首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Thiamine triphosphatase activity in particulate fraction, but not in soluble, of rat skeletal muscle was stimulated by several anions. 2. The stimulative effect of anions was dependent on pH of reaction medium and was reversible. 3. The activities of ATPase in rat muscle particulate preparation and thiamine triphosphatase in the brain were inhibited by the anions.  相似文献   

2.
1. The palmitate oxidation rate was measured in intact diaphragm and m. flexor digitorum brevis and in whole homogenates of heart, diaphragm and m. quadriceps of developing rats between late foetal life and maturity. Activities of the mitochondrial enzymes cytochrome c oxidase and citrate synthase were also determined. 2. Immediately after birth the palmitate oxidation rate increases markedly in both intact diaphragm and m. flexor digitorum brevis and falls gradually after day 1 to adult values which are about 35% of those at birth. 3. The oxidation capacities of diaphragm and m. quadriceps, but especially of heart, increase steadily during development, starting before birth and reaching adult values at 15-20 days postnatally. The activities of the mitochondrial enzymes show a similar developmental pattern. 4. In heart the increase of oxidative capacity is the result of an increase of both mitochondrial content and mitochondrial activity. The mitochondrial contents of diaphragm and m. quadriceps, on the other hand, decrease with age and the increase of their oxidative capacities is due to a large rise of the mitochondrial activity.  相似文献   

3.
The activities of cytochrome c oxidase and F0F1-ATPase as well as the content of cytochromes cc1, aa3, and b were investigated in free brain mitochondria in the course of postnatal development and aging. The results show an increase of Vmax of both enzymes during postnatal development (between day 5 and 30). During the following phase ending at the age of 6 months, a decrease of F0F1-ATPase and cytochrome c oxidase activity occurs. From 6 to 12 months of age the activity of these enzymes did not change. The KM for both enzymes remained unchanged during the whole period observed. The content of cytochromes increased from the low values found in young rats, reached the highest values at around one month, and decreased till the age of 3 months. Later, their content in brain mitochondria did not markedly change. Our results suggest that the metabolic maturation of brain mitochondria differs in several aspects from the same process in other tissues, mainly in the time course. This is probably due to the unique role of neural tissue in the organism.  相似文献   

4.
Androgen metabolism by the cytosol fraction of rat skeletal muscle was investigated. Testosterone metabolism was low, the main metabolite being 4-androstene-3α, 17β-diol. In addition, small amounts of 5α-androstane-3a,17β-diol were formed, but no 17β-hydroxy-5α-androstane-3-one could be detected. 4-Androstene-3α,17β-diol was metabolized only to testosterone in this system of incubation. When 17β-hydroxy-5α-androstane-3-one was incubated with muscle cytosol, considerable metabolism to 5α-androstane-3α,17β-diol and to 5α-androstane-3β,17β-diol could be detected. Low 5α-reduction of testosterone and rapid conversion of formed 17α-hydroxy-5α-androstane-3-one to 5α-androstane-3α, 17β-diol and 5α-androstane-3β,17β-diol gave limited ability of the muscle preparation employed to accumulate 17β-hydroxy-5α-androstane-3-one.  相似文献   

5.
The temporal relationships between triacylglycerol (TG) content and TG lipase activity in slow-twitch (STR) and fast-twitch red (FTR) muscles were determined in rats during recovery from a 2-h swim. Immediately after the exercise, plasma free fatty acid (FFA) was elevated and glycogen concentrations were decreased. TG content was decreased 40% in STR muscle and reduced 45% in FTR muscle. The TG concentration of STR muscle increased in a linear fashion throughout recovery so that control levels were reached within the first 24 h after exercise. TG lipase activity of STR muscle was elevated 36% above control immediately after the swim and continued to increase to 84% above control 24 h after the work. In STR muscle there was a net synthesis of TG, while lipase activity was elevated above that measured in muscle of control rats. TG content of FTR muscle remained 45% below control throughout the first 24 h of recovery, and TG lipase activity increased from 26% (P greater than 0.05) greater than control immediately after exercise to threefold above control 24 h after work. All parameters returned to control levels by 48 h of recovery. These data indicated that a net TG synthesis occurs in STR muscle when lipolytic activity is elevated. In FTR muscle, however, a gradual increase in TG lipase activity that occurs during the first 24 h of recovery accompanies a TG concentration well below the control level throughout this same time frame.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Glycogen and cyclic AMP-metabolizing enzymes of rabbit skeletal muscle were examined during postnatal development. Glycogen synthase I, glycogen phosporylase and lactate dehydrogenase activity increased 7-fold by the 6th--8th postnatal week while glycogen synthase D was present in the neonate at one-half adult levels. Cyclic AMP phosphodiesterase decreased; adenylate cyclase increased 10-fold for both the epinephrine and NaF-stimulated states of the enzyme.  相似文献   

7.
Female Sprague-Dawley rats (250 g) were hindlimb suspended for 14 days, and the effects of hindlimb unweighting (HU) on skeletal muscle anaerobic metabolism were investigated and compared with nonsuspended controls (C). Soleus (SOL), plantaris (PL), and red and white portions of the gastrocnemius (RG, WG) were sampled from resting and stimulated limbs. Muscle atrophy after HU was 46% in SOL, 22% in PL, and 24% in the gastrocnemius compared with nonsuspended C animals. The muscles innervated by the sciatic nerve were stimulated to contract with an occluded circulation for 60 s with trains of supramaximal impulses (100 ms, 80 Hz) at a train rate of 1.0 Hz. Peak tension development by the gastrocnemius-PL-SOL muscle group was similar in HU and C animals (13.0 +/- 1.2, 12.2 +/- 0.8 N/g wet muscle). Occlusion of the circulation before stimulation created a predominantly anaerobic environment, and in situ glycogenolysis and glycolysis were estimated from accumulations of glycolytic intermediates. Total glycogenolysis and glycolysis were higher in the RG muscle of HU animals (74.6 +/- 3.3, 58.1 +/- 1.1) relative to C (57.1 +/- 4.6, 46.1 +/- 2.9 mumol glucosyl units/g dry muscle). Consequently, total anaerobic ATP production was also increased (HU, 251.3 +/- 1.1; C, 204.6 +/- 8.9 mumol ATP/g dry muscle). Total ATP production, glycogenolysis, and glycolysis were unaffected by HU in SOL, PL, and WG muscles. The enhanced glycolytic activity in RG after HU may be attributed to a shift in the metabolic profile from oxidative to glycolytic in the fast oxidative-glycolytic fiber population.  相似文献   

8.
Preservation of rat skeletal muscle energy metabolism by illumination   总被引:7,自引:0,他引:7  
Skeletal muscle viability is crucially dependent on the tissue levels of its high energy phosphates. In this study we investigated the effect of the preservation medium Perfadex and illumination with Singlet Oxygen Energy (SOE). Singlet oxygen can be produced photochemically by energy transfer from an excited photosensitizer. The energy emitted from singlet oxygen upon relaxation to its triplet state is captured as photons at 634 nm and is here referred to as SOE. Rat hind limb rectus femoris muscles were preserved for five hours at 22 degrees C in Perfadex, saline, SOE illuminated Perfadex or SOE illuminated saline. Extracts of the muscles were analysed by 31P NMR. Data were analysed using two-way analysis of variance and are given as mean values micromol/g dry weight) +/- SEM. The ATP concentration was higher (p = 0.006) in saline groups (4.52) compared with Perfadex groups (2.82). There was no statistically significant difference in PCr between the saline groups (1.25) and Perfadex groups (0.82). However, there were higher (p = 0.003) ATP in the SOE illuminated groups (4.61) compared with the non-illuminated groups (2.73). The PCr was also higher (p < 0.0001) in the SOE illuminated groups (1.89) compared with the non-illuminated groups (0.18). In conclusion, Perfadex in this experimental model was incapable of preserving the high energy phosphates in skeletal muscle during 5 hours of ischemia. Illumination with SOE at 634 nm improved the preservation potential, in terms of a positive effect on the energy status of the muscle cell.  相似文献   

9.
In rat hindlimbs perfused with [1-14C]pyruvate and 5 mM-dichloroacetate, the calculated apparent rate of pyruvate decarboxylation was decreased with increasing perfusate pyruvate concentrations. However, in the absence of dichloroacetate the apparent rate of decarboxylation increased under these conditions. Dichloroacetate enhanced [1-14C]pyruvate uptake, but decreased the specific radioactivity of effluent lactate. Glycogen metabolism remained unaffected. The results were not consistent with a common pyruvate pool, but provide evidence for the compartmentation of pyruvate metabolism.  相似文献   

10.
In adult mammalian, heart responses to beta- and alpha-adrenergic stimulation are different: the beta-type effect exhibits a larger increase of relaxation than of contraction, while the alpha-stimulation has no selective influence on relaxation. The present results show that the effect of isoprenaline (ISO) on the neonatal rat heart during the 1st postnatal week is not a typical beta-effect in that the relaxant influence of beta-stimulation is lacking. During the 2nd and 3rd postnatal weeks the typical beta-response, with improved relaxation, gradually appears. The absence of the typical beta-effect is not caused by the lack of beta-receptors or cAMP-dependent phosphorylation reactions because in other respects, the positive inotropic effect of ISO is well developed at the moment of birth. In addition to these qualitative changes, also prominent quantitative changes occurred in the ISO response. The dose-response curves were shifted to the right with advancing age, suggesting reduced beta-agonist potency of the maturing tissue. The developed tension (Tmax) abruptly increased between the 12th and 17th postnatal days and then steeply declined during the next 2 weeks. Changes in Tmax correlated fairly well with the general ability of the tissue to generate extra force, as expressed by rest-dependent potentiation of twitch. However, during the 2nd postnatal week cardiac tissue seemed to be subsensitive to ISO, since all contractile parameters except T'max were depressed. The results suggest that the postnatal changes in beta-response are primarily determined by alternations in the electromechanical coupling process of the developing tissue, and less by the proper adrenergic mechanisms.  相似文献   

11.
12.
In control and cold-adapted rats the oxygen consumption was measured polarographically in isolated mitochondria of gastrocnemic and soleus muscles before denervation and 60 min afterwards. Muscle denervation decreased the direct oxidation intensity in both the groups of rats. Unlike, the intensity of phosphorylation in cold-adapted animals increased following the denervation in the soleus muscle, and decreased in the gastrocnemic muscle, whereas no changes were evident in the control rats. It is concluded that the adaptation to cold may augment the dependence of oxidative metabolism in muscle mitochondria on the central nervous control.  相似文献   

13.
Although reports on sex steroids have implicated them as promoting protein synthesis and also providing extra strength to the skeletal muscle, it remains unclear whether sex steroids affect glycogen metabolism to provide energy for skeletal muscle functions, since glycogen metabolism is one of the pathways that provides energy for the skeletal muscle contraction and relaxation cycle. The purpose of the current study was to show that testosterone and estradiol act differentially on skeletal muscles from different regions, differentially with reference to glycogen metabolism. To study this hypothesis, healthy mature male Wistar rats (90-120 days of age, weighing about 180-200 g) were castrated (a bilateral orchidectomy was performed to test the significance of skeletal muscle glycogen metabolism in the absence of testosterone). One group of castrated rats was supplemented with testosterone (100 microg/100 g body weight, i.m., for 30 days from day 31 postcastration onwards). To test whether estradiol has any effect on male skeletal muscle glycogen metabolism 17beta-estradiol (5 microg/100 g body weight, i.m., for 30 days from day 31 postcastration onwards) was administered to orchidectomized rats. To test whether these sex steroids have any differential effect on skeletal muscles from different regions, skeletal muscles from the temporal region (temporalis), muscle of mastication (masseter), forearm muscle (triceps and biceps), thigh muscle (vastus lateralis and gracilis), and calf muscle (gastrocnemius and soleus) were considered. Castration enhanced blood glucose levels and decreased glycogen stores in skeletal muscle from head, jaw, forearm, thigh, and leg regions. This was accompanied by diminished activity of glycogen synthetase and enhanced activity of muscle phosphorylase. Following testosterone supplementation to castrated rats, a normal pattern of all these parameters was maintained. Estradiol administration to castrated rats did not bring about any significant alteration in any of the parameters. The data obtained suggest a stimulatory effect of testosterone on skeletal muscle glycogenesis and an inhibitory effect on glycogenolysis. Estradiol did not play any significant role in the skeletal muscle glycogen metabolism of male rats.  相似文献   

14.
In laboratory rats (Rattus norvegicus) aged 1 to 21 days emergence of postural and locomotor skills was studied in the open field and in experimental situations with homing used as motivation. Righting is mediated initially by curving and rocking of the trunk, later head and shoulder are rotated, and lastly the hindlimbs turn and provide co-ordinated support. Pivoting prodominates during the second half of the first week, crawling during most of the second week, and walking or running by the end of the second week. Balancing on narrow paths and compensating for lateral displacement on rotating rods mature later, as do various skills (climbing up or down on inclined surfaces, rods and ropes, and jumping across gaps) that require substantial hindlimb co-ordiantion.  相似文献   

15.
16.
Alanine production by skeletal muscle in tissue culture was studied using an established myogenic line (L6) of rat skeletal muscle cells. Correlation analyses were performed on rates of metabolism of alanine, glucose, lactate and pyruvate over incubation periods up to 96 h. Alanine production did not correlate significantly with glucose utilization (r = 0.24, P less than 0.20). Alanine production, however, did correlate with lactate production (r = 0.72, P less than 0.0005) as well as medium (r = 0.50, P less than 0.025) and intracellular (r = 0.85, P less than 0.0005) pyruvate concentrations. The intercepts of the latter two correlation analyses indicated that when medium or cell pyruvate fell below 0.28 mM or 1 nmol/mg protein, respectively, net alanine consumption occurred. Alanine synthesis also correlated (r = 0.71, P less than 0.0005) with the percent change in the cell mass action ratio for the sum of the alanine and aspartate aminotransferase reactions, i.e., [alanine] [malate]/[aspartate] [lactate]. These results suggest that alanine production is not necessarily linked to the rate of glucose utilization but rater to pyruvate overflow above a critical intracellular level; under conditions of pyruvate overflow, alanine synthesis is driven by the tendency to establish equilibrium between metabolites of the linked amino acid transaminases in skeletal muscle.  相似文献   

17.
Studies of the reversible binding of [3H]cortisol by rat gastrocnemius muscle cytoplasm in vitro reveal specific binding in the 27,000 times g supernatant fraction at 0 degrees. The [3H]cortisol-binding molecule had an apparant Kd value of 1.7 times 10-7 M and the number of binding sites was 0.99 pmol per mg of cytosol protein. Only a single class of [3H]cortisol-binding sites could be detected, whose protein nature was suggested by its susceptibility to nagarse. The [3H]cortisol-protein complex sedimented at similar to 4 S in a 5 to 20% sucrose gradient either in the presence or absence of 0.3 M KCl. Binding increased more than 2-fold in adrenalectomized rats and was markedly reduced in the muscle of rats pretreated with cortisol. In contrast to the binding of [3H]dexamethasone and [3H]triamcinolone acetonide to receptor proteins in muscle, no correlation was found between the ability of various steroids to complete wtth [3H]cortisol binding and their glucocorticoid potency: [3H]cortisol binding was inhibited by a 1000-fold higher concentration of unlabeled cortisol and progesterone but not by dexamethasone or triamcinolone acetonide. It is therefore suggested that the [3H]cortisol-binding reaction is not directly involved in the biological effects of all potent glucocorticoids in skeletal muscle. The [3H]cortisol-binding protein in muscle cytosol could not be unequivocally distinguished from rat plasma corticosteroid-binding globulin, because both had similar steroid specificity and temperature stability, were not markedly affected by--SH reagents, and displayed similar sedimentation properties.  相似文献   

18.
Hind-limb perfusion was used to investigate alterations of alpha and beta receptor-mediated metabolic effects in cold-adapted (CA) rats. The response to beta receptor stimulation by isoproterenol in the isolated hind-limbs of CA rats was slightly diminished. Oxygen consumption and lactate production were reduced in CA rats after beta receptor stimulation. Noradrenalin infusion caused less vasoconstriction in CA rats than in the controls (CO). Desensitization of alpha and beta receptors due to chronic sympathetic overstimulation may be the underlying cause of these observations. Compared with the controls, metabolism was enhanced in perfused hind-limbs of CA rats with an active nervous system. Decreased vascular resistance due to the lower perfusion pressure in CA rats might contribute to this increased metabolism.  相似文献   

19.
1. The effect of insulin (0.5, 10 and 50 munits/ml of perfusate) on glucose uptake and disposal in skeletal muscle was studied in the isolated perfused hindquarter of obese (fa/fa) and lean (Fa/Fa) Zucker rats and Osborne-Mendel rats. 2. A concentration of 0.5 munit of insulin/ml induced a significant increase in glucose uptake (approx. 2.5 mumol/min per 30 g of muscle) in lean Zucker rats and in Osborne-Mendel rats, and 10 munits of insulin/ml caused a further increase to approx. 6 mumol/min per 30 g of muscle; but 50 munits of insulin/ml had no additional stimulatory effect. In contrast, in obese Zucker rats only 10 and 50 munits of insulin/ml had a stimulatory effect on glucose uptake, the magnitude of which was decreased by 50-70% when compared with either lean control group. Since under no experimental condition tested was an accumulation of free glucose in muscle-cell water observed, the data suggest an impairment of insulin-stimulated glucose transport across the muscle-cell membrane in obese Zucker rats. 3. The intracellular disposal of glucose in skeletal muscle of obese Zucker rats was also insulin-insensitive: even at insulin concentrations that clearly stimulated glucose uptake, no effect of insulin on lactate oxidation (nor an inhibitory effect on alanine release) was observed; [14C]glucose incorporation into skeletal-muscle lipids was stimulated by 50 munits of insulin/ml, but the rate was still only 10% of that observed in lean Zucker rats. 4. The data indicate that the skeletal muscle of obese Zucker rats is insulin-resistant with respect to both glucose-transport mechanisms and intracellular pathways of glucose metabolism, such as lactate oxidation. The excessive degree of insulin-insensitivity in skeletal muscle of obese Zucker rats may represent a causal factor in the development of the glucose intolerance in this species.  相似文献   

20.
Intramuscular glutamine falls with injury and disease in circumstances associated with increases in blood corticosteroids. We have investigated the effects of corticosteroid administration (0.44 mg/kg dexamethasone daily for 8 days, 200 g female rats) on intramuscular glutamine and Na+, muscle glutamine metabolism and sarcolemmal glutamine transport in the perfused hindlimb. After dexamethasone treatment intramuscular glutamine fell by 45% and Na+ rose by 25% (the respective muscle/plasma distribution ratios changed from 8.6 to 4.5 and 0.12 to 0.15); glutamine synthetase and glutaminase activities were unchanged at 475 +/- 75 and 60 +/- 19 nmol/g muscle per min. Glutamine output by the hindlimb of anaesthetized rats was increased from 31 to 85 nmol/g per min. Sarcolemmal glutamine transport was studied by paired-tracer dilution in the perfused hindlimb: the maximal capacity (Vmax) for glutamine transport into muscle (by Na(+)-glutamine symport) fell from 1058 +/- 310 to 395 +/- 110 nmol/g muscle per min after dexamethasone treatment, accompanied by a decrease in the Km (from 8.1 +/- 1.9 to 2.1 +/- 0.4 mM glutamine). At physiological plasma glutamine concentration (0.75 mM) dexamethasone appeared to cause a proportional increase in sarcolemmal glutamine efflux over influx. Addition of dexamethasone (200 nM) to the perfusate of control rat hindlimbs caused acute changes in Vmax and Km of glutamine transport similar to those resulting from 8-day dexamethasone treatment. The reduction in muscle glutamine concentration after dexamethasone treatment may be primarily due to a reduction in the driving force for intramuscular glutamine accumulation, i.e., in the Na+ electrochemical gradient. The prolonged increase in muscle glutamine output after dexamethasone treatment (which occurs despite a reduction in the size of the intramuscular glutamine pool) appears to be due to a combination of (a) accelerated sarcolemmal glutamine efflux and (b) increased intramuscular synthesis of glutamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号