首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported that the catalytic RNA subunit of RNase P of Escherichia coli (M1 RNA) cleaves Drosophila initiator methionine tRNA (tRNA(Met)i) within the mature tRNA sequence to produce specific fragments. This cleavage was dependent on the occurrence of an altered conformation of the tRNA substrate. We call this further cleavage hyperprocessing. In the present paper, to search for another tRNA that can be hyperprocessed in vitro, we used total mature tRNAs from Drosophila as substrates for the in vitro M1 RNA reaction. We found that some tRNAs can be hyperprocessed by M1 RNA and that two such tRNAs are an alanine tRNA and a histidine tRNA. Using mutant substrates of these tRNAs, we also show that the hyperprocessing by M1 RNA is dependent on the occurrence of altered conformations of these tRNAs. The altered conformations were very similar to that of tRNA(Met)i. We show here that M1 RNA can be used as a powerful tool to detect the alternative conformation of tRNAs. The relationship between these hyperprocessing reactions and stability of the tRNA structure will also be discussed.  相似文献   

2.
Queuine, a modified form of 7-deazaguanine present in certain transfer RNAs, is shown to occur in Drosophila melanogaster adults in a free form and its concentration varies as a function of age, nutrition and genotype. In several, but not all mutant strains, the concentrations of queuine and the Q(+) (queuine-containing) form of tRNATyr are correlated. The bioassay employs L-M cells which respond to the presence of queuine by an increase in their Q(+)tRNAAsp that is accompanied by a decrease in the Q(-)tRNAAsp isoacceptors. The increase in Q(+)tRNATyr in Drosophila that occurs on a yeast diet is accompanied by an increase in queuine. Similarly the increase of Q(+)tRNAs with age also is accompanied by an increase in free queuine. In two mutants, brown and sepia, these correlations were either diminished or failed to occur. Indeed, the extract of both mutants inhibited the response of the L-M cells to authentic queuine. When the pteridines that occur at abnormally high levels in sepia were used at 1 x 10(-6)M, the inhibition of the L-M cell assay occurred in the order biopterin greater than pterin greater than sepiapterin. These pteridines were also inhibitory for the purified guanine:tRNA transglycosylase from rabbit but the relative effectiveness then was pterin greater than biopterin greater than sepiapterin. Pterin was competitive with guanine in the enzyme reaction with Ki = 0.9 x 10(-7)M. Also when an extract of sepia was chromatographed on Sephadex G-50, the pteridine-containing fractions only were inhibitory toward the L-M cell assay or the enzyme assay. These results indicate that free queuine occurs in Drosophila but also that certain pteridines may interfere with the incorporation of queuine into RNA.  相似文献   

3.
4.
Transfer RNA is an essential molecule for biological system, and each tRNA molecule commonly has a cloverleaf structure. Previously, we experimentally showed that some Drosophila tRNA (tRNA(Ala), tRNA(His), and tRNA(iMet)) molecules fit to form another, non-cloverleaf, structure in which the 3'-half of the tRNA molecules forms an alternative hairpin, and that the tRNA molecules are internally cleaved by the catalytic RNA of bacterial ribonuclease P (RNase P). Until now, the hyperprocessing reaction of tRNA has only been reported with Drosophila tRNAs. This time, we applied the hyperprocessing reaction to one of human tRNAs, human tyrosine tRNA, and we showed that this tRNA was also hyperprocessed by E. coli RNase P RNA. This tRNA is the first example for hyperprocessed non-Drosophila tRNAs. The results suggest that the hyperprocessing reaction can be a useful tool detect destablized tRNA molecules from any species.  相似文献   

5.
Transfer RNA is an essential molecule for biological system, and each tRNA molecule commonly has a cloverleaf structure. Previously, we experimentally showed that some Drosophila tRNA (tRNAAla, tRNAHis, and tRNAi Met) molecules fit to form another, non-cloverleaf, structure in which the 3'-half of the tRNA molecules forms an alternative hairpin, and that the tRNA molecules are internally cleaved by the catalytic RNA of bacterial ribonuclease P (RNase P). Until now, the hyperprocessing reaction of tRNA has only been reported with Drosophila tRNAs. This time, we applied the hyperprocessing reaction to one of human tRNAs, human tyrosine tRNA, and we showed that this tRNA was also hyperprocessed by E. coli RNase P RNA. This tRNA is the first example for hyperprocessed non-Drosophila tRNAs. The results suggest that the hyperprocessing reaction can be a useful tool to detect destablized tRNA molecules from any species.  相似文献   

6.
Guanylation of tRNA by a lysate of rabbit reticulocytes was reported previously by Farkas and Singh. This reaction was investigated further using 18 purified E. coli tRNAs as acceptors.Results showed that only tRNATyr, tRNAHis, tRNAAsn and tRNAAsp which contain the modified nucleoside Q in the anticodon acted as acceptors. Analysis of the nucleotide sequences in the guanylated tRNA showed that guanine specifically replaced Q base in these tRNAs.  相似文献   

7.
The reaction of fluorescamine with primary amino groups of tRNAs was investigated. The reagent was attached under mild conditions to the 3'-end of tRNAPhe-C-C-A(3'NH) from yeast and to the minor nucleoside x in E. coli tRNAArg, tRNALys, tRNAMet, tRNAIle and tRNAPhe. The primary aliphatic amino groups of these tRNAs react specifically so that the fluorescamine dye is not attached to the amino groups of the nucleobases. E. coli tRNA species modified on the minor nucleoside X47 can all be aminoacylated. An involvement of the minor modified nucleoside X47 in the tRNA: synthetase interaction is detected. Native tRNALys-C-C-A from E. coli can be phenylalanylated by phenylalanyl-tRNA synthetase from yeast, whereas this is not the case for fluorescamine treated tRNALys-C-C-A(XF47). Pre-tRNAPhe-C-C-A(XF47) forms a ternary complex with the elongation factor Tu:GTP from E. coli, binds enzymatically to the ribosomal A-site and is active in poly U dependent poly Phe synthesis. Fluorescamine-labelled E. coli tRNAs provide new substrates for the study of protein biosynthesis by spectroscopic methods.  相似文献   

8.
Recognition of tRNA by the enzyme ATP/CTP:tRNA nucleotidyltransferase from rabbit liver was studied using 12 tRNAs, previously treated with the chemical modifier diethylpyrocarbonate (DEP). Such chemically modified tRNAs were labeled with 32P by nucleotidyltransferase, using alpha-[32P]ATP as a cosubstrate. A carbethoxylated purine at position 57 in the psi-loop interfered with recognition of the tRNA in all instances. DEP-modified purines at other positions (58 in the psi-loop, 52 or 53 in the psi-stem, and 71-73 in the acceptor stem), also interfered with the interaction, but in only a few tRNAs. The mammalian enzyme was more similar to the homologous enzyme from yeast than that from bacteria, in its requirements for chemically unmodified purines. The extent of exclusion of modified bases from 32P-labeled material diminished as the concentration of enzyme increased, demonstrating that interference was not due to the inability of the chemically altered tRNA to refold into a recognizable conformation. The degree of purification of the enzyme did not affect the identity of bases that inhibited the reaction when modified.  相似文献   

9.
We showed recently that a mutant of Escherichia coli initiator tRNA with a CAU-->CUA anticodon sequence change can initiate protein synthesis from UAG by using formylglutamine instead of formylmethionine. We further showed that coupling of the anticodon sequence change to mutations in the acceptor stem that reduced Vmax/Km(app) in formylation of the tRNAs in vitro significantly reduced their activity in initiation in vivo. In this work, we have screened an E. coli genomic DNA library in a multicopy vector carrying one of the mutant tRNA genes and have found that the gene for E. coli methionyl-tRNA synthetase (MetRS) rescues, partially, the initiation defect of the mutant tRNA. For other mutant tRNAs, we have examined the effect of overproduction of MetRS on their activities in initiation and their aminoacylation and formylation in vivo. Some but not all of the tRNA mutants can be rescued. Those that cannot be rescued are extremely poor substrates for MetRS or the formylating enzyme. Overproduction of MetRS also significantly increases the initiation activity of a tRNA mutant which can otherwise be aminoacylated with glutamine and fully formylated in vivo. We interpret these results as follows. (i) Mutant initiator tRNAs that are poor substrates for MetRS are aminoacylated in part with methionine when MetRS is overproduced. (ii) Mutant tRNAs aminoacylated with methionine are better substrates for the formylating enzyme in vivo than mutant tRNAs aminoacylated with glutamine. (iii) Mutant tRNAs carrying formylmethionine are significantly more active in initiation than those carrying formylglutamine. Consequently, a subset of mutant tRNAs which are defective in formylation and therefore inactive in initiation when they are aminoacylated with glutamine become partially active when MetRS is overproduced.  相似文献   

10.
Arginyl-tRNA synthetase has been purified approximately 550 fold from crude extract of human placenta by the following purification steps: Ammonium sulfate fractionation, chromatographies of DEAE-cellulose and CM-Sephadex and Sephadex G-100 gel filtration. Final preparation of this enzyme has specific activity of 123 nmole of arginyl-tRNA formed per mg of protein and was free from other aminoacyl-tRNA synthetase activities. Recognition of various arginine tRNAs with this enzyme was studied using kinetic analysis of arginylation of arginine tRNA and also arginine tRNA dependent ATP-PPi exchange reaction. Affinity of this enzyme with arginine tRNA was determine from Vmas/Km values and it was in the order of rabbit, Chum salmon, B. subtilis, E. coli and yeast in both systems.  相似文献   

11.
12.
Ribonucleases O and Q, the two putative nucleolytic activities which we detected previously in the crude extract from a thermosensitive ribonuclease P mutant (TS241) of Escherichia coli and which were shown to function in the processing of tRNA precursors in vitro, were partially purified from the 1000000 x g supernatant fraction of E. coli Q13. In the course of purification of these enzymes, the total RNAs synthesized in the thermosensitive mutant at the restrictive temperature were used as the substrates and the activities were identified from disappearance or alteration of specific tRNA precursor molecules in polyacrylamide gel electrophoresis. The purified ribonuclease O preparation cleaved specifically the multimeric tRNA precursors at the spacer regions. The purified ribonuclease Q preparation removed, in accordance with the definition of this enzyme, extra nucleotides from the 3'-terminal ends of monomeric tRNA precursors. Some properties of these two nucleases were investigated. In addition to these nucleases, another exonuclease (tentatively designated ribonuclease Y) and ribonuclease P, a well-characterized endonuclease, were also purified. The sequential mode of the processing of tRNA precursors, originally observed in the cleavage reactions with the crude extracts in vitro, was supported by studies with the purified enzyme preparations.  相似文献   

13.
The selenocysteine (Sec) tRNA population in Drosophila melanogaster is aminoacylated with serine, forms selenocysteyl-tRNA, and decodes UGA. The Km of Sec tRNA and serine tRNA for seryl-tRNA synthetase is 6.67 and 9.45 nM, respectively. Two major bands of Sec tRNA were resolved by gel electrophoresis. Both tRNAs were sequenced, and their primary structures were indistinguishable and colinear with that of the corresponding single copy gene. They are 90 nucleotides in length and contain three modified nucleosides, 5-methylcarboxymethyluridine, N6-isopentenyladenosine, and pseudouridine, at positions 34, 37, and 55, respectively. Neither form contains 1-methyladenosine at position 58 or 5-methylcarboxymethyl-2'-O-methyluridine, which are characteristically found in Sec tRNA of higher animals. We conclude that the primary structures of the two bands of Sec tRNA resolved by electrophoresis are indistinguishable by the techniques employed and that Sec tRNAs in Drosophila may exist in different conformational forms. The Sec tRNA gene maps to a single locus on chromosome 2 at position 47E or F. To our knowledge, Drosophila is the lowest eukaryote in which the Sec tRNA population has been characterized to date.  相似文献   

14.
A method for the isolation and labeling to high specific radioactivity of individual isoaccepting tRNAs is described. After blocking reactive minor bases by acetylation and iodination of the crude tRNA, a single family of isoacceptors was aminoacylated. Individual isoacceptors were separated by chromatography on RPC-5 and then acylated with the 3-(4-hydroxyphenyl)propionyl ester of N-hydroxysuccinimide. The product was purified by chromatography on BD-cellulose and RPC-5. This derivatized tRNA was then iodinated with 125I- and Chloramine-T to give a product containing between 5 X 10(7) and 3 X 10(8) dpm/microgram. The suitability of such labeled tRNAs for hybridization to homologous DNA in solution and cytological preparations of chromosomes is discussed with particular reference to Drosophila melanogaster.  相似文献   

15.
The rates of the cross-aminoacylation reactions of tRNAs(Met) catalyzed by methionyl-tRNA synthetases from various organisms suggest the occurrence of two types of tRNA(Met)/methionyl-tRNA synthetase systems. In this study, the tRNA determinants recognized by mammalian or E. coli methionyl-tRNA synthetases, which are representative members of the two types, have been examined. Like its prokaryotic counterpart, the mammalian enzyme utilizes the anticodon of tRNA as main recognition element. However, the mammalian cytoplasmic elongator tRNA(Met) species is not recognized by the bacterial synthetase, and both the initiator and elongator E. coli tRNA(Met) behave as poor substrates of the mammalian cytoplasmic synthetase. Synthetic genes encoding variants of tRNAs(Met), including the elongator one from mammals, were expressed in E. coli. tRNAs(Met) recognized by a synthetase of a given type can be converted into a substrate of an enzyme of the other type by introducing one-base substitutions in the anticodon loop or stem. In particular, a reduction of the size of the anticodon loop of cytoplasmic mammalian elongator tRNA(Met) from 9 to 7 bases, through the creation of an additional Watson-Crick pair at the bottom of the anticodon stem, makes it a substrate of the prokaryotic enzyme and decreases its ability to be methionylated by the mammalian enzyme. Moreover, enlarging the size of the anticodon loop of E. coli tRNA(Metm) from 7 to 9 bases, by disrupting the base pair at the bottom of the anticodon stem, renders the resulting tRNA a good substrate of the mammalian enzyme, while strongly altering its reaction with the prokaryotic synthetase. Finally, E. coli tRNA(Metf) can be rendered a better substrate of the mammalian enzyme by changing its U33 into a C. This modification makes the sequence of the anticodon loop of tRNA(Metf) identical to that of cytoplasmic initiator tRNA(Met).  相似文献   

16.
Substrate and inhibitor specificity of tRNA-guanine ribosyltransferase   总被引:4,自引:0,他引:4  
We have tested as inhibitors or substrates of tRNA-guanine ribosyltransferase (EC 2.4.2.29) a number of compounds, including derivatives of 7-deazaguanine, pteridines, purines, pyrimidines and antimalarials. Virtually all purines and pteridines that are inhibitors or substrates of the rabbit reticulocyte enzyme have an amino nitrogen at the 2 position. In addition the 9 position and the oxygen at the 6 position may be important for recognition by the enzyme. Saturation of the double bond in the cyclopentenediol moiety of queuine reduces substrate activity and queuine analogs that lack the cyclopentenediol moiety, such as 7-deazaguanine and 7-aminomethyl-7-deazaguanine, are relatively poor substrates for the enzyme. While adenosine is not an inhibitor, neplanocin A (an adenosine analog in which a cyclopentenediol replaces the ribose moiety) is a poor inhibitor. The incorporation of 7-aminomethyl-7-deazaguanine into the tRNA of L-M cells results in a novel chromatographic form of tRNAAsp, indicating that L-M cells cannot modify this Q precursor (in Escherichia coli) to queuosine. The specific incorporation of 7-deazaguanine and 8-azaguanine into tRNA by L-M cells also results in novel chromatographic forms of tRNAAsp. With intact L-M cells, the enzyme-catalyzed insertion into tRNA of queuine, dihydroqueuine, 7-aminomethyl-7-deazaguanine, or 7-deazaguanine is irreversible, while guanine or 8-azaguanine incorporation is reversible; suggesting that it is the substitution of C-7 for N-7 which prevents the reversible incorporation of queuine into tRNA.  相似文献   

17.
18.
19.
The CCA-adding enzyme (ATP:tRNA adenylyltransferase or CTP:tRNA cytidylyltransferase (EC )) generates the conserved CCA sequence responsible for the attachment of amino acid at the 3' terminus of tRNA molecules. It was shown that enzymes from various organisms strictly recognize the elbow region of tRNA formed by the conserved D- and T-loops. However, most of the mammalian mitochondrial (mt) tRNAs lack consensus sequences in both D- and T-loops. To characterize the mammalian mt CCA-adding enzymes, we have partially purified the enzyme from bovine liver mitochondria and determined cDNA sequences from human and mouse dbESTs by mass spectrometric analysis. The identified sequences contained typical amino-terminal peptides for mitochondrial protein import and had characteristics of the class II nucleotidyltransferase superfamily that includes eukaryotic and eubacterial CCA-adding enzymes. The human recombinant enzyme was overexpressed in Escherichia coli, and its CCA-adding activity was characterized using several mt tRNAs as substrates. The results clearly show that the human mt CCA-adding enzyme can efficiently repair mt tRNAs that are poor substrates for the E. coli enzyme although both enzymes work equally well on cytoplasmic tRNAs. This suggests that the mammalian mt enzymes have evolved so as to recognize mt tRNAs with unusual structures.  相似文献   

20.
The RNA modification enzyme, tRNA pseudouridine synthase I has been isolated in 95% purity from an Escherichia coli strain harboring a multicopy plasmid with a 2.3-kilobase pair insert from the hisT operon. Its molecular size, amino acid composition, and amino-terminal sequence correspond to those predicted by the structure and expression of the hisT gene. Enzyme activity, as measured by a 3H release assay, is unaffected by pretreatment of tRNA pseudouridine synthase I with micrococcal nuclease and is optimized by the addition of a monovalent cation and thiol reductant. The activity is inhibited by all tRNA species tested, including substrates, modified tRNAs, nonsubstrates, or tRNAs containing 5-fluorouridine. Binding of tRNA pseudouridine synthase I occurs with both substrate and nonsubstrate tRNAs and does not require a monovalent cation. Our findings are consistent with a multistep mechanism whereby tRNA pseudouridine synthase I first binds nonspecifically and then forms transient covalent adducts with tRNA substrates. In the absence of other proteins, purified tRNA pseudouridine synthase I forms psi at all three modification sites known to be affected in hisT mutants. The 36.4-kDa polypeptide product of the gene adjacent to hisT, whose translation is linked to that of tRNA pseudouridine synthase I, is not a functional subunit for tRNA pseudouridine synthase I activity, nor is it a separate synthase acting at one of the three loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号