首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adrenal gland synthesizes steroid hormones from the adrenal cortex and catecholamines from the adrenal medulla. Both cortisol and adrenal androgens can have powerful effects on bone. The overproduction of cortisol in Cushing’s disease leads to a dramatic reduction in bone density and an increase risk of fracture. Overproduction of adrenal androgens in congenital adrenal hyperplasia (CAH) leads to marked changes in bone growth and development with early growth acceleration but ultimately a significant reduction in final adult height. The role of more physiological levels of glucocorticoids and androgens on bone metabolism is less clear. Cortisol levels measured in elderly individuals show a weak correlation with measures of bone density and change in bone density over time with a high cortisol level associated with lower bone density and more rapid bone loss. Cortisol levels and the dynamics of cortisol secretion change with age which could also explain some age related changes in bone physiology. It is also now clear that adrenal steroids can be metabolized within bone tissue itself. Local synthesis of cortisol within bone from its inactive precursor cortisone has been demonstrated and the amount of cortisol produced within osteoblasts appears to increase with age. With regard to adrenal androgens there is a dramatic reduction in levels with aging and several studies have examined the impact that restoration of these levels back to those seen in younger individuals has on bone health. Most of these studies show small positive effects in women, not men, but the skeletal sites where benefits are seen varies from study to study.  相似文献   

2.
It is generally well accepted that the pubertal surge in estrogen is responsible for the rapid bone accretion that occurs during puberty and that this effect is mediated by an estrogen-induced increase in growth hormone (GH)/insulin-like growth factor (IGF) action. To test the cause and effect relationship between estrogen and GH/IGF, we evaluated the consequence of ovariectomy (OVX) in prepubertal mice (C57BL/6J mice at 3 wk of age) on skeletal changes and the GH/IGF axis during puberty. Contrary to our expectations, OVX increased body weight (12-18%), bone mineral content (11%), bone length (4%), bone size (3%), and serum, liver, and bone IGF-I (30-50%) and decreased total body fat (18%) at 3 wk postsurgery. To determine whether estrogen is the key ovarian factor responsible for these changes, we performed a second experiment in which OVX mice were treated with placebo or estrogen implants. In addition to observing similar results compared with our first experiment, estrogen treatment partially rescued the increased body weight and bone size and completely rescued body fat and IGF-I levels. The increased bone accretion in OVX mice was due to increased bone formation rate (as determined by bone histomorphometry) and increased serum procollagen peptide. In conclusion, contrary to the known estrogen effect as an initiator of GH/IGF surge and thereby pubertal growth spurt, our findings demonstrate that loss of estrogen and/or other hormones during the prepubertal growth period effect leads to an increase in IGF-I production and bone accretion in mice.  相似文献   

3.
4.
The female reproductive system plays a major role in regulating the acquisition and loss of bone by the skeleton from menarche through senescence. Onset of gonadal sex steroid secretion at puberty is the major factor responsible for skeletal longitudinal and radial growth, as well as significant gain in bone density, until peak bone density is achieved in third decade of life. Gonadal sex steroids then help maintain peak bone density until menopause, including during the transient changes in skeletal mineral content associated with pregnancy and lactation. At menopause, decreased gonadal sex steroid production normally leads to rapid bone loss. The most rapid bone loss associated with decreased estrogen levels occurs in the first 8-10 years after menopause, with slower age-related bone loss occurring during later life. Age-related bone loss in women after the early menopausal phase of bone loss is caused by ongoing gonadal sex steroid deficiency, vitamin D deficiency, and secondary hyperparathyroidism. Other factors also contribute to age-related bone loss, including intrinsic defects in osteoblast function, impairment of the GH/IGF axis, reduced peak bone mass, age-associated sarcopenia, and various sporadic secondary causes. Further understanding of the relative contributions of the female reproductive system and each of the other factors to development and maintenance of the female skeleton, bone loss, and fracture risk will lead to improved approaches for prevention and treatment of osteoporosis.  相似文献   

5.
Estrogen plays an important role in maintaining bone density. Postmenopausal women have low plasma estrogen, but have high levels of conjugated steroids, particularly estrone sulfate (E1S) and dehydroepiandrosterone sulfate (DHEAS). Conversion of these precursors to active estrogens may help maintain bone density in postmenopausal women. The enzyme steroid sulfatase (STS) converts sulfated steroids into active forms in peripheral tissues. STS occurs in bone, but little is known about its role in bone function. In this study, we investigated STS activity and expression in the human MG-63 pre-osteoblastic cell line. We also tested whether sulfated steroids can stimulate growth of these cells. MG-63 cells and microsomes both possessed STS activity, which was blocked by the STS inhibitors EMATE and 667 Coumate. Further evidence for STS in these cells was provided by RT-PCR, using STS specific primers, which resulted in cDNA products of the predicted size. We then tested for growth of MG-63 cells in the presence of estradiol-17β, E1S and DHEAS. All three steroids stimulated MG-63 cell growth in a steroid-free basal medium. We also tested whether the cell growth induced by sulfated steroids could be blocked using a STS inhibitor (667 Coumate) or using an estrogen receptor blocker (ICI 182,780). Both compounds inhibited E1S-induced cell growth, indicating that E1S stimulates MG-63 cell growth through a mechanism involving both STS and the estrogen receptor. Finally, we demonstrated using RT-PCR that MG-63 cells contain mRNA for both estrogen receptor alpha and estrogen receptor beta. Our data reveal that STS is present in human pre-osteoblastic bone cells and that it can influence bone cell growth by converting inactive sulfated steroids to estrogenic forms that act via estrogen receptor alpha or beta.  相似文献   

6.
Novel treatment of short stature with aromatase inhibitors   总被引:3,自引:0,他引:3  
Estrogens have an essential role in the regulation of bone maturation and importantly in the closure of growth plates in both sexes. This prospective, randomized, placebo-controlled study was undertaken to evaluate whether suppression of estrogen synthesis in pubertal boys delays bone maturation and ultimately results in increased adult height.

A total of 23 boys with constitutional delay of puberty (CDP) received a conventional, low-dose testosterone treatment for inducing progression of puberty. Eleven of these 23 boys were randomized to receive a specific and potent P450-aromatase inhibitor, letrozole, for suppression of estrogen action, and 12 boys were randomized to receive placebo. Estradiol concentrations in the letrozole-treated boys remained at the pretreatment level during the administration of letrozole, whereas the concentrations increased during the treatment with testosterone alone and during spontaneous progression of puberty. Testosterone concentrations increased in all groups, but during the letrozole treatment, the increase was more than fivefold higher than in the group treated with testosterone alone.

The inhibition of estrogen synthesis delayed bone maturation. The slower bone maturation in the boys treated with testosterone and letrozole, despite higher androgen concentrations, than in the boys treated with testosterone indicate that estrogens are more important than androgens in regulation of bone maturation in pubertal boys. During the 18 months follow-up, an increase of 5.1 cm in predicted adult height was observed in the boys who received testosterone and letrozole, but no change was seen in the boys who received testosterone alone or in the untreated boys. This finding indicates that an increase in adult height can be attained in growing adolescent boys by inhibiting of estrogen action.  相似文献   


7.
Raloxifene, a selective estrogen receptor modulator (SERM), reduces fracture risk at least in part by improving the mechanical properties of bone in a cell- and estrogen receptor-independent manner. In this study, we determined that raloxifene directly interacts with the bone tissue. Through the use of multiple and complementary biophysical techniques including nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR), we show that raloxifene interacts specifically with the organic component or the organic/mineral composite, and not with hydroxyapatite. Structure–activity studies reveal that the basic side chain of raloxifene is an instrumental determinant in the interaction with bone. Thus, truncation of portions of the side chain reduces bone binding and also diminishes the increase in mechanical properties. Our results support a model wherein the piperidine interacts with bone matrix through electrostatic interactions with the piperidine nitrogen and through hydrophobic interactions (van der Waals) with the aliphatic groups in the side chain and the benzothiophene core. Furthermore, in silico prediction of the potential binding sites on the surface of collagen revealed the presence of a groove with sufficient space to accommodate raloxifene analogs. The hydroxyl groups on the benzothiophene nucleus, which are necessary for binding of SERMs to the estrogen receptor, are not required for binding to the bone surface, but mediate a more robust binding of the compound to the bone powder. In conclusion, we report herein a novel property of raloxifene analogs that allows them to interact with the bone tissue through potential contacts with the organic matrix and in particular collagen.  相似文献   

8.
The molecular and cellular mechanism of estrogen action in skeletal tissue remains unclear. The purpose of this study was to understand the role of estrogen receptor-beta, (ERbeta) on cortical and cancellous bone during growth and aging by comparing the bone phenotype of 6- and 13-month-old female mice with or without ERbeta. Groups of 11-14 wild-type (WT) controls and ERbeta knockout (BERKO) female mice were necropsied at 6 and 13 months of age. At both ages, BERKO mice did not differ significantly from WT controls in uterine weight and uterine epithelial thickness, indicating that ERbeta does not regulate the growth of uterine tissue. Femoral length increased significantly by 5.5% at 6 months of age in BERKO mice compared with WT controls. At 6 months of age, peripheral quantitative computerized tomography (pQCT) analysis of the distal femoral metaphysis (DFM) and femoral shafts showed that BERKO mice had significantly higher cortical bone content and periosteal circumference as compared with WT controls at both sites. In contrast to the findings in cortical bone, at 6 months of age, there was no difference between BERKO and WT mice in trabecular density, trabecular bone volume (TBV), or formation and resorption indices at the DFM. In 13-month-old WT mice, TBV (-41%), trabecular density (-27%) and cortical thickness decreased significantly. while marrow cavity and endocortical circumference increased significantly compared with 6-month-old WT mice. These age-related decreases in cancellous and endocortical bone did not occur in BERKO mice. At 13 months of age, BERKO mice had significantly higher total, trabecular and cortical bone, while having significantly lower bone resorption, bone formation and bone turnover in DFM compared with WT mice. These results indicate that deleting ERbeta protected against age-related bone loss in both the cancellous and endocortical compartments by decreasing bone resorption and bone turnover in aged female mice. These data demonstrate that in female mice, ERbeta plays a role in inhibiting periosteal bone formation, longitudinal and radial bone growth during the growth period, while it plays a role in stimulating bone resorption, bone turnover and bone loss on cancellous and endocortical bone surfaces during the aging process.  相似文献   

9.
10.
The OPG/RANKL/RANK cytokine system is essential for osteoclast biology. Various studies suggest that human metabolic bone diseases are related to alterations of this system. Here we summarize OPG/RANKL/RANK abnormalities in different forms of osteoporoses and hyperparathyroidism. Skeletal estrogen agonists (including 17beta-estradiol, raloxifene, and genistein) induce osteoblastic OPG production through estrogen receptor-alpha activation in vitro, while immune cells appear to over-express RANKL in estrogen deficiency in vivo. Of note, OPG administration can prevent bone loss associated with estrogen deficiency as observed in both animal models and a small clinical study. Glucocorticoids and immunosuppressants concurrently up-regulate RANKL and suppress OPG in osteoblastic cells in vitro, and glucocorticoids are among the most powerful drugs to suppress OPG serum levels in vivo. As for mechanisms of immobilization-induced bone loss, it appears that mechanical strain inhibits RANKL production through the ERK 1/2 MAP kinase pathway and up-regulates OPG production in vitro. Hence, lack of mechanical strainduring immobilization may favor an enhanced RANKL-to-OPG ratio leading to increased bone loss. As for hyperparathyroidism, chronic PTH exposure concurrently enhances RANKL production and suppresses OPG secretion through activation of osteoblastic protein kinase A in vitro which would favour increased osteoclastic activity. In sum, the capacity for OPG to antagonize the increases in bone loss seen in many rodent models of metabolic bone disease implicates RANKL/OPG imbalances as the likely etiology and supports the potential role for a RANKL antagonist as a therapeutic intervention in these settings.  相似文献   

11.
Although controversy remains regarding direct effects of estrogen on bone, in vivo data clearly show that estrogens suppress bone turnover, resulting in decreased bone resorption and formation activity. Selective estrogen receptor modulators (SERMs), such as raloxifene, produce effects on bone which are very similar to those of estrogen. In vitro, both raloxifene and estrogen inhibit mammalian osteoclast differentiation and bone resorption activity, but only in the presence of IL-6. Data from a number of ovariectomized rat model manipulations (i.e. hypophysectomy, low calcium diet and drug combinations) demonstrate a strong parallel between the antiosteopenic effects of raloxifene and estrogen. A characteristic action of estrogens on the skeleton is inhibition of longitudinal bone growth, an effect which is not observed with other resorption inhibitors, including calcitonin and bisphosphonates. Consistent with an estrogen-like mechanism on bone, raloxifene inhibits longitudinal bone growth in growing rats. In addition to the overall similarity of the bone activity profile in animals, estrogen and raloxifene also produce similar effects on various signaling pathways relative to the antiosteopenic effect of these two agents. For example, IL-6, a cytokine involved in high turnover bone resorption following estrogen deficiency in rats, is suppressed by both raloxifene and estrogen. Raloxifene and estrogen also produce a similar activation of TGF-β3 (a cytokine associated with inhibition of osteoclast differentiation and activity) in ovariectomized rats. Like 17β-estradiol, raloxifene binds with high affinity to both estrogen receptor- (ER) and estrogen receptor-β (ERβ). Crystal structure analyses have shown that 17β-estradiol and raloxifene bind to ER with small, but important, differences in three dimensional structure. These subtle differences in the conformation of the ligand:receptor complex are likely the basis for the key pharmacological differences between estrogens and the various SERMs (i.e. raloxifene vs tamoxifen). Raloxifene also produces estrogen-like effects on serum cholesterol metabolism and the vasculature. Thus, while raloxifene exhibits a complete estrogen antagonist in mammary tissue and the uterus, it produces beneficial effects on the cardiovascular system and prevents bone loss via an estrogen receptor mediated mechanism.  相似文献   

12.
Bone modeling and remodeling has been the subject of extensive experimental studies. There have been several mathematical models proposed to explain the observed behavior, as well. A different approach is taken here in which the bone is treated from a macroscopic view point. In this investigation, a one-dimensional analytical model is used to shed light on the factors which play the greatest role in modeling or growth of cortical bone at the periosteal surface. It is presumed that bone growth is promoted when increased amounts of bone nutrients, such as nitric oxide synthase (NOS) or messenger molecules, such as prostaglandin E2 (PGE2), seep out to the periosteal surface of cortical bone and are absorbed by osteoblasts. The transport of the bone nutrients is assumed to be a strain controlled process. Equations for the flux of these nutrients are written for a one-dimensional model of a long bone. The obtained partial differential equation is linearized and solved analytically. Based upon the seepage of nutrients out of the bone, the effect of loading frequency, number of cycles and strain level is examined for several experiments that were found in the literature. It is seen that bone nutrient seepage is greatest on the tensile side of the bone; this location coincides with the greatest amount of bone modeling.  相似文献   

13.
Estrogen deficiency results in a reduced bone mass, which can be prevented by treatment with estrogens. This study used a proteomic approach for the first time to obtain a global perspective of estrogens' effects on whole-bone proteins. Bone proteome profiles were examined in three groups of mice: (1) sham-operated with normal ovarian functions, (2) ovariectomised and (3) ovariectomised with estrogen replacement therapy. Bone proteins extracted from the humerus were separated by 2-DE and visualised by CBB colloidal staining. Spot detection and quantification was done by image analysis. Differentially expressed proteins were identified by MS and database search, using peptide mass fingerprint and peptide sequence analysis. Differential expression analysis in the three experimental groups showed significant changes for 14 proteins. These included proteins related to bone metabolism, cytoskeleton components and energy metabolic pathways. Our data suggest that some proteins related to cytoskeleton and to energy pathways, such as tropomyosins, aconitase 2 and enolase beta, might be new molecular targets responsive to the effects of estrogen. Differentially expressed proteins identified in this model may offer a useful starting point for elucidating novel aspects of the pleiotropic effects of estrogens on bone.  相似文献   

14.
A girl aged 5 years and 6 months presented with premature thelarche in our outpatient clinic. During long-term observation, we recorded growth acceleration, advanced bone age, and elevated oestradiol levels which together were taken to confirm the diagnosis of precocious puberty. The patient was successfully treated with a gonadotropin-releasing hormone agonist, but in view of the poor growth prognosis, recombinant human growth hormone was administered concurrently. At the age of 9 years and 6 months a mild clitoris enlargement and conspicuous muscle development without any further signs of virilization were noticed. Laboratory findings showed high values for testosterone and normal basal values for 17-hydroxyprogesterone and dehydroepinadrosterone sulphate. Explorative laparotomy revealed a gonadoblastoma arising from testicular structures on the left, a female streak gonad on the right side, and normal uterus and fallopian tubes. The karyotype was 46,XY/45,X. These findings confirmed the diagnosis of mixed gonadal dysgenesis with testosterone-producing gonadoblastoma.  相似文献   

15.
Estrogens are important for normal bone growth and metabolism. The mechanisms are incompletely understood. Thus, we have undertaken characterization of the skeletal phenotype of aromatase (ArKO) deficient mice. No abnormalities have been noted in skeletal patterning in newborns. Adult ArKO mice show decreased femur length and decreased peak Bone Mineral Density (BMD) with accelerated bone loss by 7 months of age in females. Magnetic resonance microscopy (MR) and microCT (μCT) imaging disclosed decreased cancellous connectivity and reduced cancellous bone volume in ArKO females. Bone formation rate (BFR) is increased in ArKO females and decreased in ArKO males. Estradiol therapy reverses these changes. This anabolic effect of estradiol in the male skeleton is supported by 18-F Positron Emission Tomography (PET) imaging, which clearly demonstrates decreased spinal uptake, but marked increase after estradiol therapy. Serum IGF-1 levels are high in young female ArKO mice but low in young ArKO males. The reduced BMD in ArKO females, despite the presence of elevated serum IGF 1, suggests that other mechanism(s) are operative. There is increased B-cell lymphopoiesis in adult female ArKO bone marrow cells. These results show that ArKO mice show the effects of estrogen deficiency on bone growth, mass, metabolism, microarchitecture and the hematopoietic microenvironment.  相似文献   

16.
Breast cancer is a hormone-based disease with numerous factors contributing to the lifetime risk of developing the disease. While breast cancer risk is reduced by nearly 50% after one full term pregnancy, women over the age of 25 have a significantly greater risk of developing breast cancer immediately following parturition compared to their nulliparous counterparts. It is widely presumed that the increased risk of developing breast cancer following pregnancy is due to the ability of pregnancy-associated hormones to promote the further proliferation of an initiated target cell population. It is surprising however, that the majority of breast cancers that develop following pregnancy lack appreciable expression of either the estrogen or progesterone receptors. This important observation suggests that if hormones play a part in promoting breast cancer following pregnancy, they may not be doing so through direct binding to hormone receptor molecules expressed by breast cancer cells.

To reconcile this conceptual conflict we investigated the hypothesis that steroid hormones promote the outgrowth of ER-negative cancers by influencing host cell types distinct from the breast epithelium itself. We demonstrated that increasing the levels of circulating estrogens is sufficient to promote the formation and progression of ER-negative cancers while, pharmacologically inhibiting estrogen synthesis following pregnancy prevents ER-negative tumor formation. Moreover, we demonstrate that the effects of estrogen act via a systemic increase in host angiogenesis, in part through increased mobilization and recruitment of bone marrow stromal derived cells into sites of angiogenesis and to a growing tumor mass. Taken together, these data suggest that estrogen may promote the growth of ER-negative cancers by acting on cells distinct from the cancer cells to stimulate angiogenesis.  相似文献   


17.
Variations in phenotype in 21-hydroxylase deficiency (21OHD) have cautioned against initiating treatment in the absence of abnormal clinical features. We report 2 Caucasian brothers with compound heterozygous mutations of the CYP21 gene and mild clinical and biochemical features of late-presenting 21OHD. The index case presented aged 8.5 years with mild genital virilization and bone age advanced by 5 years. Elevated basal and synacthen-stimulated 17-hydroxyprogesterone (17OHP; 22.4 and 246 nmol/l) and androstenedione (10.9 and 19.9 nmol/l) levels confirmed 21OHD. His younger brother was investigated at age 7.3 years, and although examination showed normal pre-pubertal genitalia, basal and synacthen-stimulated 17OHP (32.4 and 281 nmol/l) and androstenedione (6.2 and 9.0 nmol/l) were abnormal, and bone age was advanced by 1.5 years. Because of actual or incipient virilization, both patients were treated with glucocorticoid replacement 8-12 mg/m(2)/day. This decision is discussed in the context of published guidelines for the management of 21OHD.  相似文献   

18.
The differences in age-related fracture risks among men and women must reflect gender differences in the relevant variables. We are concerned here with gender differences in structural variables that relate to the size and shape of bones. As children grow, their bones grow in diameter through periosteal modeling. Studies show that radial growth is driven by mechanical forces and is not just "genetically programmed". Moving bone mass farther from the center of the diaphysis makes it more effective in resisting bending and twisting forces, and disproportionately so in comparison to changes in bone mass. Gender differences in long bone structure appear to arise because the bone cells of males and females function in different hormonal environments which affect their responses to mechanical loading. In girls, bone formation on the metacarpal periosteal surface essentially stops at puberty, and is replaced by formation on the endosteal surface, reducing endosteal diameter until about age 20. Bone strength is 60% greater in male metacarpals than in those of females because bone is added periosteally in boys and endosteally in girls. At menopause endosteal resorption resumes, accompanied by slow periosteal apposition, weakening cortical structure. Similar phenomena occur in such critical regions as the femoral neck. Another fundamental gender difference in skeletal development is that whole body bone mineral content increases in linear proportion to lean body mass throughout skeletal maturation in boys, but in girls there is a distinct increase in the slope of this relationship at puberty, when estrogen rises. Frost's hypothesis is that this reflects an effect of estrogen on bone's mechanostat set point, and this is increasingly supported by data showing that estrogen and mechanical strain act through a common pathway in osteoblast-like cells. If Frost's hypothesis is correct, the mechanostat is set for maximal effect of mechanical loading on bone gain during the 2-3 years preceding menarche. During the childbearing years, the set point is at an intermediate level, and at menopause, it shifts again to place the skeleton into the metabolic equivalent of a disuse state. The most direct approach to resolving this problem would be to simulate the putative effect of estrogen on the set point itself.  相似文献   

19.
Postmenopausal osteoporosis (PMOP) is a prevalent skeletal disorder associated with menopause-related estrogen withdrawal. PMOP is characterized by low bone mass, deterioration of the skeletal microarchitecture, and subsequent increased susceptibility to fragility fractures, thus contributing to disability and mortality. Accumulating evidence indicates that abnormal expansion of marrow adipose tissue (MAT) plays a crucial role in the onset and progression of PMOP, in part because both bone marrow adipocytes and osteoblasts share a common ancestor lineage. The cohabitation of MAT adipocytes, mesenchymal stromal cells, hematopoietic cells, osteoblasts and osteoclasts in the bone marrow creates a microenvironment that permits adipocytes to act directly on other cell types in the marrow. Furthermore, MAT, which is recognized as an endocrine organ, regulates bone remodeling through the secretion of adipokines and cytokines. Although an enhanced MAT volume is linked to low bone mass and fractures in PMOP, the detailed interactions between MAT and bone metabolism remain largely unknown. In this review, we examine the possible mechanisms of MAT expansion under estrogen withdrawal and further summarize emerging findings regarding the pathological roles of MAT in bone remodeling. We also discuss the current therapies targeting MAT in osteoporosis. A comprehensive understanding of the relationship between MAT expansion and bone metabolism in estrogen deficiency conditions will provide new insights into potential therapeutic targets for PMOP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号