首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With a cell concentration of 125 g dry biomass 1–1 and a dilution rate of 0.1 h–1,Propionibacterium acidipropionici produces 30 g propionic acid 1–1 from sugar with a productivity of 3 g 1–1 h–1. The yield of propionic acid is approx. 0.36–0.45 g propionic acid g–1 sucrose and is independent of the dilution rate and cell concentration. Acetic acid is an unwanted by-product in the production of propionic acid. The concentration of acetic acid only increases slightly when the cell concentration is increased. A two-stage fermentation process was developed for the conversion of sugar or molasses of various types to propionic acid and vitamin B12. By fermentation of blackstrap molasses (from sugar beet and sugar cane) in the first fermentation stage 17.7 g propionic acid 1–1 with a yield of 0.5 g propionic acid g–1 carbohydrate was produced with a dilution rate of 0.25 h–1. In the second stage 49 mg vitamin B12 1–1 was produced at a dilution rate of 0.03 h–1.  相似文献   

2.
Nisin production in batch culture and fed-batch cultures (sucrose feeding rates were 6, 7, 8, and 10 g l–1 h–1, respectively) by Lactococcus lactis subsp. lactis ATCC 11454 was investigated. Nisin production showed primary metabolite kinetics, and could be improved apparently by altering the feeding strategy. The nisin titer reached its maximum, 4,185 IU ml–1, by constant addition of sucrose at a feeding rate of 7 g l–1 h–1; an increase in 58% over that of the batch culture (2,658 IU ml–1). Nisin biosynthesis was affected strongly by the residual sucrose concentration during the feeding. Finally, a mathematical model was developed to simulate the cell growth, sucrose consumption, lactic acid production and nisin production. The model was able to describe the fermentation process in all cases.  相似文献   

3.
A high-density-cell fermentation process for production of an exracellular alginat lyase from Klebseilla pneumoniae on a defined medium has been developed. The process employs a strategy using two carbon sources. One low-molecular-mass, low-viscosity carbon source (sucrose) with high water solubililty is used as the main carbons source for growth, while the high-molecular-mass and viscoous alginate in low concentration is used as an inducer for enzyme synthesis. The repression of algiante lyase production by sucrose and the growth inhibition that we observed at increased levels of ammonia were circumvented by a computer-assisted fed-batch addition of the carbon sources (succrose and alginate) and by supplying nitrogen source as ammonia in the pH control. No enzyme production was observed when dissolved oxygen limited growth at an oxygen uptake rate of 40%–50% of the maximum uptake rate. An optimal composition of the feeding solution (12.5 g alginate and 587.5 g sucrose 1–1) was found both for the maximum final concentration of enzyme (1330 U 1–1) and for the maximum volumetric rate of enzyme production (67 U 1–1 h–1). The enzyme production dependes of the growth rate in the linear growth phase, giving a maximum enzyme concentration at the highest growth rate tested. The final enzyme concentration shows a fiveflod increase compare with previously reproted daata where alginate was used as a carbon source. In addition, the ratio of alginate lyase by a factor of apporximately 15. A doubling in extracellular specific activity of the enzyme was observed, a property of significant interest, especially for purification of the enzyme. On the othr hand, the final dry cell weight concentration of the bacteria also increased by a factor of 15–20 thus giving a relatively lower specific productivity of 0.4 U (g cell dry weight)–1 h–1.  相似文献   

4.
Summary A high performance fermentation process for the continuous production of citric acid from sugarcane molasses by using the combination of submerged calcium alginate-immobilized and surface-stabilized cultures of Aspergillus niger KCU 520 in a continuous flow horizontal bioreactor is described. The citric acid productivity was dependent on the dilution rate with an optimum value of 0.015/h. Presaturation of fermentation medium with sterile air, in addition to surface aeration, before feeding into the bioreactor enhanced the citric acid productivity. The highest productivity, citric acid product concentration and yield obtained were 1.7 kg M–3h–1, 110kg M–3 and 91% respectively. The cultures were continuously used for 30 days without any apparent loss in citric acid productivity.  相似文献   

5.
Crude rapeseed oil and post-refining fatty acids were used as substrates for oxalic acid production by a mutant of Aspergillus niger. Both the final concentration and the yield of the product were highest at pH 4 to 5. With a medium containing 50 g lipids l–1, production reached a maximum of 68 g oxalic acid l–1 after 7 d. A high yield of the product (up to 1.4 g oxalic acid g–1 lipids consumed) was achieved with oil and fatty acids combined.  相似文献   

6.
A cell-retention fermenter was used for the pilot-scale production of kojic acid using an improved strain of Aspergillus oryzae in repeated-batch fermentations. Among the various carbon and nitrogen sources used, sucrose and yeast extract promoted pellet morphology of fungi and higher kojic acid production. Repeated-batch culture using a medium replacement ratio of 75% gave a productivity of 5.3 g L–1 day–1 after 11.5 days of cultivation. While batch culture in shake-flasks resulted in a productivity of 5.1 g L–1 day–1, a productivity of 5 g L–1 day–1 was obtained in a pilot-scale fermenter. By converting the batch culture into repeated batches, the non-productive downtime of cleaning, filling and sterilizing the fermenter between each batch were eliminated, thereby increasing the kojic acid productivity.  相似文献   

7.
Callus cultures of Solanum mauritianum Scop. were initiated from green berry explants on a hormone-free Murashige and Skoog (1962) medium excluding glycine, and containing 0.1 g L–1 myo-inositol and 3% sucrose. Such cultures contained 10.08±0.59 g g–1 DW of solasodine, which is equivalent to that in the leaves of mature S. mauritianum plants, but far less than that extracted from the green berries (185 g g–1 DW). In vitro solasodine productivity could be increased by reducing the strength of the medium by half, substituting 3% glucose for 3% sucrose as carbon source, or by the addition of certain combinations of BA and NAA. Phosphate limitation and alterations in the carbon: nitrogen ratio were not able to increase solasodine productivity. Suspension cultures of S. mauritianum were initiated and maintained in a Murashige and Skoog (1962) medium with the RT vitamins of Khanna and Staba (1968), 0.1 g L–1 myo-inositol, 3% sucrose and 1 mg L–1 2,4-D. No solasodine was detectable in these cultures, or slight modifications thereof.Abbreviations BA benzyladenine - NAA naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog's (1962) medium  相似文献   

8.
Ahn SJ  Yoo JH  Lee HC  Kim SY  Noh BS  Kim JH  Lee JK 《Biotechnology letters》2003,25(14):1179-1183
Mutagenesis of Erwinia rhapontici was performed to enhance the production of isomaltulose from sucrose. A mutant strain, BN 68089, was obtained through a screening process involving automated and miniaturized cultivation in Bioscreen C. This high-throughput, miniaturized screening system was optimized to identify the mutant strain, which had a conversion yield (90%) and productivity (194 g l–1 h–1). The BN 68089 mutant cells were immobilized in sodium alginate and when operated in a packed bed reactor gave a yield of 89% and a productivity of 144 g l–1 h–1 of at 30 °C, the optimal temperature. Immobilized BN 68089 cells exhibited 8% and 15% higher yield and productivity, respectively, than those of the wild-type strain.  相似文献   

9.
Aspergillus niger is able to produce a quite high concentration of oxalic acid using sucrose as carbon and energy source. Operating at pH higher than 6 and an enriched N and P medium is necessary in order to conduct the fermentation towards oxalic acid production. A pH?shift technique, operating at acid pH?in the first two days and then setting pH?to 6, allowed the productivity to slightly increase in shaking flasks cultures up to 3.0?kg/m3?·?d, with a final oxalic acid concentration of 29?kg/m3. When operating at more controlled conditions, in a stirred tank, both productivity and oxalic acid concentration were improved (4.1?kg/m3?·?d and 33.8?kg/m3, respectively). However the main drawback of this fermentation is the low yield attained (about 0.3?kg oxalic acid/kg sucrose) because most of glucose, resulting from the hydrolysis of sucrose by the extracellular enzymes secreted at the beginning of the fermentation, is very quickly oxidised to gluconic acid, a process which is favoured at a pH?close to 6. Milk whey was proved to be a very good substrate as it allows oxalic acid to be produced with a similar productivity (2.5?kg/m3?·?d in shaking flasks) giving excellent yields of almost 0.6?kg oxalic acid/kg lactose.  相似文献   

10.
Invertase was immobilized via its carbohydrate moiety. The immobilized enzyme has a specific activity of 5500 IU g–1, with 45% activity yield on immobilization. In a packed bed reactor, 90% 2.5 M sucrose was converted at a flow rate of 4 bed volumes h–1. The obtained specific productivity at 40 °C of 3 kg l–1 h–1 is the best one so far. Long-term stability was 290 days in 2.5 M sucrose at 40 °C and at a flow rate of 3 bed volumes h–1.  相似文献   

11.
The performance of a continuous bioreactor containing Clostridium beijerinckii BA101 adsorbed onto clay brick was examined for the fermentation of acetone, butanol, and ethanol (ABE). Dilution rates from 0.3 to 2.5 h–1 were investigated with the highest solvent productivity of 15.8 g l–1 h–1 being obtained at 2.0 h–1. The solvent yield at this dilution rate was found to be 0.38 g g–1 and total solvent concentration was 7.9 g l–1. The solvent yield was maximum at 0.45 at a dilution rate of 0.3 h–1. The maximum solvent productivity obtained was found to be 2.5 times greater than most other immobilized continuous and cell recycle systems previously reported for ABE fermentation. A higher dilution rate (above 2.0 h–1) resulted in acid production rather than solvent production. This reactor was found to be stable for over 550 h. Scanning electron micrographs (SEM) demonstrated that a large amount of C. beijerinckii cells were adsorbed onto the brick support.  相似文献   

12.
Summary Batch and continuous two-stage cultures have been conducted in order to determine the effect of yeast extract (YE) on the homolactic fermentation of whey permeate byLactobacillus helveticus. Supplementation with YE had a significant effet on lactic acid concentration, volumetric productivity, and substrate conversion, but not on lactic acid yield. Volumetric productivity in the first stage increased from 2 to 9 g l–1 per hour by increasing the YE concentration from 1.5 to 25 g l–1 At the same time conversion improved from 22% to 93% at a dilution rate of 0.2 h–1. The second stage demonstrated the effect of YE at a lower dilution rate (0.14 h–1. A high system conversion (97%) and a high final lactic acid concentration (40 g l–1) were achieved with 10 g l–1 YE.  相似文献   

13.
Summary Eicosapentaenoic acid (EPA) volumetric productivity from an outdoor chemostat culture ofPhaeodactylum tricornutum UTEX 640 in a 50-l tubular photobioreactor varies with dilution rate, reaching a maximum of 47.8 mg l–1 d–1 at D=0.36 d–1. Continuous culture at high dilution rates' is proposed as the most adequate operating mode to maximize polyunsaturated fatty acid production.  相似文献   

14.
The kinetics of continuous l-sorbose fermentation using Acetobacter suboxydans with and without cell recycle (100%) were investigated at dilution rates (D) of 0.05, 0.10, 0.15 and 0.3 h–1. The biomass and sorbose concentrations for continuous fermentation without recycle increased as the dilution rate was increased from 0.05 to 0.10 h–1. A maximum biomass concentration of 8.44 g l–1 and sorbose concentration of 176.90 g l–1 were obtained at D=0.10 h–1. The specific rate of sorbose production and volumetric sorbose productivity at this dilution rate were 2.09 g g–1 h–1 and 17.69 g l–1 h–1. However, on further increasing the dilution rate to 0.3 h–1, both biomass and sorbose concentrations decreased to 2.93 and 73.20 g l–1 respectively, mainly due to washout of the reactor contents. However, the specific rate of sorbose formation and volumetric sorbose productivity at this dilution rate increased to 7.49 g g–1 h–1 and 21.96 g l–1 h–1 respectively. Continuous fermentation with 100% cell recycle served to further enhance the concentration of biomass and sorbose to 28.27 and 184.32 g l–1 respectively (in the reactor at a dilution rate of 0.05 h–1). Even though, there was a decline in the biomass and sorbose concentrations to 6.8 and 83.40 g l–1 at a dilution rate of 0.3 h–1, the specific rates of sorbose formation and volumetric sorbose productivity increased to 3.67 g g–1h–1 and 25.02 g l–1 h–1.  相似文献   

15.
Three Aspergillus nigerstrains were grown in submerged and solid state fermentation systems with sucrose at 100 g l–1. Average measurements of all strains, liquid vs solid were: final biomass (g l–1), 11 ± 0.3 vs 34 ± 5; maximal enzyme titres (U l–1) 1180 ± 138 vs 3663 ± 732; enzyme productivity (U l–1h–1) 20 ± 2 vs 87 ± 33 and enzyme yields (U/gX) 128 ± 24 vs 138 ± 72. Hence, better productivity in solid-state was due to a better mould growth.  相似文献   

16.
Lactose of sweet whey permeate was converted into sodium lactate byLactobacillus helveticus. To increase the, productivity of the lactic acid fermentation and to reduce the amounts of effluents, the bioreactor was coupled with an ultrafiltration module and an electrodialysis unit. Without the electrodialyzer, with total cell recycling and at a dilution rate of 0.88 h–1, a cellular concentration of 64 gl–1 and a productivity of 22 gl–1 h–1 were obtained. When the electrodialysis unit is coupled, the outlet concentration of lactate was stabilized at 85±5 gl–1.  相似文献   

17.
The production of 2,3-butanediol by fermentation of high test molasses   总被引:6,自引:0,他引:6  
Summary Klebsiella oxytoca fermented 199 g·l–1 high test or invert molasses using batch fermentation with substrate shift to produce 95.2–98.6 g 2,3-butanediol·l–1 and 2,4–4.3 g acetoin·l–1 with a diol yield of 96–100% of the theoretical value and a diol productivity of 1.0–1.1 g·l–1·h–1. Fermentation was performed numerous times with molasses in repeated batch culture with cell recovery. Such repeated batch fermentation, in addition to a high product yield, also showed a very high product concentration. For example, 118 g 2,3-butanediol·l–1 and 2.3 g acetoin·l–1 were produced from 280 g·l–1 of high test molasses. The diol productivity in this fermentation amounted to 2.4 g·l–1·h–1 and can undoubtedly be further increased by increasing the cell concentration. Because the Klebsiella cultures ferment 2,3-butanediol at an extremely high rate once the sugar has been consumed, the culture was inhibited completely by the addition of 15 g ethanol·l–1 and switching off aeration. Offprint requests to: A. S. Afschar  相似文献   

18.
Summary Copolymers of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) were produced in a continuous culture ofAlcaligenes eutrophus with 17.5 gl –1 of fructose and 2.5gl –1 of pentanoic acid in the feed. The P(3HB-co-3HV) productivity was maximal at a dilution rate of 0.17h–1 and yielded 0.31gl –1h–1 under an ammonium-limited condition. The 3HV content in copolymers increased from 11 to 79 mol% as the dilution rate of cells was increased from 0.06 to 0.32h–1.  相似文献   

19.
Lactobacillus delbrueckii subsp.bulgaricus ATCC 11842 was grown in a chemostat at 45°C and pH 5.5 using glucose as the carbon source, with the aim of optimizing biomass production. Cells were grown in a complex medium under nitrogen. At dilution rates lower than 0.18h–1, it was difficult to keep steady-state conditions and pleomorphic forms were observed. The addition of 30mM Ca2+ and Mn2+ reverted the cells to normal shape: 30mM Mg2+ had no effect. Increasing the dilution rate resulted in normal morphology without the addition of any cations. Under these conditions, a maximum productivity of 1.24g dry biomass 1–1 h–1 was obtained. The maximum growth yield, corrected for maintenance, was 30g biomass mol–1 glucose and the maintenance energy was 0.26g glucose g–1 biomass h–1. Lactate was the main fermentation product at all glucose concentrations used in the fed medium. Cells grown at high dilution rates had normal technological properties (acid production and proteolysis) when tested in milk.  相似文献   

20.
The marine microalga Chroomonas sp. isolated from Venezuela was grown in semicontinuous culture in order to study the effect of renewal rate and nutrient concentration on alloxanthin, chlorophyll a, carotenoid, carbohydrate, exopolysaccharide, protein and cell productivity. Maximal cell productivity of 8.43 ± 1.8 and 8.81 ± 2.3 × 109 cell l–1 day–1 were achieved with renewal rates of 30 and 40%. Maximal protein and chlorophyll productivity of 64.64 ± 2.3 and 2.72 ± 0.3 mg l–1 day–1 were obtained with renewal rate of 20 and 30%. Biochemical composition of Chroomonas sp. was influenced by renewal rate. Nutrient concentration seems not to affect cell, protein, chlorophyll and carotenoid productivity. However, carbohydrate and exopolysaccharide productivity of 7.56 ± 0.4 and 9.57 ± 1.2 mg l–1 day–1 were increased at 12 mM NaNO3(P < 0.05). Also, alloxanthin and chlorophyll a production analysed by HPLC, were higher between 8 and 12 mM NaNO3 at a renewal rate of 30%. Results demonstrated that a renewal rate of 30% and nutrient concentration at 8 mM NaNO3 optimize the cell, protein, carbohydrate, chlorophyll a, and exopolysaccharide productivity in semicontinuous cultures of Chroomonas. This microalga, as biological source of commercially valuable compounds, shows high capacity for changing its productivity and biochemical composition in semicontinuous system on the basis of nutrient concentration and the renewal rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号