首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work presents the purification and further characterization of the aldehyde dehydrogenase reconstitutively active in fatty alcohol oxidation, from rabbit intestinal microsomes. Microsomal aldehyde dehydrogenase was solubilized with cholate and purified by using chromatography on 6-amino-n-hexyl-Sepharose and 5'-AMP-Sepharose. The purified enzyme migrated as a single polypeptide band with molecular weight of 60,000 on SDS-polyacrylamide gel. By gel filtration in the presence of detergent, its apparent molecular weight was estimated to be 370,000. In the detergent-free solution, in contrast, it had a much higher molecular weight, indicating its association in forming large aggregates. The pH optimum was 9.0 when pyrophosphate buffer was used. The enzyme was active toward various aliphatic aldehydes with more than three carbons. The Km value for substrate seemed to decrease with increase in the chain length. The microsomal aldehyde dehydrogenase was not affected by disulfiram and MgCl2, which were, in contrast, highly inhibitory towards the activity of the cytosolic aldehyde dehydrogenase separated from intestinal mucosa.  相似文献   

2.
A method is described for obtaining a highly active proteolytic enzyme from aMicrosporum species. This protease was purified (200-fold) from a cell-free culture medium by concentration with Carbowax, ammonium sulfate fractionation, charcoal and Celite filtration, calcium phosphate gel treatment, and column chromatography. The pH and temperature optima are 6.8 and 35 C respectively. Requirement of one or more free sulfhydryl group(s) for enzyme activity was indicated by inhibition withp-chloromercuric benzoate. Ethylenediaminetetraacetic acid also caused inhibition of proteolytic activity, which suggests involvement of a metal ion. The enzyme appears to be most active in the reduced form;l-cysteine and 2,3 dimercapto-l-propanol doubled the rate of activity. It has an approximate molecular weight of 51,000 to 69,000. The enzyme was highly active on all proteins examined.  相似文献   

3.
The NADP+-specific glutamate dehydrogenase fromEscherichia coli has been purified to electrophoretic homogeneity. The enzyme was purified 40-fold and has a specific activity of 23. Glutamate dehydrogenase fromE. coli is a hexameric enzyme with a native molecular weight of 275 KDa composed of monomers each with a molecular weight of 44.5 KDa. In nondenaturing isoelectric focusing gels, the purified enzyme is resolved into six catalytically active species, each with a molecular weight of 275 KDa and with isoelectric points ranging between pH 5.3 and 5.7. The Km values for substrates and coenzymes have been determined, and the effect of several divalent ions on catalytic activity has been investigated.  相似文献   

4.
Two forms of homoserine dehydrogenase exist in the leaves of both barley and pea; one has a large molecular weight and is inhibited by threonine, the other is of smaller molecular weight and insensitive to threonine but inhibited by cysteine. The subcellular localisation of these enzymes has been examined. Both plants have 60–65% of the total homoserine dehydrogenase activity present in the chloroplast and this activity is inhibited by threonine. The low molecular weight, threonine-insensitive form is present in the cytoplasm. Total homoserine dehydrogenase activity from barley leaves showed progressive desensitisation towards threonine with age in a similar manner to that previously described for maize. It was shown that the effect was due to desensitisation of the chloroplast enzyme, and not to an increase in the insensitive cytoplasm enzyme. No corresponding desensitisation to threonine was detected in pea leaves. The different forms of homoserine dehydrogenase could be separated from pea leaves by chromatography on Blue Sepharose; the threonine-sensitive enzyme passed straight through and the threonine insensitive form was bound. A similar separation of the barley leaf isoenzymes was obtained using Matrex Gel Red A affinity columns; in this case however, the threonine-sensitive isoenzyme was bound. In both plants, the threonine insensitive isoenzyme was subject to greater inhibition by cysteine than was the threonine-sensitive isoenzyme.Abbreviation HSDH homoserine dehydrogenase  相似文献   

5.
Cell free extracts of Pseudomonas MS previously have been shown to carry out the synthesis of a novel amino acid, N-methylalanine (Kung, H.F., and Wagner, C. (1970) Biochim. Biophys. Acta 201, 513-516). An enzyme has been isolated from this organism which is responsible for the synthesis of N-methylalanine. The stoichiometry of the reaction catalyzed by this enzyme leads to the following formulation: Methylamine + pyruvate + NADPH + H-+ yields N-methylalanine + NADP-+ + H2O. This enzyme has been physically separated from alanine dehydrogenase, which is also present in these extracts. This new enzyme has been named N-methylalanine dehydrogenase. It has been purified to near homogeneity as judged by disc gel electrophoresis. Gel filtration chromatography showed that N-methylalanine dehydrogenase has an apparent molecular weight of 77,000, while electrophoresis in sodium dodecyl sulfate gave rise to a single band with a molecular weight of approximately 36,500. The enzyme is optimally active in the pH range between 8.2 and 8.6. The apparent K-m values for pyruvate, NADPH, and methylamine, respectively, are 1-5 times 10 minus 2 M, 3-5 times 10 minus 5 M, and 7.5 times 10 minus 2 M.  相似文献   

6.
During growth on compounds containing methyl groups a formaldehyde dehydrogenase is induced in the gram-positive bacteria Rhodococcus erythropolis. This formaldehyde dehydrogenase has been purified to homogeneity using affinity chromatography and permeation chromatography. The isoelectric point of the enzyme was 4.7. The molar mass of the native enzyme was determined as 130 000 g/mol. Sodium dodecyl sulfate gel electrophoresis yielded a single subunit with a molar mass of 44000 g/mol. These results, together with cross-linking experiments which yielded monomer, dimer, and trimer bands, are consistent with a trimeric subunit structure of the formaldehyde dehydrogenase. A heat-stable cofactor of low molar mass was required for activity with formaldehyde as substrate. This cofactor was found to be oxidizable, but active only in its reduced form. Preparative electrofocusing revealed that the cofactor is a weak acid with a pK of about 6.5. The enzyme was active with the homologous series of the primary alcohols, ethanol up to octanol, without requiring the presence of the cofactor. A mutant without formaldehyde dehydrogenase activity was not impaired in its growth with ethanol as substrate. It is suggested that the alcohols mimic the true substrate of the formaldehyde dehydrogenase, which could be a hydroxymethyl derivative of the cofactor, resulting from the addition of formaldehyde.  相似文献   

7.
Lactic dehydrogenase fromLactobacillus casei ATCC 7469 has been purified to homogeneity by a two-step affinity chromatography procedure which gave an yield of 35%. The enzyme specifically catalysed the conversion of pyruvate to lactate. The enzyme was maximally active at pH 4.6, which was shifted to 5.4 in the presence of fructose 1,6-biphosphate. The enzyme had a molecular weight of 70,800 with two identical subunits, unlike the lactic dehydrogenase from other sources. Histidine and primary amino groups appeared to be involved in catalysis.  相似文献   

8.
Spores of Clostridium perfringens contain at least two spore-lytic enzymes active in hydrolysing cortical peptidoglycan. One enzyme has been purified 1800-fold and has a molecular weight of 17 400 determined from chromatography on Sephadex G-75. Two protein bands were apparent after SDS-PAGE. The isolated enzyme was investigated for response to temperature, pH, ionic strength and enzyme inhibitors, and for mode of action. A second enzyme activity, differing from the first in apparent molecular weight (29 800) as determined by gel exclusion chromatography, and also in its pH optimum and activity on cortical substrate, was also isolated, although not purified to the same extent.  相似文献   

9.
Glucose-6-phosphate dehydrogenase has been purified 1000-fold from pig liver. This enzyme exists as an active dimer of molecular weight 133,000 and an inactive monomer of molecular weight 67,500. The pH of maximum activity is 8.5 and the ionic strength maximum is 0.1 to 0.5 M. Glucose-6-phosphate dehydrogenase is highly specific for NADP+ and glucose 6-phosphate. Apparent Km values of 3.6 muM and 5.4 muM were obtained for glucose 6-phosphate and NADP+. This enzyme is located almost entirely within the soluble portion of the cellular cytoplasm.  相似文献   

10.
D-3-Hydroxybutyrate dehydrogenase from Paracoccus denitrificans has been purified to near homogeneity. The enzyme was prepared using DEAE-cellulose chromatography, affinity chromatography on immobilized Cibacron blue (Matrex Gel Blue A) and gel permeation chromatography. The pure enzyme was obtained by chromatofocusing as the final isolation step. The purification procedure yielded the enzyme with a specific activity of about 100 units/mg protein. The enzyme is specific for D-3-hydroxybutyrate and NAD and it exhibits anomalous kinetics (hysteresis) at low enzyme and coenzyme concentrations. It is relatively stable in the presence of EDTA at pH 7–8 higer salt concentrations. D-3-Hydroxybutyrate dehydrogenase is a tetramer with a molecular weight of 130 000 ± 10 000, its isoelectric point equals 5.10 ± 0.05. The enzyme is applicable to the determination of acetoacetate and D-3-hydroxybutyrate concentrations.  相似文献   

11.
1) Glucose dehydrogenase from Bacillus megaterium has been purified to a specific activity of 550 U per mg protein. The homogeneity of the purified enzyme was demonstrated by gel electrophoresis and isoelectric focusing. 2) The amino acid composition has been determined. 3) The molecular weight of the native enzyme was found to be 116000 by gel permeation chromatography, in good agreement with the values of 120000 and 118000, which were ascertained electrophoretically according to the method of Hedrick and Smith and by density gradient centrifugation, respectively. 4) In the presence of 0.1% sodium dodecylsulfate and 8M urea, the enzyme dissociates into subunits with a molecular weight of 30000 as determined by dodecylsulfate gel electrophoresis. These values indicate that the native enzyme is composed of four polypeptide chains, each probably possessing one coenzyme binding site, which can be concluded from fluorescent titration of the NADH binding sites. 5) In polyacrylamide disc electrophoresis, samples of the purified enzyme exhibit three bands of activity, which present the native (tetrameric) form of glucose dehydrogenase and two monomeric forms (molecular weight 30000), arising under the conditions of pH and ionic strength of this method. 6) The enzyme shows a sharp pH optimum at pH 8.0 in Tris/HCl buffer, and a shift of the pH optimum to pH 9.0 in acetate/borate buffer. The limiting Michaelis constant at pH 9.0 for NAD is 4.5 mM and 47.5 mM for glucose. The dissociation constant for NAD is 0.69 mM. 7) D-Glucose dehydrogenase is highly specific for beta-D-glucose and is capable of using either NAD or NADP. The enzyme is insensitive to sulfhydryl group inhibitors, heavy metal ions and chelating agents.  相似文献   

12.
C1-Tetrahydrofolate synthase is a multifunctional enzyme which catalyzes three reactions in 1-carbon metabolism: 10-formyltetrahydrofolate synthetase; 5,10-methenyltetrahydrofolate cyclohydrolase; 5,10-methylenetetrahydrofolate dehydrogenase. A rapid 1-day purification procedure has been developed which gives 40 mg of pure enzyme from 10 rabbit livers. The 10-formyltetrahydrofolate synthetase activity of this trifunctional enzyme has a specific activity that is 4-fold higher than the enzyme previously purified from rabbit liver. Conditions have been developed for the rapid isolation of a tryptic fragment of the enzyme which contains the methylenetetrahydrofolate dehydrogenase and methenyltetrahydrofolate cyclohydrolase activities. This fragment is a monomer exhibiting a subunit and native molecular weight of 36,000 in most buffers. However, in phosphate buffers the native molecular weight suggests that the fragment is a dimer. Conditions are also given whereby chymotryptic digestion allows the simultaneous isolation from the native enzyme of a large fragment containing the 10-formyltetrahydrofolate synthetase activity and a smaller fragment containing the dehydrogenase and cyclohydrolase activities. The large fragment is a dimer with a subunit molecular weight of 66,000. The small fragment retains all of the dehydrogenase and cyclohydrolase activities of the native enzyme. The large fragment is unstable but retains most of the 10-formyltetrahydrofolate synthetase activity. Km values of substrates for the two fragments are the same as the values for the native enzyme. The 10-formyltetrahydrofolate synthetase activity of the native enzyme requires ammonium or potassium ions for expression of full catalytic activity. The effect of these two ions on the catalytic activity of the large chymotryptic fragment is the same as with the native enzyme. We have shown by differential scanning calorimetry that the native enzyme contains two protein domains which show thermal transitions at 47 and 60 degrees C. Evidence is presented that the two domains are related to the two protein fragments generated by proteolysis of the native enzyme. The larger of the two domains contains the active site for the 10-formyltetrahydrofolate synthetase activity while the smaller domain contains the active site which catalyzes the dehydrogenase and cyclohydrolase reactions. Replacement of sodium ion buffers with either ammonium or potassium ions results in an increase in stability of the large domain of the native enzyme. This change in stability is not accompanied by a change in the quaternary structure of the enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
D J McKay  K J Stevenson 《Biochemistry》1979,18(21):4702-4707
Lipoamide dehydrogenase (EC 1.6.4.3) has been isolated from a total homogenate of frozen mycelium of the thermophilic fungus Malbranchea pulchella var. sulfurea by a three-step procedure involving ammonium sulfate fractionation, Procion Brilliant Blue M-R--Sepharose 4B chromatography, and hydroxylapatite chromatography. The second step is the key purification step with the Procion Brilliant Blue M-R dye acting as an affinity ligand for the enzyme. The purified enzyme gave a single protein band on polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The enzyme is a dimer of molecular weight 102 000, and each monomer of 51 000 molecular weight binds one molecule of flavin adenine dinucleotide. Other properties determined include a pH optimum of 8.2, a strong specificity for the substrates dihydrolipoamide and nicotinamide adenine dinucleotide, the apparent lack of multiple enzymic forms, the presence of diaphorase activity, and resistance to temperature denaturation up to 60 degrees C. The amino acid composition and absorption spectrum of the enzyme were also determined. The properties of lipoamide dehydrogenase from this source are very similar to those reported for the enzyme from serveral other sources.  相似文献   

14.
Glutamate dehydrogenase (L-glutamate:NADP+ oxidoreductase [deaminating], EC 1.4.1.4) has been purified from Escherichia coli B/r. The purity of the enzyme preparation has been established by polyacrylamide gel electrophoresis, ultracentrifugation, and gel filtration. A molecular weight of 300,000 +/- 20,000 has been calculated for the enzyme from sedimentation equilibrium measurements. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate and sedimentation equilibrium measurements in guanidine hydrochloride have revealed that glutamate dehydrogenase consists of polypeptide chains with the identical molecular weight of 50,000 +/- 5,000. The results of molecular weight determination lead us to propose that glutamate dehydrogenase is a hexamer of subunits with identical molecular weight. We also have studied the stability and kinetics of purified glutamate dehydrogenase. The enzyme remains active when heat treated or when left at room temperature for several months but is inactivated by freezing. The Michaelis constants of glutamate dehydrogenase are 1,100,640, and 40 muM for ammonia, 2-oxoglutarate, and reduced nicotinamide adenine dinucleotide phosphate, respectively.  相似文献   

15.
The relationship between structure and activity of acid-extracted and purified acrosin obtained from cauda epididymal hamster spermatozoa was studied. A four-step purification procedure of acrosin was used; it included 1.) acid extraction, 2.) gel filtration over Sephadex G-100 resin, 3.) ion exchange on CM-Sepharose CL-6B, and 4.) affinity chromatography on proflavin-Sepharose 4B. Analysis of the purified enzyme by high-performance liquid chromatography (300 SW + I-125) revealed a molecular weight of 44,000, which was identical to that obtained for acid-extracted acrosin. Slab-gel electrophoresis under nondenaturing conditions showed only one active band, as revealed with a highly sensitive assay using N alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester as substrate. The radiation inactivation size of acid extracted acrosin was calculated to be 8400. This small unit could represent the active polypeptide portion of a larger monomer molecule or could represent the size of active subunits. Because acrosin is autocatalytic and highly active during fertilization, it is suggested that the active portion of the completely processed form of the enzyme is of small molecular weight.  相似文献   

16.
Thioltransferase, catalyzing thiol-disulfide interchange between reduced glutathione and disulfides, was purified to homogeneity from Saccharomyces cerevisiae. The purification procedure included ammonium sulfate precipitation, Sephadex G-50 gel filtration, CM-Sepharose ion exchange chromatography, and C18 reverse phase high pressure liquid chromatography. Two thioltransferase activity peaks were resolved by CM-Sepharose chromatography. The protein from the major peak had a molecular weight of 12 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis while the minor peak protein migrated slightly faster in this gel system. Both proteins showed similar amino acid compositions and identical N-termini. The major peak of thioltransferase was extensively characterized. Plots of thioltransferase activity as a function of S-sulfocysteine or hydroxyethyl disulfide concentration did not show normal Michaelis-Menten kinetics. The enzyme activity had a pH optimum of 9.1. The protein has 106 amino acid residues with two cysteines and no arginine. The active site amino acid sequence of the enzyme was identified as Cys26-Pro-Tyr-Cys29, which is similar to that of mammalian thioltransferase and Escherichia coli glutaredoxin. The two cysteines at the active site displayed different reactivities to iodoacetamide. Cys26 was alkylated by iodoacetamide at pH 3.5 while Cys29 was alkylated at pH 8.0. The enzyme was completely inactivated when the Cys26 was carboxymethylated. A plot of incorporation of iodoacetamide into Cys29 at different pHs was similar to the pH dependence of the enzyme activity. The result suggested that Cys26 could readily initiate nucleophilic attack on disulfide substrates at physiological pH.  相似文献   

17.
Homoisocitric dehydrogenase (EC 1.1.1.155) has been purified 525-fold from the yeast Saccharomycopsis lipolytica with a yield of 25%. The preparation was judged to be homogeneous by electrophoresis under denaturing and non-denaturing conditions and by isoelectric focusing; it consisted of a single protein with molecular weight of 48000. In the presence of homoisocitric acid, a higher molecular weight was observed, suggesting a dimeric structure for the native enzyme. Complementing mutants devoid of homoisocitric dehydrogenase activity mapped at two closely linked loci (lys9 and lys10). Lys10 mutants displayed NAD-reducing activity, whereas lys9 mutants retained some carboxylating activity. Our results are best explained by the assumption that the active enzyme is a dimer of identical subunits involved in successive dehydrogenation and decarboxylation steps.  相似文献   

18.
Enzyme I, the phosphoenolpyruvate:protein phosphotransferase (EC 2.7.3.9), which is part of the bacterial phosphoenolpyruvate- (PEP) dependent phosphotransferase system, has been purified from Streptococcus faecalis by using a large-scale preparation. Size exclusion chromatography revealed a molecular weight of 140 000. On sodium dodecyl sulfate gels, enzyme I gave one band with a molecular weight of 70 000, indicating that enzyme I consists of two identical subunits. The first 59 amino acids of the amino-terminal part of the protein have been sequenced. It showed some similarities with enzyme I of Salmonella typhimurium. The active center of enzyme I has also been determined. After phosphorylation with [32P]PEP, the enzyme was cleaved by using different proteases. Labeled peptides were isolated by high-performance liquid chromatography on a reversed-phase column. The amino acid composition or amino acid sequence of the peptides has been determined. The largest labeled peptide was obtained with Lys-C protease and had the following sequence: -Ala-Phe-Val-Thr-Asp-Ile-Gly- Gly-Arg-Thr-Ser-His*-Ser-Ala-Ile-Met-Ala-Arg-Ser-Leu-Glu-Ile-Pro-Ala- Ile-Val-Gly-Thr-Lys-. It has previously been shown that the phosphoryl group is bound to the N-3 position of a histidyl residue in phosphorylated enzyme I. The single His in position 12 of the above peptide must therefore carry the phosphoryl group.  相似文献   

19.
Human high molecular weight urokinase, a plasminogen activator, when minimally reduced with 0.01 M 2-mercaptoethanol for 10 h at pH 8.0 and 25 degrees C and then carboxymethylated with sodium iodoacetate, gave two chains, a functionally active heavy chain with about 80% of the original activity and a light chain. These two chains were found to be linked by a single interchain disulfide bond. The functionally active heavy chain can be isolated by an affinity chromatography method with [N alpha-(epsilon-aminocaproyl)-DL-homoarginine hexylester]-Sepharose. The light chain, which has no enzyme activity, is not adsorbed to the affinity matrix, whereas the active heavy chain was adsorbed and subsequently eluted. The active heavy chain was further purified by gel filtration on Sephadex G-100. This preparation was found to be homogeneous by both analytical and sodium dodecyl sulfate-polyacrylamide disc gel electrophoresis. The molecular weight of the active heavy chain was determined to be 33,000 by Sephadex G-100 gel filtration and 31,000 by sodium dodecyl sulfate-polyacrylamide disc gel electrophoresis. Its specific activity, with L-pyroglutamyl-glycyl-L-arginine-p-nitroanilide, was determined to be 208,000 IU/mg of protein. Approximately 87% active sites were found by p-nitrophenyl-p'-guanidino-benzoate titration with a molar activity of 7.41 X 10(9) IU/mmol of active site. The active heavy chain when compared to low molecular weight urokinase has a similar molecular weight, specific activity, and amino acid composition. The NH2-terminal residue found in the active heavy chain was lysine which was the same as that found in low molecular weight urokinase, whereas the NH2-terminal residues found in high molecular weight urokinase were serine and lysine. Serine is the NH2-terminal residue of the light chain of high molecular weight urokinase. The steady state kinetic parameters of activation of human Glu-plasminogen by the active heavy chain were also similar to low molecular weight urokinase, as were the amidase parameters of these enzymes. The Michaelis constants of activation (Kplg) were 2.11 and 2.21 microM, respectively; the catalytic rate constants of activation (kplg) were 51.7 and 44.1 min-1, respectively, with second order rate constants, kplg/Kplg of 24.5 and 20.2 microM-1 min-1, respectively.  相似文献   

20.
Cytosolic NADP-specific isocitrate dehydrogenase was isolated from leaves of Pisum sativum. The purified enzyme was obtained by ammonium sulfate fractionation, ion exchange, affinity, and gel filtration chromatography. The purification procedure yields greater than 50% of the total enzyme activity originally present in the crude extract. The enzyme has a native molecular weight of 90 kilodaltons and is resolved into two catalytically active bands by isoelectric focusing. Purified NADP-isocitrate dehydrogenase exhibited Km values of 23 micromolar for dl-isocitrate and 10 micromolar for NADP, and displayed optimum activity at pH 8.5 with both Mg2+ and Mn2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号