首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inhibition of Na,K-ATPase causes opacification of the lens through abnormal increases in sodium and calcium levels, disturbed osmotic equilibrium, activation of proteolytic enzymes and cell damage. We previously identified Translationally Controlled Tumor Protein (TCTP) as a cytoplasmic repressor of Na,K-ATPase and confirmed that systemic hypertension is induced in transgenic mice over-expressing TCTP through inhibition of vascular Na,K-ATPase and increased intracellular calcium mobilization. In the current study, we confirmed the role of TCTP in causing intracellular calcium mobilization by inhibiting Na,K-ATPase in a human lens epithelial cell line and further showed that some of the TCTP-transgenic mice develop cataracts with an incidence rate of 7.38% compared to 1.47% in controls. We demonstrated that TCTP acts as a cataractogenic factor through the repression of Na,K-ATPase activity and calcium mobilization in lens epithelial cells.  相似文献   

3.
We reported previously that translationally controlled tumor protein (TCTP) is a cytoplasmic repressor of Na,K-ATPase in HeLa cells. In the current study, we showed that TCTP overexpression using adenovirus as vehicle, induced partial inhibition of Na,K-ATPase; phosphorylation of EGFR tyrosine residues 845, 992, 1068, and 1148; activation of Ras/Raf/ERK pathway; activation of PI3K/Akt pathway; and phosphorylation of PLC-γ in HeLa cells. Specific inhibition of PI3K/Akt pathway in contrast to the inhibition of ERK, significantly decreased TCTP overexpression-induced survival signal. Inhibition of PLC-γ pathway significantly decreased TCTP overexpression-induced cell migration but inhibition of ERK had less effect. These results suggest that TCTP plays a key physiological role in cell survival through Akt pathway and migration through PLC-γ pathway.  相似文献   

4.
FXYD2 is a regulatory peptide associated with the α-subunit of the kidney Na,K-ATPase. FXYD2 can be phosphorylated by PKA, and its phosphorylation activates Na,K-ATPase. Here we show that FXYD2 is phosphorylated by PKC (PKC-FXYD2-P), by PKA (PKA-FXYD2-P) or by PKA and PKC simultaneously (FXYD2-P2) modulating both the erythrocyte Na,K-ATPase and the plasma membrane Ca2+-ATPase (PMCA). In erythrocyte ghosts, the addition of PKA-FXYD2-P activated Na,K-ATPase by 80%, while non-phosphorylated FXYD2 (np) activated only 55%. The addition of np FXYD2 did not affect PMCA basal activity, but FXYD2-P2 increased the basal PMCA activity by up to 200%. Calmodulin-activated PMCA activity was increased by np FXYD2 (3-fold) or FXYD2-P2 (2.5-fold). However, PKC-FXYD2-P increased PMCA activity only by 50%. In contrast, when PMCA was treated with PKA-FXYD2-P, the ATPase activity was inhibited by 50%. The effect of all forms of FXYD2-P on calcium uptake from PMCA resembled the pattern observed in ATP hydrolysis. Our results suggest that the FXYD2 anchoring site could be conserved among the P-ATPase family permitting cross regulation. The effects of FXYD2 on calcium uptake and calcium-stimulated ATP hydrolysis suggest a novel role for FXYD2 on PMCA.  相似文献   

5.
The medullary thick ascending limb (MTAL) of the kidney displays structural changes during long term diabetes. After twelve weeks of diabetes, there is controversy over the changes in Na,K-ATPase activity. To observe the long-term changes, we studied MTAL Na,K-ATPase activity and protein expression in diabetic animals 6 (6W) and 12 weeks (12W) after induction of diabetes with streptozotocin. Three groups were studied, one control group, one group 6W after, and one group 12W after induction of diabetes. Membrane fractions from the inner strip of the outer medulla representing MTAL were isolated. Na,K-ATPase activity and western blottings of alpha1- and beta1-subunits were carried out. 6W diabetes resulted in an increase, and 12W in a decrease in the MTAL Na,K-ATPase activity versus the control group (respectively 63.3 +/- 21.2; 7.5 +/- 2.4 and 31.6 +/- 11.4; micromol Pi/mg prot/hr +/- SEM). The Na,K-ATPase subunit expression was increased at 6W, and decreased after 12W, resulting in amounts below control values for both alpha1- and beta1-subunits. Our results confirm a diabetes-induced biphasic time-dependent alteration MTAL Na,K-ATPase activity, supported by similar changes in alpha1 and beta1 Na,K-ATPase subunits-expression.  相似文献   

6.
Although it was shown earlier that phosphorylation of Na,K-ATPase by cAMP-dependent protein kinase (PKA) occurs in intact cells, the purified enzyme in vitro is phosphorylated by PKA only after treatment by detergent. This is accompanied by an unfortunate side effect of the detergent that results in complete loss of Na,K-ATPase activity. To reveal the effect of Na,K-ATPase phosphorylation by PKA on the enzyme activity in vitro, the effects of different detergents and ligands on the stoichiometry of the phosphorylation and activity of Na,K-ATPase from duck salt glands (11-isoenzyme) were comparatively studied. Chaps was shown to cause the least inhibition of the enzyme. In the presence of 0.4% Chaps at 1 : 10 protein/detergent ratio in medium containing 100 mM KCl and 0.3 mM ATP, PKA phosphorylates serine residue(s) of the Na,K-ATPase with stoichiometry 0.6 mol Pi/mol of -subunit. Phosphorylation of Na,K-ATPase by PKA in the presence of the detergent inhibits the Na,K-ATPase. A correlation was found between the inclusion of Pi into the -subunit and the loss of activity of the Na,K-ATPase.  相似文献   

7.
Hypercapnia has been shown to impair alveolar fluid reabsorption (AFR) by decreasing Na,K-ATPase activity. Extracellular signal-regulated kinase pathway (ERK) is activated under conditions of cellular stress and has been known to regulate the Na,K-ATPase. Here, we show that hypercapnia leads to ERK activation in a time-dependent manner in alveolar epithelial cells (AEC). Inhibition of ERK by U0126 or siRNA prevented both the hypercapnia-induced Na,K-ATPase endocytosis and impairment of AFR. Moreover, ERK inhibition prevented AMPK activation, a known modulator of hypercapnia-induced Na,K-ATPase endocytosis. Accordingly, these data suggest that hypercapnia-induced Na,K-ATPase endocytosis is dependent on ERK activation in AEC and that ERK plays an important role in hypercapnia-induced impairment of AFR in rat lungs.  相似文献   

8.
In amphibian and mammalian systems, regulation of Na+ transport via the Na,K-ATPase plays an important role in distinct developmental processes such as blastocoele formation and neurulation. In this study, we have followed the Na,K-ATPase activity, the biosynthesis, and the cellular accumulation of catalytic alpha-subunits after fertilization of Xenopus laevis eggs up to neurula formation. Our data show that Na,K-ATPase activity increases significantly between stages 4 and 6 and again between stages 13 and 24. The four-fold rise in Na,K-ATPase activity during blastocoele formation is not mediated by an increased cellular pool of alpha-subunits. On the other hand, a five-fold increase of the biosynthesis rate around midblastula precedes a progressive accumulation up to neurula stage mainly of alpha 1-subunits and to a lesser extent of a second alpha-immunoreactive species. In contrast, newly synthesized glycoproteinic beta 1-subunits of Na,K-ATPase cannot be detected up to late neurula. These data indicate that (1) upregulation of Na,K-ATPase activity during blastocoele and neurula formation are mediated by different regulation mechanisms and (2) alpha- and possibly beta-isoforms are expressed in a developmentally regulated fashion during early Xenopus development.  相似文献   

9.
Our original attempt was to examine whether inhibition of Na/H exchange in proximal tubule would affect the expression of basolateral membrane protein Na,K-ATPase. Three amiloride analogues were tested within the range of 10(-6) M to 10(-4) M in primary cultures of proximal tubule cells. Only ethylisopropyl amiloride (EIPA) dose-dependently downregulated Na,K-ATPase activity in cultured proximal tubule cells. The time course study revealed that EIPA (10(-4) M) significantly decreased Na,K-ATPase alpha- and alpha-mRNA abundance within 4 hr and suppressed Na,K-ATPase alpha- and beta-mRNA levels by 76.3 +/- 4.5% and 85.5 +/- 5.8%, respectively, within 24 hr. The decrease in Na,K-ATPase mRNA was followed by a decrease in Na,K-ATPase activity by 22.5 +/- 10.8% and 48.8 +/- 5.9% within 12 and 24 hr, respectively, which could be reflected by a coordinate decrease in levels of both alpha- and mature beta-protein. The cell viability was not affected until 20 hr of EIPA treatment, when an increase in LDH release and cell detachment was observed. Because EIPA rapidly decreased intracellular pH (pHi) to 6.7 within 2 hr and raising pHi to 6.6 by metabolic acidosis could not elicit changes in Na,K-ATPase activity, EIPA-induced downregulation of Na,K-ATPase should not be mediated through H+. In view of the time course of EIPA effects on Na,K-ATPase subunit mRNA, protein, activity and cell toxicity, the cytotoxic effect is likely resulted from a decrease in Na,K-ATPase activity. Take together, we conclude that EIPA induces downregulation of Na,K-ATPase expression via both pre- and post-translational mechanisms, which confers cytotoxic effects on proximal tubule cells.  相似文献   

10.
Abstract: Diabetic neuropathy is a degenerative complication of diabetes accompanied by an alteration of nerve conduction velocity (NCV) and Na,K-ATPase activity. The present study in rats was designed first to measure diabetes-induced abnormalities in Na,K-ATPase activity, isoenzyme expression, fatty acid content in sciatic nerve membranes, and NCV and second to assess the preventive ability of a fish oil-rich diet (rich in n-3 fatty acids) on these abnormalities. Diabetes was induced by intravenous streptozotocin injection. Diabetic animals (D) and nondiabetic control animals (C) were fed the standard rat chow either without supplementation or supplemented with either fish oil (DM, CM) or olive oil (DO, CO) at a daily dose of 0.5 g/kg by gavage during 8 weeks. Analysis of the fatty acid composition of purified sciatic nerve membranes from diabetic animals showed a decreased incorporation of C16:1(n-7) fatty acids and arachidonic acids. Fish oil supplementation changed the fatty acid content of sciatic nerve membranes, decreasing C18:2(n-6) fatty acids and preventing the decreases of arachidonic acids and C18:1(n-9) fatty acids. Protein expression of Na,K-ATPase α subunits, Na,K-ATPase activity, and ouabain affinity were assayed in purified sciatic nerve membranes from CO, DO, and DM. Na,K-ATPase activity was significantly lower in sciatic nerve membranes of diabetic rats and significantly restored in diabetic animals that received fish oil supplementation. Diabetes induced a specific decrease of α1- and α3-isoform activity and protein expression in sciatic nerve membranes. Fish oil supplementation restored partial activity and expression to varying degrees depending on the isoenzyme. These effects were associated with a significant beneficial effect on NCV. This study indicates that fish oil has beneficial effects on diabetes-induced alterations in sciatic nerve Na,K-ATPase activity and function.  相似文献   

11.
Translationally controlled tumor protein (TCTP) is often designated as a stress-related protein because of its highly regulated expression in stress conditions. Following a thermal shock, TCTP expression is highly upregulated in a variety of cells. However, at present it is not known whether this upregulation has any cell protective function similar to other heat shock proteins. In this study human TCTP (HuTCTP) and a TCTP homolog (SmTCTP) from Schistosoma mansoni were evaluated for heat shock protein-like function and molecular chaperone activity. Our results show that similar to other molecular chaperones, both human and parasite TCTPs can bind to a variety of denatured proteins and protect them from the harmful effects of thermal shock. An important observation was the ability of both HuTCTP and SmTCTP to bind to native protein and protect them from thermal denaturation. Over expression of TCTP in bacterial cells protected them from heat shock-induced death. These findings suggest that TCTP may belong to a novel small molecular weight heat shock protein.  相似文献   

12.
We have observed that, in renal proximal tubular cells, cardiotonic steroids such as ouabain in vitro signal through Na/K-ATPase, which results in inhibition of transepithelial (22)Na(+) transport by redistributing Na/K-ATPase and NHE3. In the present study, we investigate the role of Na/K-ATPase signaling in renal sodium excretion and blood pressure regulation in vivo. In Sprague-Dawley rats, high salt diet activated c-Src and induced redistribution of Na/K-ATPase and NHE3 in renal proximal tubules. In Dahl salt sensitive (S) and resistant (R) rats given high dietary salt, we found different effects on blood pressure but, more interestingly, different effects on renal salt handling. These differences could be explained by different signaling through the proximal tubular Na/K-ATPase. Specifically, in Dahl R rats, high salt diet significantly stimulated phosphorylation of c-Src and ERK1/2, reduced Na/K-ATPase activity and NHE3 activity, and caused redistribution of Na/K-ATPase and NHE3. In contrast, these adaptations were either much less effective or not seen in the Dahl S rats. We also studied the primary culture of renal proximal tubule isolated from Dahl S and R rats fed a low salt diet. In this system, ouabain induced Na/K-ATPase/c-Src signaling and redistribution of Na/K-ATPase and NHE3 in the Dahl R rats, but not in the Dahl S rats. Our data suggested that impairment of Na/K-ATPase signaling and consequent regulation of Na/K-ATPase and NHE3 in renal proximal tubule may contribute to salt-induced hypertension in the Dahl S rat.  相似文献   

13.
Proteomic analysis of neural differentiation of mouse embryonic stem cells   总被引:4,自引:0,他引:4  
Wang D  Gao L 《Proteomics》2005,5(17):4414-4426
Mouse embryonic stem cells (mESCs) can differentiate into different types of cells, and serve as a good model system to study human embryonic stem cells (hESCs). We showed that mESCs differentiated into two types of neurons with different time courses. To determine the global protein expression changes after neural differentiation, we employed a proteomic strategy to analyze the differences between the proteomes of ES cells (E14) and neurons. Using 2-DE plus LC/MS/MS, we have generated proteome reference maps of E14 cells and derived dopaminergic neurons. Around 23 proteins with an increase or decrease in expression or phosphorylation after differentiation have been identified. We confirmed the downregulation of translationally controlled tumor protein (TCTP) and upregulation of alpha-tubulin by Western blotting. We also showed that TCTP was further downregulated in derived motor neurons than in dopaminergic neurons, and its expression level was independent of extracellular Ca(2+) concentration during neural differentiation. Potential roles of TCTP in modulating neural differentiation through binding to Ca(2+), tubulin and Na,K-ATPase, as well as the functional significance of regulation of other proteins such as actin-related protein 3 (Arp3) and Ran GTPase are discussed. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.  相似文献   

14.
The Na+ and K+ dependence of the frontocortical Na,K-ATPase in Alzheimer's disease (AD) was compared with that in human control (Co) and rat AD model. In AD, the relationship between the Na/K ratio and the Na,K-ATPase activity showed noticeable left-shift with three-fold increase in the enzyme affinity for Na+ (K(0.5)=10 and 30 mM in AD and Co, respectively). The Na+ dependence of the enzyme in AD showed two different Hill coefficients (n(H)), 1.1 and 0.3, whereas the Co value of n(H) was higher (1.4). The rat AD model generated by ibotenic acid revealed a Na+ dependence similar to AD. The K+ dependence of the Na,K-ATPase showed no significant difference in AD and Co. Compared with Co, AD produced a shift in the break of the Na,K-ATPase Arrhenius plot, suggesting remarkable alterations in the enzyme lipid environment. Our findings support the hypothesis that dysfunction of the Na,K-ATPase in AD is provoked by altered Na+ dependence of the enzyme. An impairment of the pump functionality might serve as an early mechanism of AD that should be interrupted by selective pharmacological agents.  相似文献   

15.
Our previous finding that the muscle nicotinic acetylcholine receptor (nAChR) and the Na,K-ATPase interact as a regulatory complex to modulate Na,K-ATPase activity suggested that chronic, circulating nicotine may alter this interaction, with long-term changes in the membrane potential. To test this hypothesis, we chronically exposed rats to nicotine delivered orally for 21-31 days. Chronic nicotine produced a steady membrane depolarization of ~3 mV in the diaphragm muscle, which resulted from a net change in electrogenic transport by the Na,K-ATPase α2 and α1 isoforms. Electrogenic transport by the α2 isoform increased (+1.8 mV) while the activity of the α1 isoform decreased (-4.4 mV). Protein expression of Na,K-ATPase α1 or α2 isoforms and the nAChR did not change; however, the content of α2 subunit in the plasma membrane decreased by 25%, indicating that its stimulated electrogenic transport is due to an increase in specific activity. The physical association between the nAChR, the Na,K-ATPase α1 or α2 subunits, and the regulatory subunit of the Na,K-ATPase, phospholemman (PLM), measured by co-immuno precipitation, was stable and unchanged. Chronic nicotine treatment activated PKCα/β2 and PKCδ and was accompanied by parallel increases in PLM phosphorylation at Ser(63) and Ser(68). Collectively, these results demonstrate that nicotine at chronic doses, acting through the nAChR-Na,K-ATPase complex, is able to modulate Na,K-ATPase activity in an isoform-specific manner and that the regulatory range includes both stimulation and inhibition of enzyme activity. Cholinergic modulation of Na,K-ATPase activity is achieved, in part, through activation of PKC and phosphorylation of PLM.  相似文献   

16.
Na,K-ATPase is a hetero-oligomer of alpha and beta-subunits. The Na,K-ATPase beta-subunit (Na,K-beta) is involved in both the regulation of ion transport activity, and in cell-cell adhesion. By structure prediction and evolutionary analysis, we identified two distinct faces on the Na,K-beta transmembrane domain (TMD) that could mediate protein-protein interactions: a glycine zipper motif and a conserved heptad repeat. Here, we show that the heptad repeat face is involved in the hetero-oligomeric interaction of Na,K-beta with Na,K-alpha, and the glycine zipper face is involved in the homo-oligomerization of Na,K-beta. Point mutations in the heptad repeat motif reduced Na,K-beta binding to Na,K-alpha, and Na,K-ATPase activity. Na,K-beta TMD homo-oligomerized in biological membranes, and mutation of the glycine zipper motif affected oligomerization and cell-cell adhesion. These results provide a structural basis for understanding how Na,K-beta links ion transport and cell-cell adhesion.  相似文献   

17.
18.
A microprocedure for the preparation of Na,K-ATPase-containing liposomes with a minimal starting material (200 microgram) of purified Na,K-ATPase is presented. Phosphatidylcholine is added gradually to cholate-solubilized Na,K-ATPase of various concentrations and the lipid-induced decrease in enzyme activity is monitored. After removal of the detergent by dialysis, the transport parameters of the resulting Na,K-ATPase-liposomes are established by a microassay. By relating the transport properties to the Na,K-ATPase activity preset before dialysis, a procedure is developed which allows to prepare standardized Na,K-ATPase-liposomes with predictable transport properties.  相似文献   

19.
Type 1 diabetes induces several metabolic and biochemical disturbances which result in the alteration ofNa,K-ATPase, an enzyme implicated in the physiopathology of neuropathy Several fatty acid supplementations lessen this alteration. The aims of this study were to determine the possible relationships between Na,K-ATPase activity in nerves and red blood cells (RBCs) and, on one hand, the fatty acid alterations induced by diabetes in these tissues and plasma and on the other, on nerve physiological parameters. Two groups of rats, control and diabetic (n = 15), were sacrified 8 weeks after induction of diabetes with streptozotocin. Nerve conduction velocity (NCV), nerve blood flow (NBF), Na,K-ATPase activity and membrane fatty acid composition of sciatic nerves, red blood cells (RBCs) and plasma were measured. NCV, NBF and Na,K-ATPase activity in RBCs and in sciatic nerves were significantly decreased in diabetic rats. We revealed a positive correlation between Na,K-ATPase activity in sciatic nerves and both NBF and NCV and between Na,K-ATPase activity in RBCs and NBF and the same activity in sciatic nerve. Diabetes induced major changes in plasma fatty acids and RBC membranes and less important changes in sciatic nerve membranes. Na,K-ATPase activity correlated negatively with C20: 4 (n-6) and C22: 4 (n-6) levels in nerves and with C18: 2 (n-6) levels in RBCs. During diabetes, changes in the membrane fatty acid composition suggest the existence of a tissue-specific regulation, and the decrease in Na,K-ATPase activity correlates with the alteration in the level of specific fatty acids in RBCs and sciatic nerves. Modifications in the lipidic environment of Na,K-ATPase would be involved in the alteration of its activity. Na,K-ATPase activity seems to be implicated in the decrease of both NCV and NBF during diabetes.  相似文献   

20.
Progesterone acts at a plasma membrane receptor on the Rana oocyte to initiate meiosis. A cascade of lipid messengers occurs within seconds, followed by sequential changes in membrane phospholipid composition. We now show that progesterone binding to the plasma membrane increases continuously over the first 4 h. Subsequently, about 60% of the total plasma membrane and > 90% of membrane-bound progesterone, ouabain binding sites, and Na/K-ATPase activity are internalized. Until the completion of membrane internalization, oocytes must be continuously exposed to nanomolar concentrations of exogenous progesterone for meiosis to continue. The membrane-bound progesterone remains unchanged, whereas microinjected [(3)H]progesterone is rapidly metabolized. We find that progesterone and the plant steroid ouabain compete for one of two ouabain binding sites on the oocyte surface. Ouabain blocks progesterone action and inhibits subsequent meiosis if added at any time during the first 4-5 h. Western blots of SDS/PAGE extracts of isolated oocyte plasma membranes contain a -110 kDa band which binds an antibody to the steroid-binding c-terminal domain in rat and human PR. The number of binding sites and K(d) for progesterone binding to the plasma membrane is comparable to those for low-affinity ouabain binding to the alpha-subunit of the Na/K-ATPase (112 kDa). Our results suggest that progesterone binding to the ouabain binding site on the N-terminal region of the alpha-subunit of Na/K-ATPase may modulate early plasma membrane events over the first 4-6 h. Progesterone may thus act in part through the plasma membrane Na/K-ATPase signaling system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号