首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Immunostimulatory DNA sequences (ISS, also known as CpG motifs) are pathogen-associated molecular patterns that are potent stimulators of innate immunity. We tested the ability of ISS to act as an immunostimulatory pathogen-associated molecular pattern in a model HIV vaccine using gp120 envelope protein as the Ag. Mice immunized with gp120 and ISS, or a gp120:ISS conjugate, developed gp120-specific immune responses which included: 1) Ab production; 2) a Th1-biased cytokine response; 3) the secretion of beta-chemokines, which are known to inhibit the use of the CCR5 coreceptor by HIV; 4) CTL activity; 5) mucosal immune responses; and 6) CD8 T cell responses that were independent of CD4 T cell help. Based on these results, ISS-based immunization holds promise for the development of an effective preventive and therapeutic HIV vaccine.  相似文献   

3.
During disease progression to AIDS, HIV-1 infected individuals become increasingly immunosuppressed and susceptible to opportunistic infections. It has also been demonstrated that multiple subsets of dendritic cells (DC), including DC-SIGN(+) cells, become significantly depleted in the blood and lymphoid tissues of AIDS patients, which may contribute to the failure in initiating effective host immune responses. The mechanism for DC depletion, however, is unclear. It is also known that vast quantities of viral envelope protein gp120 are shed from maturing HIV-1 virions and form circulating immune complexes in the serum of HIV-1-infected individuals, but the pathological role of gp120 in HIV-1 pathogenesis remains elusive. Here we describe a previously unrecognized mechanism of DC death in chronic HIV-1 infection, in which ligation of DC-SIGN by gp120 sensitizes DC to undergo accelerated apoptosis in response to a variety of activation stimuli. The cultured monocyte-derived DC and also freshly-isolated DC-SIGN(+) blood DC that were exposed to either cross-linked recombinant gp120 or immune-complex gp120 in HIV(+) serum underwent considerable apoptosis after CD40 ligation or exposure to bacterial lipopolysaccharide (LPS) or pro-inflammatory cytokines such as TNFα and IL-1β. Furthermore, circulating DC-SIGN(+) DC that were isolated directly from HIV-1(+) individuals had actually been pre-sensitized by serum gp120 for activation-induced exorbitant apoptosis. In all cases the DC apoptosis was substantially inhibited by DC-SIGN blockade. Finally, we showed that accelerated DC apoptosis was a direct consequence of excessive activation of the pro-apoptotic molecule ASK-1 and transfection of siRNA against ASK-1 significantly prevented the activation-induced excessive DC death. Our study discloses a previously unknown mechanism of immune modulation by envelope protein gp120, provides new insights into HIV immunopathogenesis, and suggests potential therapeutic approaches to prevent DC depletion in chronic HIV infection.  相似文献   

4.
The envelope glycoprotein of HIV gp120 is a T cell Ag in experimental animals and in humans infected with HIV or deliberately immunized with gp120 in various forms. Inasmuch as T cell responses result from the interaction of Ag processed and presented by APC with the unprimed T cell repertoire, we have investigated the human T cell repertoire specific for gp120 in seronegative, normal individuals. T cell lines and clones specific for HIV gp120 were generated by repeated in vitro stimulation of peripheral blood T lymphocytes with gp120-pulsed APC, followed by IL-2 expansion. We observed that the T cell response to whole gp120 involved single restricted immunodominant epitopes in gp120 that differ between responding individuals. Focusing of the response to limited regions of gp120 when the whole Ag is used for priming suggests that one or more adjacent epitopes are immunodominant and mask responses to "immunorecessive" epitopes. We have been able to generate primary in vitro responses to recessive epitopes by stimulation in vitro with synthetic peptides of gp120. The results indicate that a much broader T repertoire can be detected when individual peptides are used for priming in vitro rather than gp120. This information has important implications for the development of vaccination protocols aimed at eliciting diverse immune responses to "immunorecessive" regions of envelope glycoprotein.  相似文献   

5.
The scavenger receptor cysteine-rich protein gp340 functions as part of the host innate immune defense system at mucosal surfaces. In the genital tract, its expression by cervical and vaginal epithelial cells promotes HIV trans-infection and may play a role in sexual transmission. Gp340 is an alternatively spliced product of the deleted in malignant brain tumors 1 (DMBT1) gene. In addition to its innate immune system activity, DMBT1 demonstrates instability in multiple types of cancer and plays a role in epithelial cell differentiation. We demonstrate that monocyte-derived macrophages express gp340 and that HIV-1 infection is decreased when envelope cannot bind it. Inhibition of infection occurred at the level of fusion of M-, T-, and dual-tropic envelopes. Additional HIV-1 envelope binding molecules, such as dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN), mannose-binding lectin, and heparan sulfate, enhance the efficiency of infection of the cells that express them by increasing the local concentration of infectious virus. Our data suggest that gp340, which is expressed by macrophages in vivo, may function to enhance infection in much the same manner. Its expression on tissue macrophages and epithelial cells suggests important new opportunities for HIV-1 pathogenesis investigation and therapy.  相似文献   

6.
Fresh circulating PBMC from HIV-1 seropositive individuals have been found to mediate specific, non-MHC restricted lysis of targets expressing the major envelope glycoprotein of HIV-1, gp120, in 6-h 51Cr release assays. This gp120 specific cell-mediated cytotoxicity (CMC) is broadly reactive against target cells infected with a wide range of viral isolates, is IL-2 augmentable, and is mediated by a CD16+, Leu-7+, CD15-, CD3- population of NK/K cells. The presence of FcR (CD16) on these cells suggested that the lytic specificity for gp120 might be directed by cytophilic antibody bound to the cell surface. Affinity purified F(ab')2 antibody fragments specific for the Fc and F(ab')2 portions of human IgG were used in attempts to block gp120 specific lysis. A 1/50 dilution of these antibodies inhibited gp120 specific cytolytic activity by more than 90% while exhibiting a minimal effect on NK/K cell lysis of K562 targets. The blocking activity of these fragments demonstrates the direct involvement of cytophilic antibody in CMC. In attempts to isolate this cytophilic anti-HIV-1 antibody, short 56 degrees C incubations were used to dissociate antibodies from the surface of PBMC of seropositive individuals. The supernatants generated in this manner exhibited specific gp120 activity in antibody-dependent cellular cytotoxicity assays. The ability of Staphylococcal protein A to remove this activity confirms the presence of cytophilic antibody on freshly isolated PBMC. Selective enrichment of specific cell subpopulations revealed the origin of the cytophilic antibody to be CD16+ NK/K cells and not B cells, T cells, or monocytes/macrophages. These studies show that the gp120-specific CMC seen in HIV-1 seropositive individuals is directed by cytophilic antibody bound to circulating CD16+ NK/K cells and represents a form of direct antibody-dependent cellular cytotoxicity which may provide a primary cytotoxic host defense.  相似文献   

7.
Neurological impairment is a common feature of Acquired Immunodeficiency Syndrome (AIDS); functional alterations have been reported both in central and peripheral nervous system and the Human Immunodeficiency Virus (HIV) envelope glycoprotein gp120 has been proposed as a neurotoxin acting through a calcium-dependent mechanism. On the other hand it has been reported that gp120 treatment also induce about a 20% decrease in the cerebral glucose utilization and in the cellular ATP levels. The reported observations were performed on experimental system where also non-neuronal cells where present; in order to evaluate whether a direct interaction between HIV proteins and neuronal cells takes place, we used a neuroblastoma cultures where only neuronal cells are present.We analysed the effects of gp120 on the N18TG2 neuroblastoma clone. Treatments were performed both on growing and confluent cultures. Short time treatment with gp120 of confluent cultures causes a 25% reduction in the level of neuron-specific enolase, resulting in a similar decrease of oxygen consumption. Long time exposure of growing cells also causes a reduction in cell survival. Furthermore, using a membrane-specific fluorescent probe we observed that gp120 produces an increase of membrane trafficking. These observations suggest a direct interaction between the viral envelope protein and neuronal cells, which results in an alteration of glycolytic metabolism. This alteration may be related to the neurologic impairments observed in AIDS patients.  相似文献   

8.
HIV envelope glycoproteins undergo large-scale conformational changes as they interact with cellular receptors to cause the fusion of viral and cellular membranes that permits viral entry to infect targeted cells. Conformational dynamics in HIV gp120 are also important in masking conserved receptor epitopes from being detected for effective neutralization by the human immune system. Crystal structures of HIV gp120 and its complexes with receptors and antibody fragments provide high-resolution pictures of selected conformational states accessible to gp120. Here we describe systematic computational analyses of HIV gp120 plasticity in such complexes with CD4 binding fragments, CD4 mimetic proteins, and various antibody fragments. We used three computational approaches: an isotropic elastic network analysis of conformational plasticity, a full atomic normal mode analysis, and simulation of conformational transitions with our coarse-grained virtual atom molecular mechanics (VAMM) potential function. We observe collective sub-domain motions about hinge points that coordinate those motions, correlated local fluctuations at the interfacial cavity formed when gp120 binds to CD4, and concerted changes in structural elements that form at the CD4 interface during large-scale conformational transitions to the CD4-bound state from the deformed states of gp120 in certain antibody complexes.  相似文献   

9.
The HIV envelope glycoprotein gp120 binds with high affinity to CD4 and is responsible for the tropism of HIV for CD4+ T cells and monocytes. Efforts to develop HIV vaccines have focused on gp120 and, therefore, a detailed molecular understanding of human immune responses to gp120 is essential. In this report, we have used human T cell clones specific for gp120 to examine the processing and presentation of gp120 to T cells. In particular, we examined the role of the CD4 that is expressed at low levels on the surfaces of human monocytes in the presentation of gp120 by monocytes. The presentation of gp120 to gp120-specific human T cell clones was blocked by pretreatment of monocytes with anti-CD4 mAb. Blocking of monocyte CD4 with anti-CD4 did not inhibit presentation of other Ag or of synthetic peptides representing epitopes within gp120 recognized by gp120-specific T cell clones. These results indicated that the anti-CD4-mediated inhibition occurred at the level of the monocyte, was specific for the gp120 response, and was operative at the initial Ag uptake phase of the Ag-processing pathway. Definitive confirmation that monocyte CD4 functions in the initial uptake step of the gp120-processing pathway was obtained by using soluble CD4 to block the interaction of gp120 with monocyte CD4. These results demonstrate that gp120 expressed by human monocytes plays an important role in the initial uptake of gp120 by monocytes and that gp120 taken up via CD4 is subsequently processed to allow for exposure of epitopes recognized by gp120-specific human T cells. At limiting gp120 concentrations, uptake via CD4 is essential for the presentation of gp120.  相似文献   

10.
The identification of surfactant protein A (SP-A) as an important innate immune factor of the lungs, amniotic fluid, and the vaginal tract suggests that it could play an important role during various stages of HIV disease progression and transmission. Therefore, we examined whether SP-A could bind to HIV and also had any effect on viral infectivity. Our data demonstrate that SP-A binds to HIV in a calcium-dependent manner that is inhibitable by mannose and EDTA. Affinity capture of the HIV viral lysate reveals that SP-A targets the envelope glycoprotein of HIV (gp120), which was confirmed by ELISA using recombinant gp120. Digestion of gp120 with endoglycosidase H abrogates the binding of SP-A, indicating that the high mannose structures on gp120 are the target of the collectin. Infectivity studies reveal that SP-A inhibits the infection of CD4+ T cells by two strains of HIV (BaL, IIIB) by >80%. Competition assays with CD4 and mAbs F105 and b12 suggest that SP-A inhibits infectivity by occlusion of the CD4-binding site. Studies with dendritic cells (DCs) demonstrate that SP-A enhances the binding of gp120 to DCs, the uptake of viral particles, and the transfer of virus from DCs to CD4+ T cells by >5-fold at a pH representative of the vaginal tract. Collectively, these results suggest that SP-A acts as a dual modulator of HIV infection by protecting CD4+ T cells from direct infection but enhancing the transfer of infection to CD4+ T cells mediated by DCs.  相似文献   

11.
The HIV vaccine strategy that, to date, generated immune protection consisted of a prime-boost regimen using a canarypox vector and an HIV envelope protein with alum, as shown in the RV144 trial. Since the efficacy was weak, and previous HIV vaccine trials designed to generate antibody responses failed, we hypothesized that generation of T cell responses would result in improved protection. Thus, we tested the immunogenicity of a similar envelope-based vaccine using a mouse model, with two modifications: a clade C CN54gp140 HIV envelope protein was adjuvanted by the TLR9 agonist IC31®, and the viral vector was the vaccinia strain NYVAC-CN54 expressing HIV envelope gp120. The use of IC31® facilitated immunoglobulin isotype switching, leading to the production of Env-specific IgG2a, as compared to protein with alum alone. Boosting with NYVAC-CN54 resulted in the generation of more robust Th1 T cell responses. Moreover, gp140 prime with IC31® and alum followed by NYVAC-CN54 boost resulted in the formation and persistence of central and effector memory populations in the spleen and an effector memory population in the gut. Our data suggest that this regimen is promising and could improve the protection rate by eliciting strong and long-lasting humoral and cellular immune responses.  相似文献   

12.
Glomerular epithelial cells (GEC) have been demonstrated to undergo morphological alterations in human immunodeficiency virus (HIV)‐associated focal glomerulosclerosis. In the present study, we evaluated the effect of HIV‐1 gp120 envelope protein on the growth of cultured human (H) GEC. gp120 protein enhanced (P < 0.001) the proliferation of HGEC at lower concentrations. The mitogenic effect of gp120 protein on HGEC was further confirmed by enhanced accumulation of proliferating nuclear cell antigen (PCNA) by gp120 protein‐treated cells, as compared with control cells. On the contrary, gp120 protein at higher concentrations suppressed (P < 0.001) the growth of HGEC. To evaluate the mechanism of gp120 protein‐induced HGEC growth suppression, we examined the effect of gp120 protein on HGEC apoptosis. gp120 protein at higher concentrations promoted the apoptosis of HGEC. At higher concentrations, gp120 protein also enhanced DNA fragmentation of HGEC. Anti‐gp120 antibody attenuated the proliferative as well as the apoptotic effects of gp120 protein on HGEC. Because protein kinase C as well as tyrosine kinase inhibitors partially inhibited gp120‐induced proliferation, gp120 appears to be activating both the protein kinase C and tyrosine kinase pathways. In addition, gp120 protein at lower concentrations enhanced mRNA expression of c‐fos and at higher concentrations promoted mRNA expression of c‐jun. We conclude that gp120 has a bimodal effect on proliferation of HGEC. This effect may be mediated through the activation of early growth genes. J. Cell. Biochem. 76:61–70, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

13.
ABSTRACT: BACKGROUND: Gp41 is an envelope glycoprotein of human immune deficiency virus (HIV). HIV viral glycoprotein gp41, present in complex with gp120, assists the viral entry into host cell. Over eighty thousands individuals are HIV infected in Pakistan which makes about 0.2% of 38.6 million infected patients worldwide. Hence, HIV gp41 protein sequences isolated in Pakistan were analyzed for the CD4 and CD8 T cells binding epitopes. RESULTS: Immunoinformatics tools were applied for the study of variant region of HIV gp41envelope protein. The protein nature was analyzed using freely accessible computational software. About 90 gp41 sequences of Pakistani origin were aligned and variable and conserved regions were found. Four segments were found to be conserved in gp41 viral protein. A method was developed, involving the secondary structure, surface accessibility, hydrophobicity, antigenicity and molecular docking for the prediction and location of epitopes in the viral glycoprotein. Some highly conserved CD4 and CD8 binding epitopes were also found using multiple parameters. The predicted continuous epitopes mostly fall in the conserved region of 1-12; 14-22 and 25-46 and can be used as effective vaccine candidates. CONCLUSION: The study revealed potential HIV subtype a derived cytotoxic T cell (CTL) epitopes from viral proteome of Pakistani origin. The conserved epitopes are very useful for the diagnosis of the HIV 1 subtype a. This study will also help scientists to promote research for vaccine development against HIV 1 subtype a, isolated in Pakistan.  相似文献   

14.
Glomerular epithelial cells (GEC) have been demonstrated to undergo morphological alterations in human immunodeficiency virus (HIV)-associated focal glomerulosclerosis. In the present study, we evaluated the effect of HIV-1 gp120 envelope protein on the growth of cultured human (H) GEC. gp120 protein enhanced (P < 0.001) the proliferation of HGEC at lower concentrations. The mitogenic effect of gp120 protein on HGEC was further confirmed by enhanced accumulation of proliferating nuclear cell antigen (PCNA) by gp120 protein-treated cells, as compared with control cells. On the contrary, gp120 protein at higher concentrations suppressed (P < 0. 001) the growth of HGEC. To evaluate the mechanism of gp120 protein-induced HGEC growth suppression, we examined the effect of gp120 protein on HGEC apoptosis. gp120 protein at higher concentrations promoted the apoptosis of HGEC. At higher concentrations, gp120 protein also enhanced DNA fragmentation of HGEC. Anti-gp120 antibody attenuated the proliferative as well as the apoptotic effects of gp120 protein on HGEC. Because protein kinase C as well as tyrosine kinase inhibitors partially inhibited gp120-induced proliferation, gp120 appears to be activating both the protein kinase C and tyrosine kinase pathways. In addition, gp120 protein at lower concentrations enhanced mRNA expression of c-fos and at higher concentrations promoted mRNA expression of c-jun. We conclude that gp120 has a bimodal effect on proliferation of HGEC. This effect may be mediated through the activation of early growth genes.  相似文献   

15.
The effect of recombinant protein from the envelope (gp120) of the HIV on B lymphocytes purified from either HIV-infected individuals or healthy seronegative controls was examined. B cells from peripheral blood and lymph nodes of HIV-infected individuals spontaneously secreted TNF-alpha; this secretion was augmented by the presence of gp120, whereas B cells from healthy seronegative donors failed to secrete significant levels of TNF-alpha in the presence or absence of gp120. In a coculture system of B cells and chronically HIV-infected T cells (ACH-2), where viral expression is largely mediated by TNF-alpha, gp120 increased virus expression only if the B cells were obtained from HIV-infected individuals. The effects of gp120 on viral expression in this system were not mediated via CD4 receptor binding or FcR binding of anti gp120-gp120 immune complexes. Besides its effect on cytokine production, gp120 also stimulated Ig secretion in B cells from HIV-infected individuals, but not from normal donors. Finally, it was demonstrated by in situ hybridization that germinal centers of lymph nodes from HIV-infected individuals contain large amounts of HIV RNA that is in close proximity to germinal center B cells. These findings suggest that the hyperplastic germinal centers of lymph nodes provide an unique environment for virus expression and accumulation where gp120 stimulates B cells to secrete HIV inductive cytokines, such as IL-6 and TNF-alpha, and thereby further enhances virus expression in infected cells in a paracrine manner.  相似文献   

16.
Recognition of viral Ag and of the envelope glycoprotein of HIV (gp120) in particular by human Th cells is critical in the immune response to the viral Ag which includes antibody production and generation of cytotoxic cells. Procedures to increase antigenicity of gp120 are highly desirable in a vaccine perspective. Therefore, to induce activation of gp120-specific T cells by a liminal dose of Ag we enhanced uptake of gp120 by exploiting the galactose receptors on APC. Terminal sialic acid residues were removed by neuraminidase treatment from the carbohydrate side chains of the heavily glycosylated gp120. Galactose residues were exposed and hence recognized by galactose receptors on APC. The experiments demonstrated that 1) human monocytes and dendritic cells, but not cells of the B lineage, bear galactose receptor; 2) galactose receptors are indeed involved because enhanced presentation is inhibited by galactose and acetylgalactosamine and competed for by other asialoglycoproteins; 3) galactose receptors mediate internalization of Ag in intracellular compartments that intersect the processing and presenting pathways, resulting in activation of specific T cells; 4) antigenicity of gp120 for specific T cells can be enhanced by the exposure of galactose residues.  相似文献   

17.
HIV entry occurs by concerted conformational changes in the envelope protein complex on the surface of the virus. This complex is made up of a trimer of heterodimers of two subunits: surface subunit, gp120, and transmembrane subunit, gp41. Conformational changes in the envelope complex allow gp41 to mediate membrane fusion leading to exposure of two gp41 regions: N-heptad repeat (NHR) and C-heptad repeat (CHR). Peptides from the NHR or the CHR have been found to inhibit HIV entry. Herein we show that we can covalently inhibit HIV viral entry by permanently trapping the gp41 intermediate on the virus surface using a covalently reactive group on inhibitory peptides. This is evidence showing that vulnerable conformational intermediates exist transiently during HIV viral entry, and the details presented herein will facilitate development of envelope as a target for therapeutics and potential chemopreventive agents that could disable the virus before contact with the host cell.  相似文献   

18.
NK细胞作为天然免疫系统的重要组成部分,其在HIV/SIV感染后的免疫机制及如何发挥抗病毒作用成为近几年艾滋病研究的热点之一。研究中发现,伴随HIV/SIV的感染,NK细胞亚群比例发生改变同时伴有功能缺陷,这种变化与HIV/SIV慢性感染阶段病毒复制水平有显著相关性。并且由于归巢受体表达的改变引起NK细胞在HIV/SIV感染者体内不同组织间的重新分布。NK细胞表面的受体KIR3DL1和KIR3DS也表现出对HIV感染的抵抗作用。这些发现为我们进一步研究NK细胞的抗HIV/SIV病毒感染的免疫机制提供了新的思路和方向。  相似文献   

19.
The human immunodeficiency virus (HIV) envelope glycoprotein forms trimers on the virion surface, with each monomer consisting of two subunits, gp120 and gp41. The gp120 envelope component binds to CD4 on target cells and undergoes conformational changes that allow gp120 to interact with certain G-protein-coupled receptors (GPCRs) on the same target membranes. The GPCRs that function as HIV coreceptors were found to be chemokine receptors. The primary coreceptors are CCR5 and CXCR4, but several other chemokine receptors were identified as "minor coreceptors", indicating their ability support entry of some HIV strains in tissue cultures. Formation of the tri-molecular complexes stabilizes virus binding and triggers a series of conformational changes in gp41 that facilitate membrane fusion and viral cell entry. Concerted efforts are underway to decipher the specific interactions between gp120/CD4, gp120/coreceptors, and their contributions to the subsequent membrane fusion process. It is hoped that some of the transient conformational intermediates in gp120 and gp41 would serve as targets for entry inhibitors. In addition, the CD4 and coreceptors are primary targets for several classes of inhibitors currently under testing. Our review summarizes the current knowledge on the interactions of HIV gp120 with its receptor and coreceptors, and the important properties of the chemokine receptors and their regulation in primary target cells. We also summarize the classes of coreceptor inhibitors under development.  相似文献   

20.
Enhancing natural killer (NK) cell activation has been associated with protection from human immunodeficiency virus-1 (HIV-1) infections and slowed onset of immunodeficiency. However, soluble HIV-1 envelope protein, gp120, has been shown to impair NK cell cytokine secretion and cell-mediated cytotoxicity. Here we show that gp120 suppressed IFN-γ production and cytotoxic function of a human NK cell line NK-92MI. We furthermore demonstrated that an anti-inflammatory cytokine interleukin-11 can restore effector functions to repressed NK-92MI cells. These studies support the notion that IL-11 administration may reduce HIV-1-mediated immune activation and exhaustion while achieving elimination of virally-infected cells through restored NK cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号