首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis, is an obligate intracellular bacterium that survives in neutrophils by delaying apoptosis. The human promyelocytic leukemia cell line HL-60 has been the ultimate choice for culturing Anaplasma in vitro. In this study, we assessed the various events of drug-induced apoptosis in A. phagocytophilum-infected HL-60 cells. Anaplasma infection reduced the cell viability and increased the apoptosis in HL-60 cells and staurosporine or etoposide-induced apoptosis was further exacerbated with Anaplasma infection. Altogether our results suggest that A. phagocytophilum infection is proapoptotic in HL-60 cells unlike in neutrophils where it is antiapoptotic.  相似文献   

2.

Background  

Tick-borne pathogens cause emerging zoonoses, and include fastidious organisms such as Anaplasma phagocytophilum. Because of their obligate intracellular nature, methods for mutagenesis and transformation have not been available.  相似文献   

3.
Resveratrol, a naturally occurring dietary compound with chemopreventive properties has been reported to trigger a variety of cancer cell types to apoptosis. Whether resveratrol shows any activity on human nasopharyngeal carcinoma (NPC) cells remained to be determined. The aim of this study was to investigate the effect and mechanism of resveratrol on human NPC cells. Treatment of resveratrol resulted in significant decrease in cell viability of NPC cell lines in a dose‐ and time‐dependent manner. A dose‐dependent apoptotic cell death was also measured by flow cytometery analysis. Molecular mechanistic studies of apoptosis unraveled resveratrol treatment resulted in a significant loss of mitochondrial transmembrane potential, release of cytochrome c, enhanced expression of Fas ligand (FasL), and suppression of glucose‐regulated protein 78 kDa (GRP78). These were followed by activation of caspases‐9, ‐8, ‐4, and ‐3, subsequently leading to DNA fragmentation and cell apoptosis. Furthermore, up‐regulation of proapoptotic Bax and down‐regulation of antiapoptotic Bcl‐2 protein were also observed. Taken together, resveratrol induces apoptosis in human NPC cells through regulation of multiple apoptotic pathways, including death receptor, mitochondria, and endoplasmic reticulum (ER) stress. Resveratrol can be developed as an effective compound for human NPC treatment. J. Cell. Physiol. 226: 720–728, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
5.
Subversion of cellular autophagy by Anaplasma phagocytophilum   总被引:1,自引:0,他引:1  
Anaplasma phagocytophilum , the causative agent of human granulocytic anaplasmosis, is an obligatory intracellular pathogen. After entry into host cells, the bacterium is diverted from the endosomal pathway and replicates in a membrane-bound compartment devoid of endosomal or lysosomal markers. Here, we show that several hallmarks of early autophagosomes can be identified in A. phagocytophilum replicative inclusions, including a double-lipid bilayer membrane and colocalization with GFP-tagged LC3 and Beclin 1, the human homologues of Saccharomyces cerevisiae autophagy-related proteins Atg8 and Atg6 respectively. While the membrane-associated form of LC3, LC3-II, increased during A. phagocytophilum infection, A. phagocytophilum -containing inclusions enveloped with punctate GFP-LC3 did not colocalize with a lysosomal marker. Stimulation of autophagy by rapamycin favoured A. phagocytophilum infection. Inhibition of the autophagosomal pathway by 3-methyladenine did not inhibit A. phagocytophilum internalization, but reversibly arrested its growth. Although autophagy is considered part of the innate immune system that clears a variety of intracellular pathogens, our study implies that A. phagocytophilum subverts this system to establish itself in an early autophagosome-like compartment segregated from lysosomes to facilitate its proliferation.  相似文献   

6.
Fucosylated structures participate in a wide range of pathological processes in eukaryotes and prokaryotes. The impact of fucose on microbial pathogenesis, however, has been less appreciated in arthropods of medical relevance. Thus, we used the tick‐borne bacterium Anaplasma phagocytophilum– the agent of human granulocytic anaplasmosis to understand these processes. Here we show that A. phagocytophilum uses α1,3‐fucose to colonize ticks. We demonstrate that A. phagocytophilum modulates the expression of α1,3‐fucosyltransferases and gene silencing significantly reduces colonization of tick cells. Acquisition but not transmission of A. phagocytophilum was affected when α1,3‐fucosyltransferases were silenced during tick feeding. Our results uncover a novel mechanism of pathogen colonization in arthropods. Decoding mechanisms of pathogen invasion in ticks might expedite the development of new strategies to interfere with the life cycle of A. phagocytophilum.  相似文献   

7.
Lee HC  Goodman JL 《Genomics》2006,88(4):496-503
Anaplasma phagocytophilum (Ap), the agent of the tick-borne disease human granulocytic anaplasmosis, is an obligate intracellular pathogen unique in its ability to target and replicate within neutrophils. It profoundly inhibits neutrophil apoptosis, prolonging neutrophil survival from hours to days. To determine the basis of antiapoptosis, we compared gene expression in Ap-infected vs mock-infected human neutrophils. Antiapoptosis genes were consistently and significantly up-regulated (2- to 15-fold) within 1-3 h. These genes synergistically inhibit apoptosis through several interconnected pathways, including p38MAPK (MAP2K3), ERK (IER3), PI3K (PRKCD), and NF-kappaB (BCL2A1, NFKB1, NFKBIA, GADD45B). Both extrinsic death receptor (TNFAIP3, CFLAR, SOD2) and intrinsic mitochondrial (BCL2A1, PIM2, BIRC3) pathways were affected as confirmed by reductions in both caspase 3 and caspase 8 activities. Several important antiapoptotic genes noted to be up-regulated in Ap-infected neutrophils were not up-regulated during Ap infection of HL-60 cells (which is not antiapoptotic). In conclusion, just as apoptosis may be triggered through multiple molecular pathways, effective antiapoptosis of neutrophils is achieved rapidly and redundantly by this intracellular pathogen dependent on cell survival.  相似文献   

8.
嗜吞噬细胞无形体致病机理的研究进展   总被引:1,自引:0,他引:1  
嗜吞噬细胞无形体是一种侵染中性粒细胞专性细胞内寄生的革兰阴性菌,其所致疾病为人粒细胞无形体病(HGA),是一种经蜱传播的人兽共患病。它感染中性粒细胞后可诱发机体产生炎症免疫反应,最终导致免疫抑制及潜在疾病引起的各种继发感染和器官衰竭,甚至危及生命。近年来该病原体日益受到人们的关注和重视。就嗜吞噬细胞无形体致病机理研究的进展进行了综述。  相似文献   

9.
Fibrinogen promotes neutrophil activation and delays apoptosis   总被引:7,自引:0,他引:7  
The acute phase of the inflammatory response involves an increase in the concentrations of different plasma proteins that include fibrinogen (Fbg) and multiple proinflammatory mediators. In parallel, neutrophil activation is thought to play a crucial role in several inflammatory conditions, and it has been recently demonstrated that Fbg specifically binds to the alpha-subunit of CD11b/CD18 on neutrophil surface. Although several reports have shown that CD11b engagement modulates neutrophil responses, the effect of human Fbg (hFbg), one of CD11b physiologic ligands, has not been exhaustively investigated. We have now shown that incubation of purified neutrophils with hFbg induces a transient and rapid elevation of free intracellular Ca2+. This early intracellular signal is accompanied by changes in the expression of neutrophil activation markers, including enhancement of CD11b and CD66b, and down-regulation of FcgammaRIII. In addition, we have evaluated the effect of hFbg on two functional events related to expression and resolution of inflammation: cytotoxic capacity and rate of neutrophil apoptosis. We have found that activation of neutrophils by hFbg resulted in both enhancement of phagocytosis and Ab-dependent cellular cytotoxicity, and delay of apoptosis. We conclude that during inflammatory processes, soluble Fbg could influence neutrophil responses, increasing and prolonging their functional capacity.  相似文献   

10.
Glutamine delays spontaneous apoptosis in neutrophils   总被引:7,自引:0,他引:7  
Nuclear,mitochondrial, and plasma membrane events associated withapoptosis were investigated in rat neutrophils cultivated for3, 24, and 48 h in the absence or presence of glutamine (0.5, 1.0, and 2.0 mM). Condensation of chromatin was reduced after 24 or 48 h of culture in the presence of glutamine compared with its absence asassessed by Hoechst 33342 staining. The level of Escherichiacoli phagocytosis in the presence of glutamine was markedlyincreased compared with the level achieved by cells cultured in theabsence of glutamine. Annexin V binding to externalized phosphatidylserine was reduced in the presence of glutamine. Sensitive fluorochrome rhodamine 123, as determined by fluorescence-activated cell sorting and confocal microscopy, was used to monitor loss of themitochondrial transmembrane potential. In the absence of glutamine,neutrophils exhibited a marked reduction in the uptake of rhodamine123. In the presence of 1.0 or 2.0 mM glutamine, the uptake ofrhodamine was 20 or 38% higher, respectively. Similar effect was foundin human neutrophils by measuring DNA fragmentation and mitochondrialtransmembrane potential. Therefore, glutamine protects from eventsassociated with triggering and executing apoptosis in both ratand human neutrophils.

  相似文献   

11.
Invasion and survival strategies of Anaplasma phagocytophilum   总被引:4,自引:4,他引:0  
Anaplasma phagocytophilum is an aetiological agent of human granulocytic ehrlichiosis, an emerging tick‐borne zoonosis in the United States and Europe. This obligate intracellular bacterium is unique in that it colonizes polymorphonuclear leucocytes (neutrophils). Neutrophils are key players in innate immunity. These short‐lived phagocytes ingest invading microorganisms and destroy them by various means, which include fusing the bacteria‐containing phagosome with acidic lysosomes as well as directing toxic oxidative and proteolytic compounds into the phagosomal lumen. Its tropism for neutrophils indicates that A. phagocytophilum uses strategies for evading and/or neutralizing these microbicidal activities. This review focuses on some of the mechanisms that A. phagocytophilum uses for neutrophil adhesion, surviving within the hostile intracellular environment of its host neutrophil and for effectively disseminating to naïve host cells.  相似文献   

12.
Activated neutrophils play an important role in the pathogenesis of sepsis, glomerulonephritis, acute renal failure, and other inflammatory processes. The resolution of neutrophil-induced inflammation relies, in large part, on removal of apoptotic neutrophils. Neutrophils are constitutively committed to apoptosis, but inflammatory mediators, such as GM-CSF, slow neutrophil apoptosis by incompletely understood mechanisms. We addressed the hypothesis that GM-CSF delays neutrophil apoptosis by activation of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI 3-kinase) pathways. GM-CSF (20 ng/ml) significantly inhibited neutrophil apoptosis (GM-CSF, 32 vs 65% of cells p < 0. 0001). GM-CSF activated the PI 3-kinase/Akt pathway as determined by phosphorylation of Akt and BAD. GM-CSF-dependent Akt and BAD phosphorylation was blocked by the PI 3-kinase inhibitor LY294002. A role for the PI 3-kinase/Akt pathway in GM-CSF-stimulated delay of apoptosis was indicated by the ability of LY294002 to attenuate apoptosis delay. GM-CSF-dependent inhibition of apoptosis was significantly attenuated by PD98059, an ERK pathway inhibitor. LY294002 and PD98059 did not produce additive inhibition of apoptosis delay. To determine whether PI 3-kinase and ERK are used by other ligands that delay neutrophil apoptosis, we examined the role of these pathways in IL-8-induced apoptosis delay. LY294002 blocked IL-8-dependent Akt phosphorylation. PD98059 and LY294002 significantly attenuated IL-8 delay of apoptosis. These results indicate IL-8 and GM-CSF act, in part, to delay neutrophil apoptosis by stimulating PI 3-kinase and ERK-dependent pathways.  相似文献   

13.
14.
Acceleration of human neutrophil apoptosis by TRAIL   总被引:15,自引:0,他引:15  
Neutrophil granulocytes have a short lifespan, with their survival limited by a constitutive program of apoptosis. Acceleration of neutrophil apoptosis following ligation of the Fas death receptor is well-documented and TNF-alpha also has a transient proapoptotic effect. We have studied the role of the death receptor ligand TRAIL in human neutrophils. We identified the presence of mRNAs for TRAIL, TRAIL-R2, and TRAIL-R3, and cell surface expression of TRAIL-R2 and -R3 in neutrophil populations. Neutrophil apoptosis is specifically accelerated by exposure to a leucine zipper-tagged form of TRAIL, which mimics cell surface TRAIL. Using blocking Abs to TRAIL receptors, specifically TRAIL-R2, and a TRAIL-R1:FcR fusion protein, we have excluded a role for TRAIL in regulating constitutive neutrophil apoptosis. No additional proapoptotic effect of leucine zipper TRAIL was identified following TRAIL treatment of neutrophils in the presence of gliotoxin, an inhibitor of NF-kappaB, suggesting TRAIL does not activate NF-kappaB in human neutrophils. TRAIL treatment of human neutrophils did not induce a chemotactic response. The susceptibility of neutrophils to TRAIL-mediated apoptosis suggests a role for TRAIL in the regulation of inflammation and may provide a mechanism for clearance of neutrophils from sites of inflammation.  相似文献   

15.
Intracellular cholesterol amounts, distribution and traffic are tightly regulated to maintain the healthy eukaryotic cell function. However, how intracellular pathogens that require cholesterol, interact with the host cholesterol homeostasis and traffic is not well understood. Anaplasma phagocytophilum is an obligatory intracellular and cholesterol-robbing bacterium, which causes human granulocytic anaplasmosis. Here we found that a subset of cholesterol-binding membrane protein, Niemann-Pick type C1 (NPC1)-bearing vesicles devoid of lysosomal markers were upregulated in HL-60 cells infected with A. phagocytophilum, and trafficked to live bacterial inclusions. The NPC1 localization to A. phagocytophilum inclusions was abolished by low-density lipoprotein (LDL)-derived cholesterol traffic inhibitor U18666A. Studies using NPC1 siRNA and the cell line with cholesterol traffic defect demonstrated that the NPC1 function is required for bacterial cholesterol acquisition and infection. Furthermore, trans-Golgi network-specific soluble N-ethylmaleimide-sensitive factor attachment protein receptors, vesicle-associated membrane protein (VAMP4) and syntaxin 16, which are associated with NPC1 and LDL-derived cholesterol vesicular transport were recruited to A. phagocytophilum inclusions, and VAMP4 was required for bacteria infection. Taken together, A. phagocytophilum is the first example of a pathogen that subverts the NPC1 pathway of intracellular cholesterol transport and homeostasis for bacterial inclusion membrane biogenesis and cholesterol capture.  相似文献   

16.
17.
Anaplasma phagocytophilum is an emerging tick-borne pathogen. Great genetic diversity of A. phagocytophilum has been described in animals and ticks. The present study is focused on the genetic variability of the groESL operon of A. phagocytophilum in human patients in Slovenia. During 1996–2008, there were 66 serologically confirmed patients with human granulocytic anaplasmosis. Of these, 46 were tested with a screening PCR for a small part of the 16S rRNA gene of A. phagocytophilum and 28 (60.9%) were positive. Positive samples were additionally tested with a PCR targeting the groESL operon and a larger fragment of the 16S rRNA gene. All amplicons were further sequenced and analyzed. The homology search and the alignment of the groESL sequences showed only one genetic variant. Sequence analysis of the 16S rRNA gene revealed 100% identity among amplicons. Slovenia is a small country with diverse climate, vegetation, and animal representatives. In previous studies in deer, dogs, and ticks, great diversity of the groESL operon was found. In contrast, in wild boar and in human patients from this study, only one genetic variant was detected. The results suggest that only one genetic variant might be pathogenic for humans or is competent enough to replicate in humans. To support this theory, other genetic markers and further studies need to be performed.  相似文献   

18.
The genus Anaplasma (Rickettsiales: Anaplasmataceae) includes species of medical and veterinary importance. The presence of Anaplasma spp. in ticks from birds, as well as in Haemaphysalis punctata (Ixodida: Ixodidae) specimens collected from cattle and vegetation in northern Spain was investigated. A total of 336 ticks from birds [174 Ixodes frontalis (Ixodida: Ixodidae), 108 H. punctata, 34 Hyalomma marginatum (Ixodida: Ixodidae), 17 Ixodes ricinus (Ixodida: Ixodidae) and three Ixodes spp.], and 181 H. punctata specimens collected from cattle (n = 71) and vegetation (n = 110) were analysed. Anaplasma bovis was detected in five H. punctata, including two from birds (1.9%) and three from vegetation (2.7%). Four I. frontalis (2.3%) (one co‐infected with ‘Candidatus Midichloria mitochondrii’) and one I. ricinus (5.9%) removed from birds, as well as four H. punctata (5.6%) collected from cattle showed Anaplasma phagocytophilum infection. In addition, Anaplasma centrale was found in two H. punctata, one from a cow (1.4%) and the other from vegetation (0.9%). This study represents the first evidence of the presence of A. bovis in European ticks, and reports the first detection of A. bovis and A. centrale in H. punctata, and the first finding of A. phagocytophilum and ‘Ca. Midichloria mitochondrii’ in I. frontalis.  相似文献   

19.
Huang TT  Liu FG  Wei CF  Lu CC  Chen CC  Lin HC  Ojcius DM  Lai HC 《PloS one》2011,6(4):e18308
Osajin is a prenylated isoflavone showing antitumor activity in different tumor cell lines. The underlying mechanism of osajin-induced cancer cell death is not clearly understood. In the present study, the mechanisms of osajin-induced cell death of human nasopharyngeal carcinoma (NPC) cells were explored. Osajin was found to significantly induce apoptosis of NPC cells in a dose- and time-dependent manner. Multiple molecular effects were observed during osajin treatment including a significant loss of mitochondrial transmembrane potential, release of cytochrome c into the cytosol, enhanced expression of Fas ligand (FasL), suppression of glucose-regulated protein 78 kDa (GRP78), and activation of caspases-9, -8, -4 and -3. In addition, up-regulation of proapoptotic Bax protein and down-regulation of antiapoptotic Bcl-2 protein were also observed. Taken together, osajin induces apoptosis in human NPC cells through multiple apoptotic pathways, including the extrinsic death receptor pathway, and intrinsic pathways relying on mitochondria and endoplasmic reticulum stress. Thus, osajin could be developed as a new effective and chemopreventive compound for human NPC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号