首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Premenopausal breast cancer is associated with increased animal fat consumption among normal-weight but not overweight women. Our previous findings in obesity-resistant BALB/c mice showed that a diet high in saturated animal fat (HFD) promotes mammary tumorigenesis in both DMBA carcinogenesis and Trp53-null transplant models. Having made these observations in BALB/c mice, which have very modest HFD weight gain, we determined the effects of HFD in FVB mice, which gain significant weight on HFD. Three-week-old FVB mice fed a low-fat diet or HFD were subjected to 7,12-dimethylbenz[a]anthracene-induced carcinogenesis. Like BALB/c mice, HFD promoted mammary tumorigenesis. Development of tumors largely occurred prior to mice becoming obese, indicating the role of animal-derived HFD rather than resulting obesity in tumor promotion. Also similar to BALB/c mice, early-occurring adenosquamous mammary tumors were abundant among HFD-fed FVB mice. Tumors from HFD mice also had increased intra-tumor M2 macrophages. Prior to tumor development, HFD accelerated normal mammary gland development and increased mammary M2 macrophages, similarly to BALB/c mice. The promotional effects of puberty-initiated HFD on carcinogen-induced mammary cancer are thus largely weight gain-independent. Like BALB/c mice, HFD promoted adenosquamous tumors, suggesting a role for early age HFD in promoting this subtype of triple negative mammary cancer. M2 macrophage recruitment was common to both mouse strains. We speculate that a similar effect of HFD on immune function may contribute to epidemiological findings of increased breast cancer risk in young, premenopausal, normal-weight women who consume a diet high in saturated animal fat.  相似文献   

2.
The aim of present study is to evaluate the effects of Garcinia cambogia on the mRNA levels of the various genes involved in adipogenesis, as well as on body weight gain, visceral fat accumulation, and other biochemical markers of obesity in obesity-prone C57BL/6J mice. Consumption of the Garcinia cambogia extract effectively lowered the body weight gain, visceral fat accumulation, blood and hepatic lipid concentrations, and plasma insulin and leptin levels in a high-fat diet (HFD)-induced obesity mouse model. The Garcinia cambogia extract reversed the HFD-induced changes in the expression pattern of such epididymal adipose tissue genes as adipocyte protein aP2 (aP2), sterol regulatory element-binding factor 1c (SREBP1c), peroxisome proliferator-activated receptor gamma2 (PPARgamma2), and CCAT/enhancer-binding protein alpha (C/EBPalpha). These findings suggest that the Garcinia cambogia extract ameliorated HFD-induced obesity, probably by modulating multiple genes associated with adipogenesis, such as aP2, SREBP1c, PPARgamma2, and C/EBPalpha in the visceral fat tissue of mice.  相似文献   

3.
4.
The aim of present study is to evaluate the effects of Garcinia cambogia on the mRNA levels of the various genes involved in adipogenesis, as well as on body weight gain, visceral fat accumulation, and other biochemical markers of obesity in obesity-prone C57BL/6J mice. Consumption of the Garcinia cambogia extract effectively lowered the body weight gain, visceral fat accumulation, blood and hepatic lipid concentrations, and plasma insulin and leptin levels in a high-fat diet (HFD)-induced obesity mouse model. The Garcinia cambogia extract reversed the HFD-induced changes in the expression pattern of such epididymal adipose tissue genes as adipocyte protein aP2 (aP2), sterol regulatory element-binding factor 1c (SREBP1c), peroxisome proliferator-activated receptor γ2 (PPARγ2), and CCAT/enhancer-binding protein α (C/EBPα). These findings suggest that the Garcinia cambogia extract ameliorated HFD-induced obesity, probably by modulating multiple genes associated with adipogenesis, such as aP2, SREBP1c, PPARγ2, and C/EBPα in the visceral fat tissue of mice.  相似文献   

5.
BackgroundPine nut oil (PNO), a standardized and well-defined extract of Pinus koraiensis (Korean pine), has beneficial effects on wound healing, inflammatory diseases, and cancer. However, the explanation for the mechanism by which PNO reduces body fat remains uncertain. We performed a protein-protein interaction network (PPIN) analysis to explore the genes associated with pinolenic acid using the MEDILINE database from PubChem and PubMed. It was concluded through the PPIN analysis that PNO was involved in a neutral lipid biosynthetic process.PurposeThis study evaluated the effects of PNO predicted by the network analysis of fat accumulation in chronic obesity mouse models established by feeding a high fat diet (HFD) to C57BL/6J mice and explored potential mechanisms.MethodsHFD mice were fed only HFD or HFD with PNO at 822 and 1644 mg/kg. After an oral administration of 7 weeks, several body weight and body fat-related parameters were examined, including the following: adipose weight, adipocyte size, serum lipid profiles, adipocyte expression of PPAR-γ, sterol regulatory element binding protein (SREBP)-1c, lipoprotein lipase (LPL) and leptin.ResultsWe showed that oral administration of PNO to HFD mice reduces body fat weight, fat in tissue, white adipose tissue weight, and adipocyte size. The serum cholesterol was improved in the HFD mice treated with PNO. Additionally, PNO has significantly attenuated the HFD-induced changes in the adipose tissue expression of PPAR-γ, SREBP-1c, LPL, and leptin.ConclusionsThe findings from this study based on the PPIN analysis suggest that PNO has potential as drug to reduce body fat through fat regulatory mechanisms by PPAR-γ and SREBP-1c.  相似文献   

6.
Although singly ablating Fabp1 or Scp2/Scpx genes may exacerbate the impact of high fat diet (HFD) on whole body phenotype and non-alcoholic fatty liver disease (NAFLD), concomitant upregulation of the non-ablated gene, preference for ad libitum fed HFD, and sex differences complicate interpretation. Therefore, these issues were addressed in male and female mice ablated in both genes (Fabp1/Scp2/Scpx null or TKO) and pair-fed HFD. Wild-type (WT) males gained more body weight as fat tissue mass (FTM) and exhibited higher hepatic lipid accumulation than WT females. The greater hepatic lipid accumulation in WT males was associated with higher hepatic expression of enzymes in glyceride synthesis, higher hepatic bile acids, and upregulation of transporters involved in hepatic reuptake of serum bile acids. While TKO had little effect on whole body phenotype and hepatic bile acid accumulation in either sex, TKO increased hepatic accumulation of lipids in both, specifically phospholipid and cholesteryl esters in males and females and free cholesterol in females. TKO-induced increases in glycerides were attributed not only to complete loss of FABP1, SCP2 and SCPx, but also in part to sex-dependent upregulation of hepatic lipogenic enzymes. These data with WT and TKO mice pair-fed HFD indicate that: i) Sex significantly impacted the ability of HFD to increase body weight, induce hepatic lipid accumulation and increase hepatic bile acids; and ii) TKO exacerbated the HFD ability to induce hepatic lipid accumulation, regardless of sex, but did not significantly alter whole body phenotype in either sex.  相似文献   

7.

Objectives

We examined whether arginase inhibition influences hepatic metabolic pathways and whole body adiposity in diet-induced obesity.

Methods and Results

After obesity induction by a high fat diet (HFD), mice were fed either the HFD or the HFD with an arginase inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA). Nor-NOHA significantly prevented HFD-induced increases in body, liver, and visceral fat tissue weight, and ameliorated abnormal lipid profiles. Furthermore, nor-NOHA treatment reduced lipid accumulation in oleic acid-induced hepatic steatosis in vitro. Arginase inhibition increased hepatic nitric oxide (NO) in HFD-fed mice and HepG2 cells, and reversed the elevated mRNA expression of hepatic genes in lipid metabolism. Expression of phosphorylated 5′ AMPK-activated protein kinase α was increased by arginase inhibition in the mouse livers and HepG2 cells.

Conclusions

Arginase inhibition ameliorated obesity-induced hepatic lipid abnormalities and whole body adiposity, possibly as a result of increased hepatic NO production and subsequent activation of metabolic pathways involved in hepatic triglyceride metabolism and mitochondrial function.  相似文献   

8.
目的:观察二氢杨梅素(DHM)对高脂饮食诱导小鼠肥胖的影响,并探讨其作用机制是否与促进WAT棕色化有关。方法:60只c57bl/6j小鼠随机分为6组(n=10):①正常对照组(ND组):普通饲料喂养、②正常对照+低剂量DHM组(ND+L-DHM组):普通饲料喂养同时用低剂量DHM(125 mg/(kg·d))处理、③正常对照+高剂量DHM组(ND+H-DHM组):普通饲料喂养同时用高剂量DHM(250 mg/(kg·d))处理、④高脂饮食组(HFD):高脂饲料喂养、⑤高脂饮食+低剂量DHM组(HFD+L-DHM组):高脂饲料喂养同时用低剂量DHM处理、⑥高脂饮食+高剂量DHM组(HFD+H-DHM组):高脂饲料喂养同时用高剂量DHM处理。16周后小鼠空腹过夜,取血测空腹血糖和血脂,随后处死动物,测体长,算出Lee's指数;取肩胛下、腹股沟和附睾处脂肪组织称重后,甲醛固定、HE染色观察脂肪细胞大小,免疫组化检测解偶联蛋白1(UCP1)的表达;实验期间每4周测一次小鼠体重。结果:与ND组相比较,HFD组小鼠体重显著升高,提示肥胖小鼠模型复制成功。此外,HFD组小鼠体脂重量、脂肪细胞直径、Lee's指数和血糖显著增加、脂肪细胞UCP1的表达升高;使用L-DHM和H-DHM处理HFD小鼠后,体脂重量、脂肪细胞直径、Lee's指数和血糖等指标显著逆转,而脂肪细胞UCP1的表达升高更为显著;但L-DHM和H-DHM对正常小鼠上述指标无显著影响。结论:二氢杨梅素抑制高脂饮食诱导的小鼠肥胖,其机制可能与促进WAT棕色化有关。  相似文献   

9.
The effect of feeding microbial gum on lipid metabolism and antioxidative status in high fat-fed C57BL/6N mice was investigated. The animals were randomly divided and fed with a normal control diet (NC group), a high fat diet (HF group), or a high fat diet supplemented with microbial gum (HFG group) for 7 weeks. At the end of the experimental period, the HF mice exhibited a marked increase in body weight, plasma and hepatic total cholesterol levels, and lipid peroxidation rate. Reduced activities of hepatic lipogenic and antioxidant enzymes were also observed in the HF group relative to that of the NC group. In contrast, feeding microbial gum counteracted the high fat diet-induced body weight gain, hypercholesterolemia, and oxidative stress by regulating antioxidant and lipogenic enzyme activities. These findings illustrate that microbial gum possess cholesterol-lowering action and antioxidant status-improving ability and may be useful for preventing and treating high fat diet-induced obesity and possibly reduce the risk of obesity-related diseases.  相似文献   

10.
Free feeding (FF) with a high fat diet (HFD) causes excessive body weight gain, whereas restricted feeding (RF) with a HFD attenuates body weight gain. The effects of timing of feeding with a HFD (day vs. night) and feeding duration on energy homeostasis have not yet been investigated. In this study, we fed mice a HFD or a normal diet (ND) twice a day, during their active and inactive periods, on a schedule. The amount of food was regulated by feeding duration (2, 4 or 8?h). First, we investigated the effects of 4-h RF during active–inactive periods (ND–ND, HFD–HFD, ND–HFD or HFD–ND). Among all the 4-h RF groups, mice consumed almost the same amount of calories as those in the FF[ND] group, even those fed a HFD. Body weight and visceral fat in these three groups were lower than that in the FF[HFD] group. Second, we investigated the effects of RF duration. Body weight and visceral fat were higher in the 8-h groups than in the 4-h groups. Body weight and visceral fat were higher in the 2-h groups than in the 4-h groups even though the 2-h groups had less food. Third, we investigated the effects of eating a HFD during the inactive period, when RF duration was extended (2, 6 or 12?h). Mice were fed with a HFD during the inactive period for 2?h and fed with a ND during the active period for 2, 6 or 12?h. Body weight and visceral fat in these mice were comparable to those in the FF[ND] mice. The results of our first set of experiments suggest that 4-h RF was an adequate feeding duration to control the effect of a HFD on obesity. The results of our second set of experiments suggest 2-h RF (such as speed-eating) and 8-h RF, representative of eating disorders, are unhealthy feeding patterns related to obesity. The results of our third set of experiments suggest that eating a HFD for a short period during the night does not affect body weight and visceral fat. Taken together, these results indicate that consideration to feeding with a HFD during the inactive period and restricting eating habits relieve the risks of body weight gain and visceral fat accumulation.  相似文献   

11.
Insulin resistance plays a central role in type 2 diabetes and obesity, which develop as a consequence of genetic and environmental factors. Dietary changes including high fat diet (HFD) feeding promotes insulin resistance in rodent models which present useful systems for studying interactions between genetic background and environmental influences contributing to disease susceptibility and progression. We applied a combination of classical physiological, biochemical and hormonal studies and plasma (1)H NMR spectroscopy-based metabonomics to characterize the phenotypic and metabotypic consequences of HFD (40%) feeding in inbred mouse strains (C57BL/6, 129S6, BALB/c, DBA/2, C3H) frequently used in genetic studies. We showed the wide range of phenotypic and metabonomic adaptations to HFD across the five strains and the increased nutrigenomic predisposition of 129S6 and C57BL/6 to insulin resistance and obesity relative to the other strains. In contrast mice of the BALB/c and DBA/2 strains showed relative resistance to HFD-induced glucose intolerance and obesity. Hierarchical metabonomic clustering derived from (1)H NMR spectral data of the strains provided a phylometabonomic classification of strain-specific metabolic features and differential responses to HFD which closely match SNP-based phylogenetic relationships between strains. Our results support the concept of genomic clustering of functionally related genes and provide important information for defining biological markers predicting spontaneous susceptibility to insulin resistance and pathological adaptations to fat feeding.  相似文献   

12.
Dissecting the genetics of complex traits such as obesity allows the identification of causal genes for disease. Here, we show that the BALB/c mouse strain carries genetic variants that confer resistance to obesity induced by leptin-deficiency or a high-fat diet (HFD). We set out to identify the physiological and genetic bases underlying this phenotype. When compared with C57BL6/J ob/ob mice (B6), BALB/c ob/ob mice exhibited decreased food intake, increased thermogenic capacity, and improved fat catabolism, each of which can potentially modify obesity. Interestingly, analysis of F1 ob/ob (progeny of B6 ob/+ × BALB/c ob+) mice revealed that obesity resistance in BALB/c ob/ob mice principally relied upon improved fat mobilization. This was mechanistically explained by increased adipose triglyceride lipase (ATGL) content in adipocytes, along with increased lipolysis and fatty acid oxidation. We conducted a genome-wide scan and defined a quantitative trait locus (QTL) on chromosome 2. BALB/c alleles on chromosome 2 not only associated with the obesity resistance phenotype but also supported increased ATGL content in adipose tissue. In summary, our study provides evidence that leptin-independent control of adipocyte lipolysis rates directly modifies the balance of macronutrient handling and is sufficient to regulate fat mass in the absence of alterations in food intake and energy expenditure.-Marcelin, G., S-M. Liu, X. Li, G. J. Schwartz, and S. Chua.  相似文献   

13.
We tested whether long-term administration of voglibose (VO) prevents diet induced obesity in addition to hypoglycemic effects in high fat fed mice and further investigated the underlying mechanisms by which voglibose exerts its weight lowering effect. Male C57BL/6 mice were fed ad libitum for 12 weeks with the control diet (CTL), high-fat diet (HFD) or the HFD with VO supplementations. Blood lipid profile, plasma leptin levels and hepatic triglyceride content, as well as expressions of genes involved in appetite and mitochondrial function were examined. The results showed that VO significantly reduced body weight, fat mass and energy intakes in high fat fed mice. VO showed improved metabolic profiles including blood glucose, triglyceride and free fatty acid. Elevated levels of plasma leptin in HFD were significantly reduced with the VO, furthermore, VO modulated the hypothalamic expressions of leptin receptors and appetite related genes. VO showed the upregulated expressions of PGC-1 in the liver and epididymal adipose tissue. In conclusion, VO may exert antiobesity properties through reductions in energy intake and improvement in mitochondrial function, indicating that VO has potential therapeutic use in patients with obesity, type 2 diabetes, and related complications.  相似文献   

14.
AimsThe present study evaluated a comparative and combined hepatoprotective effect of atorvastatin (AS) and ferulic acid (F) against high fat diet (HFD) induced oxidative stress in terms of hyperlipidemia, anti-oxidative status, lipid peroxidation and inflammation.Main methodsMale Swiss albino mice were given a diet containing high fat (H) (23.9% wt/wt), supplemented with AS (10 mg/kg) or F (100 mg/kg) and both (10 and 100 mg/kg) for 8 weeks. The control mice (C) were fed with normal diet.Key findingsThe H mice exhibited increased body weight; hyperlipidemia; serum level of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6); hepatic lipid profile; lipid accumulation; reactive oxygen species (ROS) of hepatocytes, lipid peroxidation and liver antioxidant capacity was decreased. Immunofluorescent and Western blot assay revealed activation of nuclear factor kappa B (NF-κB) signaling pathway. The addition of F or AS and both in the diet significantly counteracted HFD induced body weight gain; hyperlipidemia; TNF-α, IL-6; hepatic lipid profile; fatty infiltration; NF-κB signaling pathway; ROS; lipid peroxidation and moreover elevated levels of hepatic antioxidant enzymes activity were observed.SignificanceSimultaneous treatment with AS, F and their combination protected against HFD induced weight gain and oxidative stress. The protection may be attributed to the hypolipidemic and free radical scavenging activity of AS or F and their combination. This study illustrates that AS and F have relatively similar hypolipidemic, antioxidative, anti-inflammatory actions and the AS + F combination along with HFD has shown outstanding effects as compared to other treated groups.  相似文献   

15.
In this study, we investigated the metabolic phenotype of PKCtheta knockout mice (C57BL/6J) on chow diet and high-fat diet (HFD). The knockout (KO) mice are normal in growth and reproduction. On the chow diet, body weight and food intake were not changed in the KO mice; however, body fat content was increased with a corresponding decrease in body lean mass. Energy expenditure and spontaneous physical activity were decreased in the KO mice. On HFD, energy expenditure and physical activity remained low in the KO mice. The body weight and fat content were increased rapidly in the KO mice. At 8 wk on HFD, severe insulin resistance was detected in the KO mice with hyperinsulinemic euglycemic clamp and insulin tolerance test. Insulin action in both hepatic and peripheral tissues was reduced in the KO mice. Plamsa free fatty acid was increased, and expression of adiponectin in the adipose tissue was decreased, in the KO mice on HFD. This study suggests that loss of PKCtheta reduces energy expenditure and increases the risk of dietary obesity and insulin resistance in mice.  相似文献   

16.
This study investigated the protective effects of two polysaccharides (CPA-1 and CPB-2) from Cordyceps cicadae against high fructose/high fat diet (HF/HFD) induced obesity and metabolic disorders in rats. Rats were either fed with normal diet or HF/HFD and treated with CPA-1 and CPB-2 (100 and 300 mg/kg) for 11 weeks. Administration of CPA-1 and CPB-2 significantly and dose dependently reduced body and liver weight, insulin and glucose tolerance, serum insulin and glucose levels. Furthermore, serum and hepatic lipid profiles, liver function enzymes and proinflammatory cytokines (TNF-α, IL-1β and IL-6) were markedly reduced. Additionally, CPA-1 and CPB-2 treatment alleviated hepatic oxidative stress by reducing lipid peroxidation level (MDA) and upregulating glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) activities as well as ameliorated histological alterations through the reduction of hepatic lipid accumulation. These results suggested that the polysaccharides from C. cicadae showed protective effects against HF/HFD induced metabolic disturbances and may be considered as a dietary supplement for treating obesity.  相似文献   

17.
本研究旨在探索白藜芦醇(RSV)对不同程度肥胖小鼠脂肪氧化应激状态和血脂的影响。高脂日粮(HFD)处理12周的昆明小鼠分为3类:肥胖抵抗(DIO-R)、中体重(Med)和肥胖(DIO),分别饲喂HFD、HFD+0.3 g/kg RSV和HFD+0.6 g/kg RSV日粮18周,并以正常日粮小鼠为对照。结果表明,0.6 g/kg RSV处理可显著降低DIO小鼠体重、腹脂率,显著提高脂肪组织抗氧化能力,改善血脂。0.3 g/kg RSV处理对DIO-R小鼠也有类似趋势,但0.6 g/kg RSV处理引起DIO-R小鼠脂肪组织抗氧化能力下降、血脂紊乱。总之,RSV在不同程度肥胖小鼠具有剂量特异性的氧化应激调控作用。  相似文献   

18.
Obesity and metabolic syndrome are associated with glomerulosclerosis and proteinuria, but the mechanisms are not known. The purpose of this study was to determine if there is altered renal lipid metabolism and increased expression of sterol regulatory element-binding proteins (SREBPs) in a model of diet-induced obesity. C57BL/6J mice that were fed a high fat, 60 kcal % saturated (lard) fat diet (HFD) developed obesity, hyperglycemia, and hyperinsulinemia compared with those that were fed a low fat, 10 kcal % fat diet (LFD). In contrast, A/J mice were resistant when fed the same diet. C57BL/6J mice with HFD exhibited significantly higher levels of renal SREBP-1 and SREBP-2 expression than those mice with LFD, whereas in A/J mice there were no changes with the same treatment. The increases in SREBP-1 and SREBP-2 expression in C57BL/6J mice resulted in renal accumulation of triglyceride and cholesterol. There were also significant increases in the renal expression of plasminogen activator inhibitor-1 (PAI-1), vascular endothelial growth factor (VEGF), type IV collagen, and fibronectin, resulting in glomerulosclerosis and proteinuria. To determine a role for SREBPs per se in modulating renal lipid metabolism and glomerulosclerosis we performed studies in SREBP-1c(-/-) mice. In contrast to control mice, in the SREBP-1c(-/-) mice with HFD the accumulation of triglyceride was prevented, as well as the increases in PAI-1, VEGF, type IV collagen, and fibronectin expression. Our results therefore suggest that diet-induced obesity causes increased renal lipid accumulation and glomerulosclerosis in C57BL/6J mice via an SREBP-1c-dependent pathway.  相似文献   

19.
The NLR family pyrin domain containing 3 (NLRP3) inflammasome plays a critical role in insulin resistance and the pathogenesis of type 2 diabetes. Red raspberry (RB) contains high amounts of dietary fibers and polyphenolic compounds, which are known for their anti-oxidative and anti-inflammatory effects. This study evaluated the preventive effects of RB supplementation on the NLRP3 inflammasome activation and associated metabolic abnormalities induced by high fat diet (HFD). Wild-type male mice (six weeks old) were randomized into 4 groups receiving a control or typical western HFD supplemented with or without 5% freeze-dried RB for 12 weeks, when mice were sacrificed for tissue collection. HFD feeding substantially increased body weight, which was alleviated by RB supplementation towards the end of the feeding trial. Dietary RB restored the baseline blood glucose level, ameliorating glucose intolerance and insulin resistance, which were aggravated by HFD. Additionally, HFD reduced O2 expenditure and CO2 production, which were ameliorated by RB consumption. The liver is the key site for energy metabolism and a key peripheral tissue responsive to insulin. RB supplementation reduced hepatic lipid accumulation in HFD mice. In agreement, RB consumption suppressed hepatic NLRP3 inflammasome activation and reduced interleukin (IL)-1β and IL-18 production in HFD mice, accompanied with normalized mitochondriogenesis. These results suggest that RB consumption improves insulin resistance and metabolic dysfunction in diet-induced obesity, which is concomitant with suppression of NLRP3 inflammasome elicited by HFD. Thus, dietary RB intake is a promising strategy for ameliorating diet-induced metabolic abnormalities.  相似文献   

20.
Oxidative stress due to enhanced production or reduced scavenging of reactive oxygen species (ROS) has been associated with diet (dyslipidemia) induced obesity and insulin resistance (IR). The present study was undertaken to assess the role of p47phox in IR using wild type (WT) and p47phox?/? mice, fed with different diets (HFD, LFD or Chow). Augmented body weight, glucose intolerance and reduced insulin sensitivity were observed in p47phox?/? mice fed with 45% HFD and 10% LFD. Further, body fat and circulating lipids were increased significantly with 5 weeks LFD feeding in p47phox?/? mice, while parameters of energy homeostasis were reduced as compared with WT mice. LFD fed knockout (KO) mice showed an enhanced hepatic glycogenolysis, and reduced insulin signalling in liver and adipose tissue, while skeletal muscle tissue remained unaffected. A significant increase in hepatic lipids, adiposity, as well as expression of genes regulating lipid synthesis, breakdown and efflux were observed in LFD fed p47phox?/? mice after 5 weeks. On the other hand, mice lacking p47phox demonstrated altered glucose tolerance and tissue insulin sensitivity after 5 weeks chow feeding, while changes in body weight, respiratory exchange ratio (RER) and heat production are non-significant. Our data demonstrate that lack of p47phox is sufficient to induce IR through altered glucose and lipid utilization by the liver and adipose tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号