首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we examined the effects of pertussis toxin (PT) on the ADP-ribosylation of guanine nucleotide binding proteins (G-proteins) and various insulin-stimulated processes in cultured BC3H-1 myocytes. Treatment of intact myocytes with 0.1 microgram/ml PT for 24 hours resulted in the complete ribosylation of a 41 kDa protein. The 41 kDa PT substrate was immunoprecipitated with antibodies directed against a synthetic peptide corresponding to a unique sequence in the alpha subunit of Gi-proteins. PT treatment of intact cells had no effect on insulin receptor binding or internalization. However, PT inhibited insulin-stimulated glucose transport at all insulin-concentrations tested (1-100 ng/ml). Maximally stimulated glucose transport was reduced by 50% +/- 15%. Insulin-stimulated glucose oxidation was also decreased by 31% +/- 8%. The toxin had no significant effect on the basal rates of glucose transport and glucose oxidation. The time course of PT-induced inhibition on glucose transport correlated with the time course of the "in vivo" ADP-ribosylation of the 41 kDa protein. The results suggest that a 41 kDa PT-sensitive G-protein, identical or very similar to Gi, is involved in the regulation of glucose metabolism by insulin in BC3H-1 cells.  相似文献   

2.
Genistein, an isoflavone putative tyrosine kinase inhibitor, was used to investigate the coupling of insulin receptor tyrosine kinase activation to four metabolic effects of insulin in the isolated rat adipocyte. Genistein inhibited insulin-stimulated glucose oxidation in a concentration-dependent manner with an ID50 of 25 micrograms/ml and complete inhibition at 100 micrograms/ml. Genistein also prevented insulin's (10(-9) M) inhibition of isoproterenol-stimulated lipolysis with an ID50 of 15 micrograms/ml and a complete effect at 50 micrograms/ml. The effect of genistein (25 micrograms/ml) was not reversed by supraphysiological (10(-7) M) insulin levels. In contrast, genistein up to 100 micrograms/ml had no effect on insulin's (10(-9) M) stimulation of either pyruvate dehydrogenase or glycogen synthase activity. We determined whether genistein influenced insulin receptor beta-subunit autophosphorylation or tyrosine kinase substrate phosphorylation either in vivo or in vitro by anti-phosphotyrosine immunoblotting. Genistein at 100 micrograms/ml did not inhibit insulin's (10(-7) M) stimulation of insulin receptor tyrosine autophosphorylation or tyrosine phosphorylation of the cellular substrates pp185 and pp60. Also, genistein did not prevent insulin-stimulated autophosphorylation of partially purified human insulin receptors from NIH 3T3/HIR 3.5 cells or the phosphorylation of histones by the activated receptor tyrosine kinase. In control experiments using either NIH 3T3 fibroblasts or partially purified membranes from these cells, genistein did inhibit platelet-derived growth factor's stimulation of its receptor autophosphorylation. These findings indicate the following: (a) Genistein can inhibit certain responses to insulin without blocking insulin's stimulation of its receptor tyrosine autophosphorylation or of the receptor kinase substrate tyrosine phosphorylation. (b) In adipocytes genistein must block the stimulation of glucose oxidation and the antilipolytic effects of insulin at site(s) downstream from the insulin receptor tyrosine kinase. (c) The inhibitory effects of genistein on hormonal signal transduction cannot necessarily be attributed to inhibition of tyrosine kinase activity, unless specifically demonstrated.  相似文献   

3.
Several authors have not been able to find any antilipolytic effect of insulin in adipose tissue "in vitro". We investigated the possible role of cell size and/or age of donors on this phenomenon. The lipolytic rates (glycerol release per cell) were lower in the small cells of the 4-6 weeks old rats than in the larger cells of the 25-30 weeks old animals; however, the difference disappeared when the data were expressed per unit of cell surface area. Insulin (0.5-50 ng/ml) failed to inhibit both maximally and submaximally noradrenaline stimulated lipolysis in the adipocytes of the young rats, but its antilipolytic action was fully restored by using glucose-free medium. Therefore, at our experimental conditions, a glucose dependent factor, possibly involving the preferential hydrolysis of newly synthetized triglycerides, seems to blunt or to mask the insulin induced inhibition of glycerol release. Relatively higher rates of glucose metabolism and a lower lipolysis in small fat cells might explain the difference in the action of insulin on glycerol release in the adipose tissue of young rats as compared to the older ones.  相似文献   

4.
Previous studies using rat adipocytes have shown that the ability of insulin to antagonize lipolysis induced by physiological concentrations of catecholamines is diminished at high concentrations of these hormones. Since such high concentrations of catecholamines cause an accumulation of free fatty acids, a decrease in cellular ATP level and a ‘short lived’ increase in cAMP (that is many fold higher than required to activate lipolysis maximally), we studied which of these modulates the antilipolytic activity of insulin. We found that inhibition of adenylate cyclase by virazole (2 mM), which lowers the initial cyclic AMP burst by about 70%, enables insulin to antagonize lipolysis at high isoproterenol concentrations. In contrast, reduction of cellular ATP level by 40% and 70%, using cyanide ion, or increasing free fatty acids in the medium to a level that suppresses the effects of insulin on glucose metabolism, failed to compromise the antilipolytic activity of the hormone. These data indicate that the inability of insulin to antagonize lipolysis induced by high isoproterenol concentrations is the direct consequence of the initial, larger burst of cyclic AMP.  相似文献   

5.
《Phytomedicine》2014,21(2):118-122
Curcumin has been reported to inhibit insulin signaling and translocation of GLUT4 to the cell surface in 3T3-L1 adipocytes. We have investigated the effect of curcumin on insulin signaling in primary rat adipocytes. Curcumin (20 μM) inhibited both basal and insulin-stimulated glucose transport (2-deoxyglucose uptake), but had no effect on insulin inhibition of lipolysis. Dose–response experiments demonstrated that curcumin (0–100 μM) inhibited basal and insulin-stimulated glucose transport, but even at the highest concentration tested did not affect lipolysis. Inhibition was equal in cells that had been pre-incubated with curcumin and in cells to which curcumin was added immediately before the glucose transport assay. Similarly, time-course experiments revealed that the inhibitory effect of curcumin was evident at the earliest time point tested (30 s). Thus it is unlikely that inhibition of insulin signaling or of translocation of GLUT4 to the cell surface is involved in the inhibitory effect of curcumin. Curcumin did not affect the stimulatory action of insulin on phosphorylation of Akt at serine 473. We conclude that curcumin is a direct inhibitor of glucose transporters in rat adipocytes.  相似文献   

6.
Insulin inhibition of lipolysis in the presence of forskolin was reversed by a four hour exposure of adipocytes to pertussis toxin. In contrast, the antilipolytic action of insulin against lipolysis due to theophylline was unaffected by pertussis toxin as was the ability of insulin to lower cyclic AMP in the presence of either forskolin or theophylline. The stimulation of adenylate cyclase by norepinephrine in crude plasma membranes obtained from rat adipocytes was inhibited by N6-(Phenylisopropyl)adenosine (PIA) and abolished by pretreating rat adipocytes with pertussis toxin. The stimulation of glucose metabolism by insulin was not altered by pertussis toxin pretreatment of rat adipocytes. These findings suggest that pertussis toxin selectively abolishes the antilipolytic effect of insulin in the presence of forskolin through a cyclic AMP independent mechanism.  相似文献   

7.
Elevated plasma levels of free fatty acids (FFA) can produce insulin resistance in skeletal muscle tissue and liver and, together with alterations in beta-cell function, this has been referred to as lipotoxicity. This study explores the effects of FFAs on insulin action in rat adipocytes. Cells were incubated 4 or 24 h with or without an unsaturated FFA, oleate or a saturated FFA, palmitate (0.6 and 1.5 mM, respectively). After the culture period, cells were washed and insulin effects on glucose uptake and lipolysis as well as cellular content of insulin signaling proteins (IRS-1, PI3-kinase, PKB and phosphorylated PKB) and the insulin regulated glucose transporter GLUT4 were measured. No significant differences were found in basal or insulin-stimulated glucose uptake in FFA-treated cells compared to control cells, regardless of fatty acid concentration or incubation period. Moreover, there were no significant alterations in the expression of IRS-1, PI3-kinase, PKB and GLUT4 following FFA exposure. Insulin's ability to stimulate PKB phosphorylation was also left intact. Nor did we find any alterations following FFA exposure in basal or cAMP-stimulated lipolysis or in the ability of insulin to inhibit lipolysis. The results indicate that oleate or palmitate does not directly influence insulin action to stimulate glucose uptake and inhibit lipolysis in rat fat cells. Thus, lipotoxicity does not seem to occur in the fat tissue itself.  相似文献   

8.
The effect of insulin-like growth factor I (IGF-I) on insulin-stimulated glucose uptake was studied in adipose and muscle tissues of hypophysectomized female rats. IGF-I was given as a subcutaneous infusion via osmotic minipumps for 6 or 20 days. All hypophysectomized rats received L-thyroxine and cortisol replacement therapy. IGF-I treatment increased body weight gain but had no effect on serum glucose or free fatty acid levels. Serum insulin and C-peptide concentrations decreased. Basal and insulin-stimulated glucose incorporation into lipids was reduced in adipose tissue segments and isolated adipocytes from the IGF-I-treated rats. In contrast, insulin treatment of hypophysectomized rats for 7 days increased basal and insulin-stimulated glucose incorporation into lipids in isolated adipocytes. Pretreatment of isolated adipocytes in vitro with IGF-I increased basal and insulin-stimulated glucose incorporation into lipids. These results indicate that the effect of IGF-I on lipogenesis in adipose tissue is not direct but via decreased serum insulin levels, which reduce the capacity of adipocytes to metabolize glucose. Isoproterenol-stimulated lipolysis, but not basal lipolysis, was enhanced in adipocytes from IGF-I-treated animals. In the soleus muscle, the glycogen content and insulin-stimulated glucose incorporation into glycogen were increased in IGF-I-treated rats. In summary, IGF-I has opposite effects on glucose uptake in adipose tissue and skeletal muscle, findings which at least partly explain previous reports of reduced body fat mass, increased body cell mass, and increased insulin responsiveness after IGF-I treatment.  相似文献   

9.
The extracellular calcium-sensing receptor (CaSR), a seven transmembrane G-protein-coupled receptor, was cloned in 1993. Its activation was first associated to the regulation of calcium homeostasis; however, the presence in tissues unrelated with this role has revealed its participation in numerous other cell functions. We previously described CaSR expression in human adipocytes, and here we investigated the effect of its activation on adipocyte lipolytic activity by measuring glycerol release to the incubation medium. Treatment of adipocytes with CaSR agonists elicited an inhibitory effect on basal lipolysis, which was prevented by a CaSR antagonist. To further corroborate the antilipolytic effect of CaSR activation, lipolysis was evaluated under conditions that interfere with main antilipolytic regulatory pathways. Cells were preincubated with pertussis toxin (PT, a Gialpha protein inhibitor), the phosphatidylinositol 3 kinase (PI3K) inhibitors wortmannin and LY-294002 as well as the cAMP analog 8Br-cAMP, all of which influenced the antilipolytic effect of CaSR stimulation. In light of the current view of adipose tissue as an organ involved in whole-body metabolic control, the role of the CaSR modulating basal lipolysis elicits great interest, given its metabolic sensing capabilities due to the variety of ligands that regulate its activity, and its potential cross-talk with insulin and adipose tissue-secreted factors.  相似文献   

10.
Insulin-mediated antilipolysis in permeabilized rat adipocytes   总被引:2,自引:0,他引:2  
Elucidating the mechanism by which insulin inhibits lipolysis has been hampered by the unavailability of a broken cell preparation in which the intact cell responses to the hormone could be duplicated. Here we report, using digitonin-permeabilized rat adipocytes, that physiological concentrations of insulin inhibit cyclic AMP-activated lipolysis despite the absence of cytosolic and plasma membrane integrity. Cyclic AMP (1.0 mM) maximally activates lipolysis in permeabilized adipocytes greater than 10-fold. Insulin inhibits this activation in a biphasic manner with maximum inhibition of 59 +/- 8% (N = 7) at 10(-9) M. At the submaximal concentrations of cyclic AMP (1.0 to 10 microM), insulin (10(-9) M) inhibits lipolysis 80 to 90%. Additionally, the antilipolytic effect of insulin is rapid (3 min) and it is specific, with the relatively inactive desoctapeptide analogue of insulin being three orders of magnitude less inhibitory than native insulin. In contrast to permeabilized cells, intact cells demonstrate only a small lipolytic response to cyclic AMP which is insensitive to insulin. These findings suggest the following about insulin's antilipolytic effects: 1) an intact cell is not required; 2) the intracellular mechanism of action does not require physiological concentrations of the freely diffusible cytosolic components; and 3) a site of insulin action independent of adenylate cyclase may play a major role.  相似文献   

11.
Phenylarsine oxide (PAO) has been used to inhibit the stereospecific uptake of D-glucose in basal and insulin-stimulated rat adipocytes. The inhibition is dose dependent and is partially reversed by dithiothreitol. The results are consistent with a direct interaction between the glucose transporter and PAO. By manipulating the sequence of exposure of cells to PAO and insulin it is possible to differentiate between the effects of PAO on transport into cells with receptor-rich and transporter-rich plasma membranes. PAO rapidly inhibits transport in insulin-stimulated adipocytes but at low concentrations inhibition is transient and recovery of stereospecific uptake takes place after approx. 20 min. The results can be interpreted in terms of the recruitment mechanism of insulin stimulation of transport and demonstrate that a relatively large intracellular pool of transporters exists after insulin stimulation. It also follows that sulphydryl groups probably play a critical role in the mechanism of glucose uptake.  相似文献   

12.
Oxidation of [14C] glucose in isolated epididymal adipocytes from Golden hamsters was stimulated by isoproterenol, epinephrine and norepinephrine, which all interact with beta-adrenergic receptors and by adrenocorticotrophic hormone. In contrast alpha-receptor agonists, such as phenylephrine, methoxamine or clonidine did not increase basal glucose oxidation. The beta-adrenergic blocking drug propranolol inhibited both lipolysis and glucose oxidation when these had been stimulated by isoproterenol, epinephrine or norepinephrine. Conversely, the alpha-adrenergic blocking drugs phentolamine and phenoxybenzamine did not influence lipolysis or glucose oxidation when isoproterenol provided the stimulus and increased both lipolysis and glucose metabolism in the present of either epinephrine or norepinephrine. All alpha-adrenergic agonists tested (phenylephrine, methoxamine and clonidine) lowered lipolysis and glucose oxidation isolated adipocytes exposed to isoproterenol. However, when adrenocorticotropin provided the stimulus for glucose oxidation and lipolysis, only clonidine produced a significant reduction in lipolysis and glucose oxidation. None of the alpha-agonists influenced glucose metabolism which had been increased by insulin. These data confirm the presence of both alpha and beta adrenergic receptors on hamster epididymal adipocytes and suggest that they exert antagonistic influences on lipolysis and glucose oxidation. These data are also consistent with the view that adrenergic stimulation of glucose oxidation and lipolysis in adipocytes are both mediated through beta receptors.  相似文献   

13.
Several weeks of short day photoperiod (SD) exposure promote a dramatic decrease of white adipose tissue (WAT) mass in Siberian hamsters(Phodopus sungorus sungorus). This slimming effect is accompanied by changes in the adipocyte responsiveness to adrenergic stimulation that are still under debate. We investigated whether possible changes in the antilipolytic responses, and/or lipogenic activities could be involved in such lipid deposition/mobilisation imbalance. Male Siberian hamsters were exposed for 11 weeks to SD or long day photoperiod and basal or stimulated lipolytic and lipogenic activities were measured on white adipocytes. As expected, the body mass of SD-animals was decreased. Besides a slight reduction in the basal lipolysis and in the maximal response to dibutyryl-cAMP, the responses to adrenergic and non-adrenergic lipolytic agents (forskolin, adenosine deaminase) were similar in both groups. Fat mass loss was likely not resulting from changes in the lipolytic responses of adipocytes to biogenic amines (e.g. octopamine), which were unaltered, or to a direct lipolytic stimulation by melatonin or histamine, which were inactive. Antilipolytic responses to insulin or tyramine were slightly decreased in SD-adipocytes. Basal or insulin-stimulated lipid accumulation in WAT, measured by glucose incorporation into lipids, did not change after SD-exposure. However, a significant decrease in the lipoprotein lipase activity was observed in the WAT of SDanimals. Despite the observed changes, the weight loss of SD-exposed Siberian hamsters was likely not resulting only from impaired antilipolytic orde novo lipogenic activities in white adipocytes, but either from other dramatic changes occurring during seasonal photoperiod-sensitive body weight regulation.  相似文献   

14.
Inhibitory guanine-nucleotide-binding proteins (Gi proteins) are substrates for pertussis toxin and the decreased pertussis-toxin-dependent ADP ribosylation of Gi proteins upon prior specific hormonal stimulation of cells is thought to reflect the receptor-mediated activation of Gi proteins, leading to their subsequent dissociation into alpha i and beta/gamma subunits. In the present study, the effect of various platelet stimuli on the subsequent pertussis-toxin-dependent ADP ribosylation of the alpha subunit of Gi (Gi alpha) in saponized platelets and platelet membranes were studied. Stimulation of intact platelets with the Ca(2+)-ionophore A23187 or thrombin, but not phorbol 12,13-dibutyrate, decreased the subsequent pertussis-toxin-dependent ADP ribosylation of Gi alpha in saponin-permeabilized platelets in a time-dependent and dose-dependent manner. Thrombin was more effective than A23187. Parallel measurements of Ca2+ mobilization and pertussis-toxin-dependent ADP ribosylation of Gi alpha in platelets showed that Ca2+ mobilization could only partly account for the decrease in pertussis-toxin-dependent ADP ribosylation in platelets stimulated by thrombin. When the ADP-ribosylation reaction was carried out in platelet membranes, a decrease in ADP ribosylation was still observed after stimulation of platelets with thrombin, but not with A23187. In addition to Gi alpha, two other proteins were found to be ADP ribosylated by pertussis toxin; their ADP ribosylation was also decreased after A23187 and thrombin stimulation of platelets. The results indicate that Ca2+ mobilization can decrease the pertussis-toxin-dependent ADP ribosylation of Gi alpha in saponized platelets; the decrease of pertussis-toxin-dependent ADP ribosylation of Gi alpha after thrombin stimulation of platelets can only, in part, be explained by Ca2+ mobilization and involves additional mechanisms; the decrease in pertussis-toxin-dependent ADP ribosylation after A23187 and thrombin stimulation is not confined to G1 alpha and involves other proteins. We conclude that the decrease in pertussis-toxin-dependent ADP ribosylation of Gi in thrombin-stimulated platelets might not be solely caused by a specific structural change, such as dissociation of Gi. It is likely that A23187 and thrombin stimulation of platelets generates substances which interfere with the ADP-ribosylating activity of pertussis toxin.  相似文献   

15.
The effects of temperature alterations between 22 degrees C and 48 degrees C on basal and insulin-stimulated 2-deoxy-D-[1-14C]glucose uptake were examined in isolated rat adipocytes. A distinct optimum was found near physiological temperature for uptake in the presence of maximally effective insulin concentrations where insulin stimulation and hexose uptake were both conducted at each given assay temperature. Basal uptake was only subtly affected. Control and maximally insulin-stimulated cells incubated at 35 degrees C subsequently exhibited minimal temperature-sensitivity of uptake measured between 30 and 43 degrees C. The data are mostly consistent with the concept that insulin-sensitive glucose transporters are, after stimulation by insulin, functionally similar to basal transporters. Adipocyte plasma membranes were labelled with various spin- and fluorescence-label probes in lipid structural studies. The temperature-dependence of the order parameter S calculated from membranes labelled with 5-nitroxide stearate indicated the presence of a lipid phase change at approx. 33 degrees C. Membranes labelled with the fluorescence label 1,6-diphenylhexa-1,3,5-triene, or the cholesterol-like spin label nitroxide cholestane, reveal sharp transitions at lower temperatures. We suggest that a thermotropic lipid phase separation occurs in the adipocyte membrane that may be correlated with the temperature-dependence of hexose transport and insulin action in the intact cells.  相似文献   

16.
The precise mechanisms underlying insulin-stimulated glucose transport still require investigation. Here we assessed the effect of SB203580, an inhibitor of the p38 MAP kinase family, on insulin-stimulated glucose transport in 3T3-L1 adipocytes and L6 myotubes. We found that SB203580, but not its inactive analogue (SB202474), prevented insulin-stimulated glucose transport in both cell types with an IC50 similar to that for inhibition of p38 MAP kinase (0.6 microM). Basal glucose uptake was not affected. Moreover, SB203580 added only during the transport assay did not inhibit basal or insulin-stimulated transport. SB203580 did not inhibit insulin-stimulated translocation of the glucose transporters GLUT1 or GLUT4 in 3T3-L1 adipocytes as assessed by immunoblotting of subcellular fractions or by immunofluorescence of membrane lawns. L6 muscle cells expressing GLUT4 tagged on an extracellular domain with a Myc epitope (GLUT4myc) were used to assess the functional insertion of GLUT4 into the plasma membrane. SB203580 did not affect the insulin-induced gain in GLUT4myc exposure at the cell surface but largely reduced the stimulation of glucose uptake. SB203580 had no effect on insulin-dependent insulin receptor substrate-1 phosphorylation, association of the p85 subunit of phosphatidylinositol 3-kinase with insulin receptor substrate-1, nor on phosphatidylinositol 3-kinase, Akt1, Akt2, or Akt3 activities in 3T3-L1 adipocytes. In conclusion, in the presence of SB203580, insulin caused normal translocation and cell surface membrane insertion of glucose transporters without stimulating glucose transport. We propose that insulin stimulates two independent signals contributing to stimulation of glucose transport: phosphatidylinositol 3-kinase leads to glucose transporter translocation and a pathway involving p38 MAP kinase leads to activation of the recruited glucose transporter at the membrane.  相似文献   

17.
Oxidation of [14C]glucose in isolated epididymal adipocytes from Golden hamsters was stimulated by isoproterenol and norepinephrine, which all interact with β-adrenergic receptors and by adrenorticotrophic hormone. In contrast α-receptor agonists, such as phenylephrine, methoxamine or clonidine did not increase basal glucose oxidation. The β-adrenergic blocking drug propranolol inhibited both lipolysis and glucose oxidation when these had been stimulated by isoproterenol, ephinephrine and phenoxybenzamine did not the α-adrenergic blocking drugs phentolamine and phenoxybenzamine did not influence lipolysis or glucose oxidation when isoproterenol provided the stimulus and increased both liposlysis and glucose metabolism in the presence of either epinephrine or norepinephrine. All α-adrenergic agonists tested (phenylephrine, methoxamine and clonidine) lowered liposlysis and glucose oxidation in isolated adipocytes exposed to isoproterenol. However, when adrenorcortropin provided the stimulus for glucose oxidation and lipolysis, only clonidine produced a significant reduction in lipolysis and glucose oxidation. None of the α-agonists influenced glucose metabolism which had been increased by insulin. These data confirm the presence of both α and β adrenergic receptors on hamster epididymal adipocytes and suggests that they exert antagonistic influences on lipolysis and glucose oxidation. These data are also consistent with the view that adrenergic stimulation of glucose oxidation and lipolysis in adipocytes are both mediated through β receptors.  相似文献   

18.
Cycloheximide, a potent inhibitor of protein synthesis, has been used to examine the relationship between recruitment of hexose carriers and the activation of glucose transport by insulin in rat adipocytes. Adipocytes were preincubated +/- cycloheximide for 90 min then +/- insulin for a further 30 min. We measured 3-O-methylglucose uptake in intact cells and in isolated plasma membrane vesicles. The concentration of glucose transporters in plasma membranes and low density microsomes was measured using a cytochalasin B binding assay. Cycloheximide had no affect on basal or insulin-stimulated 3-O-methylglucose uptake in intact cells or in plasma membrane vesicles. However, the number of glucose carriers in plasma membranes prepared from cells incubated with cycloheximide and insulin was markedly reduced compared to that from cells incubated with insulin alone (14 and 34 pmol/mg protein, respectively). Incubation of cells with cycloheximide alone did not change the concentration of glucose carriers in either plasma membranes or in low density microsomes compared to control cells. When isolated membranes were analyzed with an antiserum prepared against human erythrocyte glucose transporter, decreased cross-reactivity was observed in plasma membranes prepared from cycloheximide/insulin-treated cells compared to those from insulin cells. The present findings indicate that incubation of adipocytes with cycloheximide greatly reduces the number of hexose carriers in the plasma membrane of insulin-stimulated cells. Despite this reduction, insulin is still able to maximally stimulate glucose uptake. Thus, these data suggest an apparent dissociation between insulin stimulation of glucose transport activity and the recruitment of glucose carriers by the hormone.  相似文献   

19.
Adenosine, via interaction with A1 adenosine receptors, increases insulin sensitivity and inhibits lipolysis in adipocytes. To investigate regulation of this system, adipocytes were incubated for up to 72 h with the nonmetabolizable adenosine receptor agonist, N6-phenylisopropyl adenosine (PIA). Adenosine receptors were measured by the binding of 125I-hydroxyphenylisopropyl adenosine to membranes. PIA down-regulated adenosine receptors, decreasing the number of binding sites with no change in affinity. Adipocytes were incubated for 48 h without or with 100 nM PIA to down-regulate the A1 receptors by approximately 60%. The cells were washed, and lipolysis and glucose transport were assessed. The ability of PIA to inhibit lipolysis was markedly attenuated in the down-regulated cells. Furthermore, the EC50 of insulin was increased approximately 3-fold in the PIA-treated cells. 125I-Insulin binding to the PIA-treated cells was unchanged, demonstrating that the decreased insulin sensitivity is not due to decreased insulin receptor binding. Pertussis toxin catalyzed ADP-ribosylation of a 41-kDa protein thought to be the alpha-subunit of Gi. This 41-kDa protein was decreased in membranes from cells treated with PIA, with a maximal 50% loss. This suggests that Gi is down-regulated and that loss of both the A1 adenosine receptor and Gi are involved in the metabolic changes observed after PIA treatment.  相似文献   

20.
Prolonged treatment (12-24 h) of adipocytes with tumor necrosis factor alpha (TNFalpha) stimulates lipolysis. We have investigated the hypothesis that TNFalpha stimulates lipolysis by blocking the action of endogenous adenosine. Adipocytes were incubated for 48 h with TNFalpha, and lipolysis was measured in the absence or presence of adenosine deaminase. Without adenosine deaminase, the rate of glycerol release was 2-3-fold higher in the TNFalpha-treated cells, but with adenosine deaminase lipolysis increased in the controls to approximately that in the TNFalpha-treated cells. This suggests that TNFalpha blocks adenosine release or prevents its antilipolytic effect. Both N6-phenylisopropyl adenosine and nicotinic acid were less potent and efficacious inhibitors of lipolysis in treated cells. A decrease in the concentration of alpha-subunits of all three Gi subtypes was detected by Western blotting without a change in Gs proteins or beta-subunits. Gi2alpha was about 50% of control, whereas Gi1alpha and Gi3alpha were about 20 and 40% of control values, respectively. The time course of Gi down-regulation correlated with the stimulation of lipolysis. Furthermore, down-regulation of Gi by an alternative approach (prolonged incubation with N6-phenylisopropyl adenosine) stimulated lipolysis. These findings indicate that TNFalpha stimulates lipolysis by blunting endogenous inhibition of lipolysis. The mechanism appears to be a Gi protein down-regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号