthy individuals. The two groups were similar to each other in terms of sex, age and smoking attitudes. Erythrocyte superoxide dismutase activity was found to be significantly lower in patients with PSP than in the control group (p < 0.01). The plasma malondialdehyde levels were significantly high in patients with PSP (p < 0.01). Our results suggest that oxidative stress may contribute to the pathogenesis of PSP.  相似文献   

5.
The objective of the study was to investigate the effect of moderate glomerular dysfunction on oxidative stress. We determined the plasma and erythrocyte malondialdehyde (MDA) levels, as a marker of lipid peroxidation, erythrocyte glutathione (GSH) levels and activities of GSH-Px, GSH Red and SOD as an antioxidant enzymes, and plasma trace element levels containing Fe, Cu and Zn in twenty proteinuric patients (6.8 +/- 5.1 g/day) with moderate glomerular function and in 20 anemic control subjects. We found that the erythrocyte and plasma MDA levels and erythrocyte GSH-Px activities were significantly higher (p < 0.001, p < 0.001, p < 0.001, respectively) and the erythrocyte GSH levels and activities of GSH-Red and SOD activities were significantly lower (p < 0.001, p < 0.001, p < 0.001, respectively) in the patients than in the anemic subjects. Plasma Fe and Zn levels were not to be found significantly different in the patients compared to the anemic subjects. But plasma Cu levels were significantly higher in the patients (p < 0.05) when compared with the levels of anemic subjects. This study was concluded that cellular antioxidant activity decreases in proteinuric patients with moderate glomerular function. This may increase lipid peroxidation reactions by causing oxidative stress in erythrocyte membranes.  相似文献   

6.
Abstract

Objectives

We studied erythrocyte (RBC) caspase-3 activity and oxidative status in plasma and RBCs of 33 patients with type 2 diabetes at first clinical onset and 23 age-matched non-diabetes control subjects.

Methods

Caspase-3 activity was assayed during the life span of RBCs; lipid peroxides and total antioxidant capacity (TEAC) were assessed in plasma and RBCs as indicators of oxidative stress and non-enzymatic antioxidant defense; and superoxide dismutase, catalase, and glutathione peroxidase activity were measured in RBCs as enzymatic antioxidants.

Results

We found that, compared to controls, RBCs caspase-3 is activated early in type 2 diabetes (P < 0.05); TEAC and malondialdehyde increased in plasma of patients with early diabetes, even when hypertension and macroangiopathy were present (P < 0.01); and RBCs TEAC, malondialdehyde (P < 0.01), superoxide dismutase, and glutathione peroxidase (P < 0.05) exhibited similar behavior in patients with diabetes and hypertensive patients with diabetes.

Discussion

Increased antioxidant defense in plasma and RBCs of early type 2 diabetes patients is a potential mechanism that can overcome oxidative damage induced by reactive oxygen species overproduction, and occurs even in RBCs with a decreased life span. This observation could provide a possible explanation for the controversial effects of antioxidant supplementation in diabetes patients.  相似文献   

7.
Although several studies have indicated oxidative system abnormalities in patients with familial Mediterranean fever, it is still obscure whether proteinuria seen in this disease has an effect on the oxidative system. In the present study, oxidative system changes were investigated in familial Mediterranean fever with or without proteinuria. Plasma malondialdehyde levels in proteinuric and nonproteinuric patients were higher than those of the controls and they were also significantly higher in the patients with proteinuria compared to patients without proteinuria. The patients had significantly lower plasma glutathione peroxidase activities than the controls. Glutathione peroxidase activities did not show statistically significant differences between the patients with and those without proteinuria. A significant difference was not established for erythrocyte superoxide dismutase activities. These data suggest that there is an increase in lipid peroxidation in familial Mediterranean fever. Decreased plasma glutathione peroxidase activities seem to be responsible for increased plasma malondialdehyde levels in both patient groups. However, the fact that higher plasma malondialdehyde levels in proteinuric patients were observed compared to nonproteinuric patients in the presence of the unchanged plasma glutathione peroxidase activities in these groups suggests that the nephrotic state may have a contribution to this situation.  相似文献   

8.
Oxidative stress in thalassemia is caused by secondary iron overload and stems from blood transfusion and increased iron uptake. In this study, we hypothesized that levels of o- and m-tyrosine, products of hydroxyl radical attack on phenylalanine, would be elevated in beta-thalassemia (intermediate). This study represents the first report in which specific markers of protein oxidative damage have been quantified in thalassemia. We used GC/MS to assay o- and m-tyrosine at the femtomole level using only a few microliters of plasma. Levels of both markers were significantly higher in patients with beta-thalassemia than in controls and were positively correlated with serum ferritin, malondialdehyde, superoxide dismutase, glutathione peroxidase and glutathione. We conclude that o- and m-tyrosine are useful biomarkers of oxidative damage to proteins in thalassemia (intermediate) and may also be useful markers in other iron overload diseases. Positive correlations between o- and m-tyrosine levels and malondialdehyde as well as antioxidants such as superoxide dismutase, glutathione peroxidase and glutathione, are indicative of the broad impact of oxidative stress on blood plasma in thalassemia, with up-regulation of antioxidant proteins probably reflecting a homeostatic response to these increased stress levels.  相似文献   

9.
We examined oxidative stress markers of 31 patients suffering from ALS, 24 patients suffering from PD and 30 healthy subjects were included. We determined the plasma levels of lipid peroxidation (malondialdehyde, MDA), of protein oxidative lesions (plasma glutathione, carbonyls and thiols) and the activity of antioxidant enzymes i.e. erythrocyte Cu,Zn-Superoxide dismutase (SOD), Glutathione peroxidase (GSH-Px) and catalase. MDA and thiols were significantly different in both neurodegenerative diseases versus control population. A trend for an enhancement of oxidized glutathione was noted in ALS patients. Univariate analysis showed that SOD activity was significantly decreased in ALS and GSH-Px activity was decreased in PD. After adjusting for demographic parameters and enzyme cofactors, we could emphasize a compensatory increase of SOD activity in PD. Different antioxidant systems were not involved in the same way in ALS and PD, suggesting that oxidative stress may be a cause rather than a consequence of the neuronal death.  相似文献   

10.
Durak I  Aytaç B  Atmaca Y  Devrim E  Avci A  Erol C  Oral D 《Life sciences》2004,75(16):1959-1966
Effects of ingesting garlic extract on plasma and erythrocyte antioxidant parameters of atherosclerotic patients were investigated in this study. Eleven patients with atherosclerosis participated in the study. They ingested a dose of 1 ml/kg body weight of garlic extract daily for 6 months (study period). Before and after this period, fasting blood samples were obtained, and oxidant (malondialdehyde, MDA and xanthine oxidase, XO) and antioxidant (superoxide dismutase, SOD and glutathione peroxidase, GSH-Px) parameters were studied in plasma and erythrocytes obtained from the patients. Blood samples obtained from 11 healthy subjects served as the controls. Plasma XO activity and MDA levels were higher, but plasma and erythrocyte GSH-Px activities were lower, in patients with atherosclerosis relative to those of the control group. Our results showed that ingestion of garlic extract leads to significantly lowered plasma and erythrocyte MDA levels in the patients even in the absence of changes in antioxidant enzyme activities. Our results also demonstrated the presence of oxidant stress in blood samples from patients with atherosclerosis, but ingesting garlic extract prevented oxidation reactions by eliminating this oxidant stress. Thus, it is possible that reduced peroxidation processes may play a part in some of the beneficial effects of garlic in atherosclerotic diseases.  相似文献   

11.
It has been suggested that increased erythrocyte membrane phosphatidylserine (PS) exposure could contribute to hypercoagulability and hemorheological disturbances in obesity. The aim of our study was to evaluate PS exposure in obese patients and in a control group and to correlate this with hemorheological properties, i.e., erythrocyte aggregability (EA) and deformability, and to evaluate the effect of weight loss on these parameters. An anthropometric and analytical evaluation was performed at baseline and after 3 months on a diet (very low‐calorie diet for 4 weeks and low‐calorie diet for 2 months) on 49 severe or morbid obese patients (37 women, 12 men) and 55 healthy volunteers (39 women, 16 men). PS exposure on erythrocyte membrane was performed by flow cytometry. Erythrocyte aggregation was measured using the Myrenne MA1 and the Sefam aggregometer. Erythrocyte deformability was determined in a stress diffractometer. Prothrombin fragment F1+2 (F1+2) was determined as a marker of the hypercoagulable state, and plasma malondialdehyde (MDA) as an indicator of oxidative stress. Obese patients had a higher EA index, higher PS exposure on erythrocyte membranes and higher levels of MDA and F1+2. The differences in erythrocyte aggregation and F1+2 between obese patients and the control group were maintained after adjusting for PS exposure. After 3 months of diet, a significant reduction in PS exposure on erythrocyte membrane was observed. Obese patients show increased PS exposure on erythrocyte membrane, with no effect on rheological properties. Increased PS exposure could contribute to hypercoagulability in these patients. Weight loss obtained with diet treatment reduces PS exposure on erythrocyte membrane.  相似文献   

12.
Oxidative stress may play a role in the pathogenic mechanism of essential hypertension. Lipid peroxidation can alter the cellular structure of membrane-bound enzymes by changing the membrane phospholipids fatty acids composition. We investigated the relationship between (Na + K)-ATPase activity, lipid peroxidation, and erythrocyte fatty acid composition in essential hypertension. The study included 40 essential hypertensive and 49 healthy normotensive men (ages 35–60 years). Exclusion criteria were obesity, dyslipidemia, diabetes mellitus, smoking, and any current medication. Patients underwent 24-h ambulatory blood pressure monitoring and blood sampling. Lipid peroxidation was measured in the plasma and erythrocytes as 8-isoprostane or malondialdehyde (MDA), respectively. Antioxidant capacity was measured as ferric reducing ability of plasma (FRAP) in the plasma and as reduced/oxidized glutathione (GSH/GSSG ratio) in erythrocytes. (Na + K)-ATPase activity and fatty acids were determined in erythrocyte membranes. Hypertensives had higher levels of plasma 8-isoprostane, erythrocyte MDA, and relative percentage of saturated membrane fatty acids, but lower plasma FRAP levels, erythrocyte GSH/GSSG ratio, (Na + K)-ATPase activity and relative percentage of unsaturated membrane fatty acids, compared with normotensives. Day-time systolic and diastolic blood pressures correlated positively with lipid peroxidation parameters, but negatively with (Na + K)-ATPase activity. These findings suggest that the modulation of (Na + K)-ATPase activity may be associated with changes in the fatty acid composition induced by oxidative stress and provide evidence of a role for this enzyme in the pathophysiology of essential hypertension.  相似文献   

13.
The association between oxidative stress and cardiovascular diseases is a widely accepted fact today. Generally, men have a higher risk of cardiovascular incidents and mortality from acute myocardial infarction and strokes. We have examined sport-associated circannual rhythms of oxidant and antioxidant processes by measuring plasma LPO, erythrocyte SOD, CAT, Gpx activity and plasma hormonal status in both sedentary and long-term trained men and women. We have shown seasonal variations in both oxidant and antioxidant status in all examined groups. The largest difference was observed in the oxidant status between sedentary men and women during autumn and winter, which is considered a period of high coronary risk for men. Sport decreased LPO in trained men in autumn, while the same effect in trained women was shifted towards summer. These data state that regular, long-term physical exercise training induces adaptive responses that confer protection against oxidative stress, as well as the beneficial effect of exercise with regard to season, particularly in men during a period of high coronary risk (autumn and winter, respectively) and in women during summer.  相似文献   

14.
Effect of organophosphorus insecticide, phosphomidon (250 and 500 ppm) on human erythrocyte and plasma were studied in vitro to get insight into the cellular antioxidant defence mechanism and malondialdehyde formation. The antioxidant defence system of erythrocyte was altered as evident by depression of glutathione reductase, glucose 6 phosphate dehydrogenase, whereas the level of reduced glutathione, glutathione peroxidase, glutathione-S-transferase, superoxidedismutase and catalase were stimulated. In the case of plasma fraction, glutathione reductase, glutathione peroxidase, glutathione-s-transferase, glucose-6-phosphate dehydrogenase, superoxide dismutase and levels of reduced glutathione were significantly depressed and the malondialdehyde formation and catalase activity were elevated indicating the less adaptive response of plasma to protect it from oxidative damage.  相似文献   

15.
Migraine is the most common neurological disorder, but the molecular basis is still not completely understood. An impairment of mitochondrial oxidative metabolism might play a role in the pathophysiology. The goal of this study was to investigate the differences in oxidative stress status with the measurement of erythrocyte superoxide dismutase (SOD), catalase activity, and malondialdehyde (MDA) levels in the migraine patients with or without aura and attack. There were 56 patients (46 female, 10 male) in the migraine group and 25 matched healthy subjects in the control group. The patients comprised 37 with migraine without aura (MWoA], 19 with migraine with aura (MWA), and 22 with headache attack. The MDA levels of patients in the migraine group were significantly higher than that in the control group. The SOD activity was significantly higher in the MWA as compared to MWoA. There was no significant correlation between these levels and headache attack period. Conclusively, in this preliminary study, we had found increased oxidative stress in the migraine patients especially the patients with MWA. Further knowledge about this issue may contribute the cause and complications of migraine and may be essential for development of treatment approaches.  相似文献   

16.
Chemotherapy and radiation therapy are associated with increased formation of reactive oxygen species and depletion of critical plasma and tissue antioxidants. In patients undergoing high-dose chemotherapy, the plasma antioxidant concentration has been shown to decrease. However, these studies in which the oxidative stress status were investigated have a small number of patients and they are heterogeneous. In this study, the changes in certain trace elements together with oxidative stress parameters were investigated in 36 patients who had undergone autologous stem cell transplantation because of solid and hematological malignancies. Blood samples of the patients were examined before the high-dose chemotherapy (baseline), before stem cell transplantation (day -1), and after stem cell transplantation on day 1, 3, and 6. Erythrocyte zinc, silver, and iron levels were measured by atomic absorption spectrophotometry; malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) levels were measured by UV-vis spectrophotometry. After high-dose chemotherapy, significant increases in the levels of MDA, GSH-Px, and SOD were observed. On the other hand, Cu levels remained the same while the levels of erythrocyte Zn and Fe were increased. Significant correlation was observed among MDA, GSH-Px, and SOD (p<0.05). High-dose chemotherapy gives rise to an increase in the oxidative stress and the reactive oxygen species. Standard parenteral nutrition protocols were found to be insufficient to lower this stress.  相似文献   

17.
Oxidants play a significant role in causing oxidative stress, which underlies the pathogenesis of rheumatoid arthritis (RA). Genetic factors that predispose individuals to RA are considered to play an important role in the development of the disease. The aim of this study was to determine, by use of the comet assay and the micronucleus (MN) test, whether DNA damage has an effect on the pathogenesis of RA. Furthermore, our aim was to show if there is an association between oxidative stress and DNA damage in RA. This study was conducted between January and June 2010 in the Erzurum Training and Research Hospital. We analyzed lymphocytes from patients with RA (12 in active and 31 in inactive periods) and 30 healthy controls for effects in the comet assay and the MN test. In addition, the levels of malondialdehyde (MDA) and superoxide dismutase (SOD), the activity of glutathione peroxidase (GSH-Px), the erythrocyte sedimentation rate (ESR) and the high-sensitivity C-reactive protein (hs-CRP) rate were determined in all the subjects. The comet-tail length, the MN frequencies and the MDA levels were significantly higher in patients--both in the active and the inactive period--than in the controls. In contrast, the SOD and GSH-Px levels were significantly lower in both patient groups than in the controls. Our results suggest that an increased plasma MDA level and decreased plasma GSH-Px and SOD levels reflect the higher degree of oxidative stress in RA patients, a situation that may impair genetic stability in those patients. Thus, the results suggest that increased DNA damage may play an important role in the pathogenesis of RA.  相似文献   

18.
One of the major hypotheses in the pathogenesis of vitiligo is the oxidative stress hypothesis. Pollution plays a major role in the production of free radicals. Gujarat, a highly industrialized state in India has a high prevalence of vitiligo patients. No previous studies were done on the age-dependent antioxidant status of vitiligo patients in Baroda city, Gujarat. Blood samples were collected from vitiligo patients of different age groups (5-15, 16-25, 26-35, 36-45 yr) and from age matched healthy volunteers. Antioxidant enzymes in blood such as catalase, superoxide dismutase, glutathione peroxidase and non-enzymatic antioxidants such as reduced glutathione and plasma vitamin E were estimated. Lipid peroxidation levels in erythrocytes and the reducing equivalent system, i.e. glucose-6-phosphate dehydrogenase were also measured. Significant increase in superoxide dismutase activity and lipid peroxidation levels in erythrocytes was observed in all age groups of vitiligo patients as compared with age-matched healthy controls, wherein an increase of 55% (P < 0.02) was observed in superoxide dismutase activity and lipid peroxidation levels in 36-45 yr age group. Whole blood glutathione levels, erythrocyte glutathione peroxidase and glucose-6-phosphate dehydrogenase activity were decreased significantly, whereas erythrocyte catalase activity and plasma vitamin E levels were not different in vitiligo patients as compared with age-matched healthy controls. No specific age group showed a significant difference. This is the first report on the age-dependent antioxidant status of vitiligo patients in Baroda. The disease affects individuals of any age group as shown in this study and systemic oxidative stress might precipitate the pathogenesis of vitiligo in susceptible patients.  相似文献   

19.
The oxidative stress is considered to be involved in the pathophysiology of cancers. In the current study we explored the oxidative stress in patients with different cancers and corresponding benign diseases by evaluation of the level of lipid peroxidation products (MDA level) in the plasma and the activity of erythrocyte antioxidant defense enzymes superoxide dismutase (SOD) and catalase (CAT). Significantly higher plasma levels of lipid peroxidation products were detected in patients with early and advanced cancers in comparison to the healthy volunteers (mean 3.1 micromol/l and 2.3 micromol/l, p = 0.0003 and p = 0.029, respectively, t-test). In addition, 10-20 days after radical operations of cancer patients with normal postoperative recovery period, the plasma levels of MDA decreased and reached values close to the controls (mean 2.0 micromol/l). SOD in erythrocytes of patients with benign diseases and malignant solid tumors before and after surgery did not differ from that of the controls. In contrast, CAT activity of patients with early cancers was found to be significant higher than that of the controls (mean 22157.2 U/gHb vs. 12832.0 U/gHb, p = 0.032, t-test). A decrease of CAT activity was observed after surgery (mean 15225.0 U/gHb). In conclusion, our results suggest the presence of an increased oxidative stress accompanied by a lack of changes of erythrocyte SOD activity and an adaptive increase of CAT activity.  相似文献   

20.
The excessive production of nitric oxide (NO) and the subsequent increase of local oxidative stress is suggested as one of the pathophysiological mechanisms of streptozotocin-induced diabetes. It was reported that the administration of NO synthase inhibitors partially attenuated the development of streptozotocin-induced diabetes and reduced hyperglycaemia. Here we have studied the influence of methylene blue, which combines the properties of NO synthase inhibitor with antioxidant effects. The experiments were performed on male rats divided into four groups: control, diabetic (single dose of 70 mg of streptozotocin/kg i.p.), methylene blue (50 mg/kg in the food) and diabetic simultaneously fed with methylene blue. After 45 days the experiments were discontinued by decapitation. Serum glycaemia, glycated haemoglobin and oxidative stress parameters (plasma malondialdehyde concentration and erythrocyte superoxide dismutase activity) were significantly higher in the diabetic group. Simultaneous methylene blue administration partially reduced glycaemia and glycated haemoglobin, but did not decrease oxidative stress. We conclude that NO synthase inhibitor methylene blue partially attenuates the development of streptozotocin-induced diabetes in male rats, but does not reduce the development of oxidative stress in the diabetic group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号