首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Beljelarskaya  S. N.  Sutton  F. 《Molecular Biology》2004,38(3):400-404
Baculovirus-mediated cloning and expression of the mouse serotonin receptor (5HT1c) cDNA in insect cells was proposed to create an alternative to the oocyte-based system commonly employed in electrophysiological studies of ionic channels. A recombinant bacmid was constructed, and the 5HT1c cDNA was transferred into the AcNPV genome to yield a recombinant baculovirus. Infected insect Sf9 cells produced recombinant 5HT1c.  相似文献   

2.
G-protein-coupled receptors (GPCRs) respond to external stimuli by activating heterotrimeric G proteins inside the cell. There is increasing evidence that many GPCRs exist as dimers or higher oligomers, but the biochemical nature of such dimers and what roles they have, if any, in signal transduction remains unclear. We conducted a comprehensive study of dimerization of the 5HT2c serotonin receptor using disulphide-trapping experiments. We found a dimer interface between transmembrane (TM) helices IV and V that is markedly sensitive to the state of receptor activation. This dimer seems to be quasisymmetrical in interfacial geometry and asymmetrical in its association with its cognate G alpha protein. We also found a second interface at TM I helices, which is insensitive to the state of activation.  相似文献   

3.
Deletion of the serotonin receptor 5HT2c in mice results in increased food intake and obesity. We screened 95 individuals with severe early-onset obesity for mutations in the coding sequence of this gene. We found a novel missense variant c.1255A > G (Thr419Ala) in a single Caucasian subject that was not found in 192 Caucasian control subjects. In transiently-transfected COS cells, the Thr419Ala variant was indistinguishable from the wild-type receptor in its ability to generate inositol phosphate, although differences in coupling to other pathways were not excluded. Three previously unreported silent variants: IVS3 + 30G > A, IVS3 + 80C > G and IVS4 - 31A > G were found with prevalences of 11.5%, 0.5% and 17.9%, respectively. In conclusion, mutations in 5HT2c are unlikely to be a common cause of severe early-onset human obesity. The identification of several novel polymorphisms at this locus may aid future genetic epidemiological studies.  相似文献   

4.
J L Plassat  U Boschert  N Amlaiky    R Hen 《The EMBO journal》1992,11(13):4779-4786
Serotonin (5-HT) is a neuromodulator that mediates a wide range of physiological functions by activating multiple receptors. Using a strategy based on amino acid sequence homology between 5-HT receptors that interact with G proteins, we have isolated a cDNA encoding a new serotonin receptor from a mouse brain library. Amino acid sequence comparisons revealed that this receptor was a distant relative of all previously identified 5-HT receptors; we therefore named it 5HT5. When expressed in Cos-7 cells and NIH-3T3 cells, the 5HT5 receptor displayed a high affinity for the serotonergic radioligand [125I]LSD. Surprisingly, its pharmacological profile resembled that of the 5HT1D receptor, which is a 5-HT receptor subtype which has been shown to inhibit adenylate cyclase and which is predominantly expressed in basal ganglia. However, unlike 5HT1D receptors, the 5HT5 receptor did not inhibit adenylate cyclase and its mRNA was not found in basal ganglia. On the contrary, in situ hybridization experiments revealed that the 5HT5 mRNA was expressed predominantly in cerebral cortex, hippocampus, habenula, olfactory bulb and granular layer of the cerebellum. Our results therefore demonstrate that the 5HT1D receptors constitute a heterogeneous family of receptors with distinct intracellular signalling properties and expression patterns.  相似文献   

5.
6.
The nature of the receptor mediating serotonin contraction in the rat stomach fundus has not been clearly associated with either 5HT1 or 5HT2 receptors. We have explored the possibility that such receptors in the rat fundus may better correlate with 5HT1A or 5HT1B receptor subtypes as defined by radiolabeled ligand binding studies with brain cortical membranes. Meta chlorophenylpiperazine (CPP) and meta trifluoromethylphenylpiperazine (TFMPP), selective ligands for the 5HT1B receptor and LY165163, a selective ligand for the 5HT1A receptor, have been evaluated for their agonist and antagonist activity at serotonin receptors in the rat stomach fundus. CPP and TFMPP were partial agonists in the rat stomach fundus whereas LY165163 showed no agonist activity in this smooth muscle in concentrations up to 10(-4)M. All three phenylpiperazines antagonized serotonin-induced contractions in the rat stomach fundus. The affinity for serotonin receptors in the rat fundus was similar for all three phenylpiperazines in spite of the reported selectivity of MCPP and TFMPP for 5HT1B and of LY165163 for 5HT1A receptors. Furthermore, the affinity of these agents for serotonin receptors in the rat stomach fundus did not agree with their reported affinity for either 5HT1A or 5HT1B binding sites in rat cortical membranes. Thus, the similarity in affinities of these phenylpiperazine derivatives for serotonin receptors mediating contraction in the rat fundus along with their different affinities for 5HT1A and 5HT1B binding sites argues against the possibility that the serotonin receptor in the rat fundus is of the 5HT1A or 5HT1B subtype of serotonin receptor.  相似文献   

7.
Serotonin (5-hydroxytryptamine: 5HT) is an important neuroactive substance in the model roundworm, Caenorhabditis elegans. Aside from having effects in feeding and egg-laying, 5HT inhibits motility and also modulates several locomotory behaviors, notably food-induced slowing and foraging. Recent evidence showed that a serotonergic 5HT2-like receptor named SER-1 (also known as 5HT2ce) was responsible for the effect of 5HT on egg-laying. Here we confirm this observation and show that SER-1 also plays an important role in locomotion. A mutant lacking SER-1 was found to be highly resistant to exogenous 5HT in the absence of food and this resistant phenotype was rescued by reintroducing the SER-1 gene in a mutant background. Pharmacological studies showed that the same antagonists that blocked the activity of recombinant SER-1 in vitro also inhibited the effect of 5HT on motility, suggesting the same receptor was responsible for both effects. When tested for locomotory behaviors, the SER-1 mutant was found to be moderately defective in food-induced slowing. In addition, the mutant changed direction more frequently than the wildtype when searching for food, suggesting that SER-1 may play a role in navigational control during foraging. Both these effects required the presence of MOD-1, a 5HT gated chloride channel, and the results indicate that SER-1 and MOD-1 modulate these behaviors through a common pathway. On the basis of expression analysis of a ser-1::GFP translational fusion, SER-1 is prominently located in central, integrating neurons of the head ganglia (RIA and RIC) but not the body wall musculature. The evidence suggests that SER-1 controls locomotion through indirect modulation of neuromuscular circuits and has effects both on speed and direction of movement.  相似文献   

8.
9.
10.
Family and twin studies have supported a strong genetic factor in the etiology of obsessive-compulsive disorder (OCD), although the precise mechanism of inheritance is unclear. Clinical and pharmacological studies have implicated the serotonergic and dopaminergic systems in disease pathogenesis. In this cross-sectional study, we have examined the allelic and genotypic frequencies of a Val-158-Met substitution in the COMT gene, a 44-base pair (bp) length variation in the regulatory region of the serotonin transporter gene ( 5-HTTLPR ) and the T102C and C516T variants in the serotonin receptor type 2A ( 5HT2A ) gene in 79 OCD patients and 202 control subjects. There were no observed differences in the frequencies of allele and genotype between patients and control groups for the COMT , the 5HTTLPR and the T102C 5HT2A gene polymorphisms. In contrast, a statistically significant difference between OCD patients and controls was observed on the genotypic distribution (χ2 = 16.7, 2df, P  = 0.0002) and on the allelic frequencies (χ2 = 15.8, 1df, P  = 0.00007) for the C516T 5HT2A gene polymorphism. The results suggest that the C516T variant of the 5HT2A gene may be one of the genetic risk factors for OCD in our sample. However, further studies using larger samples and family based methods are recommended to confirm these findings.  相似文献   

11.
The effects of the 5-hydroxytryptamine1B receptor agonist RU-24969 on locomotor activity were examined at different times during the light-dark cycle in the mouse. A dose-dependent hyperlocomotion was observed following RU-24969 administration which was partially antagonised by the non-selective 5-hydroxytryptamine receptor antagonist metergoline. The dose ratios for RU-24969 at two different times tested (8 hr after lights-on, L8; 5 hr after lights-off, D5) were significantly different in the presence of metergoline (2 and 5 mg/kg i.p.). The data suggest that the receptor(s) involved in the behavioural response to RU-24969 in the mouse exhibit a circadian variation.  相似文献   

12.
Kiss1, a neuropeptide predominantly expressed in the habenula, modulates the serotonin (5‐HT) system to decrease odorant cue [alarm substance (AS)]‐evoked fear behaviour in the zebrafish. The purpose of this study was to assess the interaction of Kiss1 with the 5‐HT system as well as to determine the involvement of the 5‐HT receptor subtypes in AS‐evoked fear. We utilized 0. 28 mg/kg WAY 100635 (WAY), a selective 5‐HT1A receptor antagonist, to observe the effects of Kiss1 administration on AS‐evoked fear. We found WAY significantly inhibited the anxiolytic effects of Kiss1 (< 0.001) with an exception of freezing behaviour. Based on this, we utilized 92.79 mg/kg methysergide, a 5‐HT1 and 5‐HT2 receptor antagonist, and found that methysergide significantly blocked the anxiolytic effects of Kiss1 in the presence of the AS (< 0.001). From this, we conclude that Kiss1 modulates AS‐evoked fear responses mediated by the 5‐HT1A and 5‐HT2 receptors.

  相似文献   


13.
The nicotinic acetylcholine receptor (AChR) and the serotonin type 3 receptor (5HT3R) are members of the ligand-gated ion channel gene family. Both receptors are inhibited by nanomolar concentrations of d-tubocurarine (curare) in a competitive fashion. Chemical labeling studies on the AChR have identified tryptophan residues on the gamma (gammaTrp-55) and delta (deltaTrp-57) subunits that interact with curare. Comparison of the sequences of these two subunits with the 5HT3R shows that a tryptophan residue is found in the homologous position in the 5HT3R (Trp-89), suggesting that this residue may be involved in curare-5HT3R interactions. Site-directed mutagenesis at position Trp-89 markedly reduces the affinity of the 5HT3R for the antagonists curare and granisetron but has little effect on the affinity for the agonist serotonin. To further examine the role of this region of the receptor in ligand-receptor interactions, alanine-scanning mutagenesis analysis of the region centered on Trp-89 (Thr-85 to Trp-94) was carried out, and the ligand binding properties of the mutant receptors were determined. Within this region of the receptor, curare affinity is reduced by substitution only at Trp-89, whereas serotonin affinity is reduced only by substitution at Arg-91. On the other hand, granisetron affinity is reduced by substitutions at Trp-89, Arg-91, and Tyr-93. This differential effect of substitutions on ligand affinity suggests that different ligands may have different points of interaction within the ligand-binding pocket. In addition, the every-other-residue periodicity of the effects on granisetron affinity strongly suggests that this region of the ligand-binding site of the 5HT3R (and by inference, other members of the ligand-gated ion channel family) is in a beta-strand conformation.  相似文献   

14.
Measurements of serotonin (5-HT), dopamine (DA), and noradrenaline, and of 5-HT and DA metabolites, were obtained by HPLC from 16 brain regions and the spinal cord of 5-HT(1A) or 5-HT(1B) knockout and wild-type mice of the 129/Sv strain. In 5-HT(1A) knockouts, 5-HT concentrations were unchanged throughout, but levels of 5-HT metabolites were higher than those of the wild type in dorsal/medial raphe nuclei, olfactory bulb, substantia nigra, and locus coeruleus. This was taken as an indication of increased 5-HT turnover, reflecting an augmented basal activity of midbrain raphe neurons and consequent increase in their somatodendritic and axon terminal release of 5-HT. It provided a likely explanation for the increased anxious-like behavior observed in 5-HT(1A) knockout mice. Concomitant increases in DA content and/or DA turnover were interpreted as the result of a disinhibition of DA, whereas increases in noradrenaline concentration in some territories of projection of the locus coeruleus could reflect a diminished activity of its neurons. In 5-HT(1B) knockouts, 5-HT concentrations were lower than those of the wild type in nucleus accumbens, locus coeruleus, spinal cord, and probably also several other territories of 5-HT innervation. A decrease in DA, associated with increased DA turnover, was measured in nucleus accumbens. These changes in 5-HT and DA metabolism were consistent with the increased aggressiveness and the supersensitivity to cocaine reported in 5-HT(1B) knockout mice. Thus, markedly different alterations in CNS monoamine metabolism may contribute to the opposite behavioral phenotypes of these two knockouts.  相似文献   

15.
16.
The cDNA of RDC4, a putative receptor of the G protein-coupled receptor family, has been cloned by PCR methodology. The primary structure of this receptor showed homology with the serotonin 5-HT1A receptor. In this work, RDC4 mRNA has been injected in Y1 adrenal cells and Xenopus oocytes and RDC4 cDNA has been transfected transiently in cos-7 cells. In all these systems serotonin elicited a rise in cyclic AMP levels. Binding studies on membranes of the transfected cos-7 cells using [3H]-LSD showed a pattern of drug affinities consistent with the known properties of a 5-HT1D receptor. RDC4 therefore codes for a 5-HT1D receptor which in the studied systems is positively coupled to adenylate cyclase.  相似文献   

17.
18.
By selective breeding, two sublines of rats with high or low activity of platelet serotonin (5HT) transporter (5HTt) have been developed (Wistar-Zagreb 5HT rats). Previous studies demonstrated significant differences between the sublines in the expression of platelet 5HTt at the level of both, mRNA and protein. Pharmacological studies showed marked alterations in brain 5HTt function, indicating differences in central serotonin homeostasis, although analysis of regional brain 5HTt gene expression did not show analogous differences. In this study, we searched for possible changes in the expression of the two central 5HT receptor subtypes: 5HT-1A and 5HT-1B, both participating in the regulation of brain 5HT transmission. Semi-quantitative RT-PCR, with three different housekeeping genes as internal standards, showed no differences in the levels of 5HT-receptor expression between the sublines. Results suggest that constitutional alteration of 5HT homeostasis, induced by selective breeding for the extremes of platelet 5HTt activity, did not cause measurable changes in the expression of central 5HT-1A (hippocampus) and 5HT-1B (striatum) receptors in the mentioned rat sublines under physiological conditions.  相似文献   

19.
Shah K  Schmidt ED  Vlak JM  de Vries SC 《Biochimie》2001,83(5):415-421
The Daucus carota somatic embryogenesis receptor kinase (DcSERK) gene serves as marker to monitor the transition from somatic into embryogenic plant cells. To determine the intrinsic biochemical properties of the DcSERK protein, a predicted transmembrane receptor, the kinase domain was expressed as a 40-kDa his-tag fusion protein in the baculovirus insect cell system. The kinase domain fusion protein was able to autophosphorylate in vitro. Phosphoamino acid analysis of the autophosphorylated DcSERK protein revealed that it was autophosphorylated on serine and threonine residues. This is the first evidence of the biochemical characterization of a transmembrane receptor kinase from embryogenic plant cell cultures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号