首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pro-B to pre-B transition during B cell development is dependent upon surface expression of a signaling competent pre-B cell Ag receptor (pre-BCR). Although the mature form of the BCR requires ligand-induced aggregation to trigger responses, the requirement for ligand-induced pre-BCR aggregation in promoting B cell development remains a matter of significant debate. In this study, we used transmission electron microscopy on murine primary pro-B cells and pre-B cells to analyze the aggregation state of the pre-BCR. Although aggregation can be induced and visualized following cross-linking by Abs to the pre-BCR complex, our analyses indicate that the pre-BCR is expressed on the surface of resting cells primarily in a nonaggregated state. To evaluate the degree to which basal signals mediated through nonaggregated pre-BCR complexes can promote pre-BCR-dependent processes, we used a surrogate pre-BCR consisting of the cytoplasmic regions of Igalpha/Igbeta that is targeted to the inner leaflet of the plasma membrane of primary pro-B cells. We observed enhanced proliferation in the presence of low IL-7, suppression of V(H)(D)J(H) recombination, and induced kappa light (L) chain recombination and cytoplasmic kappa L chain protein expression. Interestingly, Igalpha/Igbeta-mediated allelic exclusion was restricted to the B cell lineage as we observed normal TCRalphabeta expression on CD8-expressing splenocytes. This study directly demonstrates that basal signaling initiated through Igalpha/Igbeta-containing complexes facilitates the coordinated control of differentiation events that are associated with the pre-BCR-dependent transition through the pro-B to pre-B checkpoint. Furthermore, these results argue that pre-BCR aggregation is not a requirement for pre-BCR function.  相似文献   

2.
Bruton's tyrosine kinase (Btk) is a cytoplasmic signaling molecule that is crucial for precursor (pre-B) cell differentiation in humans. In this study, we show that during the transition of large cycling to small resting pre-B cells in the mouse, Btk-deficient cells failed to efficiently modulate the expression of CD43, surrogate L chain, CD2, and CD25. In an analysis of the kinetics of pre-B cell differentiation in vivo, Btk-deficient cells manifested a specific developmental delay within the small pre-B cell compartment of about 3 h, when compared with wild-type cells. Likewise, in in vitro bone marrow cultures, Btk-deficient large cycling pre-B cells showed increased IL-7 mediated expansion and reduced developmental progression into noncycling CD2(+)CD25(+) surrogate L chain-negative small pre-B cells and subsequently into Ig-positive B cells. Furthermore, the absence of Btk resulted in increased proliferative responses to IL-7 in recombination-activating gene-1-deficient pro-B cells. These findings identify a novel role for Btk in the regulation of the differentiation stage-specific modulation of IL-7 responsiveness in pro-B and pre-B cells. Moreover, our results show that Btk is critical for an efficient transit through the small pre-B cell compartment, thereby regulating cell surface phenotype changes during the developmental progression of cytoplasmic mu H chain expressing pre-B cells into immature IgM(+) B cells.  相似文献   

3.
4.
Chromatin remodeling at the Ig loci prior to V(D)J recombination.   总被引:8,自引:0,他引:8  
Rearrangement of Ig H and L chain genes is highly regulated and takes place sequentially during B cell development. Several lines of evidence indicate that chromatin may modulate accessibility of the Ig loci for V(D)J recombination. In this study, we show that remodeling of V and J segment chromatin occurs before V(D)J recombination at the endogenous H and kappa L chain loci. In recombination-activating gene-deficient pro-B cells, there is a reorganization of nucleosomal structure over the H chain J(H) cluster and increased DNase I sensitivity of V(H) and J(H) segments. The pro-B/pre-B cell transition is marked by a decrease in the DNase I sensitivity of V(H) segments and a reciprocal increase in the nuclease sensitivity of Vkappa and Jkappa segments. In contrast, J(H) segments remain DNase I sensitive, and their nucleosomal organization is maintained in mu(+) recombination-activating gene-deficient pre-B cells. These results indicate that initiation of rearrangement is associated with changes in the chromatin structure of both V and J segments, whereas stopping recombination involves changes in only V segment chromatin. We further find an increase in histone H4 acetylation at both the H and kappa L chain loci at the pro-B cell stage. Although histone H4 acetylation appears to be an early change associated with B cell commitment, acetylation alone is not sufficient to promote subsequent modifications in Ig chromatin.  相似文献   

5.
6.
Mice with a targeted gene disruption of Fut8 (Fut8(-/-)) showed an abnormality in the transition from pro-B cell to pre-B cell, reduced peripheral B cells, and a decreased immunoglobulin production. Alpha 1,6-fucosyltransferase (FUT8) is responsible for the alpha 1,6 core fucosylation of N-glycans, which could modify the functions of glycoproteins. The loss of a core fucose in both very late antigen 4 (VLA-4, alpha4beta1 integrin) and vascular cell adhesion molecule 1 (VCAM-1) led to a decreased binding between pre-B cells and stromal cells, which impaired pre-B cells generation in Fut8(-/-) mice. Moreover, the B lineage genes, such as CD79a, CD79b, Ebf1, and Tcfe2a, were downregulated in Fut8(-/-) pre-B cells. Indeed, the frequency of preBCR(+)CD79b(low) cells in bone marrow pre-B cells in Fut8(-/-) was much lower than that in Fut8(+/+) cells. These results reveal a new role of core fucosylated N-glycans in mediating early B cell development and functions.  相似文献   

7.
The studies herein demonstrate that Interleukin-7 (IL-7) promotes survival of murine pro- and pre-B cells against stress levels of corticosterone (Cs). In short-term, 16-h, bone marrow cultures IL-7 abrogated Cs-induced apoptosis and cell cycle arrest in pro-B cells by decreasing apoptosis 60% and completely restoring the cell cycle. IL-7 also reduced Cs-induced apoptosis by 36% in pre-B cells and 24% in IgM(+) B cells, but did not restore deficits in the cell cycle. Among pro- and pre- B cells, substantial protection against high, pharmacological, levels of Cs was also provided by IL-7. Interestingly, stem cell factor, while reducing spontaneous apoptosis in pro-B cells, did not protect against Cs-induced death, either alone or with IL-7. In conclusion, IL-7 has potential immunotherapeutic value since it provides substantial protection to pro- and pre-B cells against the adverse effects of Cs.  相似文献   

8.
Phenotypic analysis of bone marrow cells from IL-7 knockout (KO) mice revealed that B cell development is blocked precisely at the transition between pro-B cells and pre-B cells. In contrast, the generation of pre-pro-B cells and pro-B cells appeared to be normal, as judged by total cell numbers, proliferative indexes, D-JH and V-DJH gene rearrangements, and mRNA for recombinase-activating gene-1 (RAG-1), RAG-2, TdT, Ig mu, lambda 5, and VpreB. However, upon closer inspection, several abnormalities in pro-B cell development were identified that could be corrected by injection of rIL-7 in vivo. These included the absence of the subset of late pro-B cells that initiates cmu expression for pre-B cell Ag receptor (BCR) formation, and the failure of pro-B cells to up-regulate TdT and the IL-7R alpha (but not the common gamma-chain) chain. Similar defects were present in common gamma-chain and Jak3 KO mice, but not in lambda 5 or (excluding cytoplasmic Ig mu heavy chain (c mu)) RAG-1 KO mice, all of which also arrest at the late pro-B cell stage. Consequently, up-regulation of TdT and IL-7R alpha expression requires signaling through the high affinity IL-7R, but does not require cmu expression or a functional pre-BCR. Taken together, these results suggest that IL-7 and its receptor complex are essential for 1) up-regulating the expression of TdT and IL-7R alpha, 2) initiating the production of cmu and 3) promoting the formation of a functional pre-BCR in/on pro-B cells. These key events, in turn, appear to be prerequisite both for differentiation of pro-B cells to pre-B cells and for proliferation of these cell subsets upon continued stimulation with IL-7.  相似文献   

9.

Background

We previously showed that mice exposed to cigarette smoke for three weeks exhibit loss of bone marrow B cells at the Pro-B-to-pre-B cell transition, but the reason for this is unclear. The antioxidant N-acetylcysteine (NAC), a glutathione precursor, has been used as a chemopreventive agent to reduce adverse effects of cigarette smoke exposure on lung function. Here we determined whether smoke exposure impairs B cell development by inducing cell cycle arrest or apoptosis, and whether NAC treatment prevents smoking-induced loss of developing B cells.

Methodology/Principal Findings

Groups of normal mice were either exposed to filtered room air or cigarette smoke with or without concomitant NAC treatment for 5 days/week for three weeks. Bone marrow B cell developmental subsets were enumerated, and sorted pro-B (B220+CD43+) and pre-B (B220+CD43) cell fractions were analyzed for cell cycle status and the percentage of apoptotic cells. We find that, compared to sham controls, smoke-exposed mice have ∼60% fewer pro-B/pre-B cells, regardless of NAC treatment. Interestingly, NAC-treated mice show a 21–38% increase in total bone marrow cellularity and lymphocyte frequency and about a 2-fold increase in the pro-B/pre-B cell subset, compared to sham-treated controls. No significant smoking- or NAC-dependent differences were detected in frequency of apoptotic cells or the percentage cells in the G1, S, or G2 phases of the cycle.

Conclusions/Significance

The failure of NAC treatment to prevent smoking-induced loss of bone marrow pre-B cells suggests that oxidative stress is not directly responsible for this loss. The unexpected expansion of the pro-B/pre-B cell subset in response to NAC treatment suggests oxidative stress normally contributes to cell loss at this developmental stage, and also reveals a potential side effect of therapeutic administration of NAC to prevent smoking-induced loss of lung function.  相似文献   

10.
B cell development involves rapid cellular proliferation, gene rearrangements, selection, and differentiation, and it provides a powerful model to study DNA repair processes in vivo. Analysis of the contribution of the base excision repair pathway in lymphocyte development has been lacking primarily owing to the essential nature of this repair pathway. However, mice deficient for the base excision repair enzyme, apurinic/apyrimidinic endonuclease 2 (APE2) protein develop relatively normally, but they display defects in lymphopoiesis. In this study, we present an extensive analysis of bone marrow hematopoiesis in mice nullizygous for APE2 and find an inhibition of the pro-B to pre-B cell transition. We find that APE2 is not required for V(D)J recombination and that the turnover rate of APE2-deficient progenitor B cells is nearly normal. However, the production rate of pro- and pre-B cells is reduced due to a p53-dependent DNA damage response. FACS-purified progenitors from APE2-deficient mice differentiate normally in response to IL-7 in in vitro stromal cell cocultures, but pro-B cells show defective expansion. Interestingly, APE2-deficient mice show a delay in recovery of B lymphocyte progenitors following bone marrow depletion by 5-fluorouracil, with the pro-B and pre-B cell pools still markedly decreased 2 wk after a single treatment. Our data demonstrate that APE2 has an important role in providing protection from DNA damage during lymphoid development, which is independent from its ubiquitous and essential homolog APE1.  相似文献   

11.
African trypanosomes of the Trypanosoma brucei species are extracellular protozoan parasites that cause the deadly disease African trypanosomiasis in humans and contribute to the animal counterpart, Nagana. Trypanosome clearance from the bloodstream is mediated by antibodies specific for their Variant Surface Glycoprotein (VSG) coat antigens. However, T. brucei infection induces polyclonal B cell activation, B cell clonal exhaustion, sustained depletion of mature splenic Marginal Zone B (MZB) and Follicular B (FoB) cells, and destruction of the B-cell memory compartment. To determine how trypanosome infection compromises the humoral immune defense system we used a C57BL/6 T. brucei AnTat 1.1 mouse model and multicolor flow cytometry to document B cell development and maturation during infection. Our results show a more than 95% reduction in B cell precursor numbers from the CLP, pre-pro-B, pro-B, pre-B and immature B cell stages in the bone marrow. In the spleen, T. brucei induces extramedullary B lymphopoiesis as evidenced by significant increases in HSC-LMPP, CLP, pre-pro-B, pro-B and pre-B cell populations. However, final B cell maturation is abrogated by infection-induced apoptosis of transitional B cells of both the T1 and T2 populations which is not uniquely dependent on TNF-, Fas-, or prostaglandin-dependent death pathways. Results obtained from ex vivo co-cultures of living bloodstream form trypanosomes and splenocytes demonstrate that trypanosome surface coat-dependent contact with T1/2 B cells triggers their deletion. We conclude that infection-induced and possibly parasite-contact dependent deletion of transitional B cells prevents replenishment of mature B cell compartments during infection thus contributing to a loss of the host's capacity to sustain antibody responses against recurring parasitemic waves.  相似文献   

12.
13.
Cell death is a prominent feature of B cell development. For example, a large population of B cells dies at the pre-B cell stage presumably due to the failure to express a functional immunoglobulin receptor. In addition, developing B cells expressing antigen receptors for self are selectively eliminated at the immature B cell stage. The molecular signals that control B cell survival are largely unknown. The product of the bcl-2 proto-oncogene may be involved as its overexpression inhibits apoptotic cell death in a variety of biological systems. However, the physiological role of the endogenous Bcl-2 protein during B cell development is undetermined. Here we show a striking developmental regulation of the Bcl-2 protein in B lymphocytes. Bcl-2 is highly expressed in CD43+ B cell precursors (pro-B cells) and mature B cells but downregulated at the pre-B and immature B cell stages of development. We found that Bcl-2 expressed by B cells is a long-lived protein with a half-life of approximately 10 h. Importantly, susceptibility to apoptosis mediated by the glucocorticoid hormone dexamethasone is stage-dependent in developing B cells and correlates with the levels of Bcl-2 protein. Furthermore, expression of a bcl-2 transgene rescued pre-B and immature B cells from dexamethasone-induced cell death, indicating that Bcl-2 can inhibit the apoptotic cell death of progenitors and early B cells. Taken together, these findings argue that Bcl-2 is a physiological signal controlling cell death during B cell development.  相似文献   

14.
PP4 phosphatase regulates a number of crucial processes but the role of PP4 in B cells has never been reported. We generated B cell-specific pp4 knockout mice and have identified an essential role for PP4 in B cell development. Deficiency of PP4 in B lineage cells leads to a strong reduction in pre-B cell numbers, an absence in immature B cells, and a complete loss of mature B cells. In PP4-deficient pro-B cells, immunoglobulin (Ig) DJH recombination is impaired and Ig µ heavy chain expression is greatly decreased. In addition, PP4-deficient pro-B cells show an increase of DNA double-strand breaks at Ig loci. Consistent with their reduced numbers, residual PP4-deficient pre-B cells accumulate in the G1 phase, exhibit excessive DNA damage, and undergo increased apoptosis. Overexpression of transgenic Ig in PP4-deficient mice rescues the defect in B cell development such that the animals have normal numbers of IgM+ B cells. Our study therefore reveals a novel function for PP4 in pro-B cell development through its promotion of VHDJH recombination.  相似文献   

15.
The VpreB/lambda5 surrogate L chain complex is an essential component of the pre-B cell receptor, the expression of which serves as an important checkpoint in B cell development. Surrogate L chains also may serve as components of murine pro-B cell receptors whose function is unknown. We have produced two new mAbs, R3 and R5, that recognize a different VpreB epitope than the one recognized by the previously described VP245 anti-mouse VpreB Ab. These Abs were used to confirm the expression of surrogate L chains on wild-type pro-B and pre-B cell lines. Although undetectable on the cell surface, VpreB was found to be normally expressed within B lineage cells of lambda5-deficient mice. Nevertheless, VpreB expression was extinguished at the B cell stage of differentiation in these mice. The normal pattern of VpreB expression in lambda5-deficient mice excludes an essential role for pro-B and pre-B cell receptors in VpreB regulation.  相似文献   

16.
We previously reported that the cross-linking of cluster of differentiation (CD)24 induces apoptosis in Burkitt's lymphoma cells and that this phenomenon can be enhanced by a B cell Ag receptor (BCR)-mediated signal. In this study, we extend our previous observation and report that CD24 also mediated apoptosis in human precursor-B acute lymphoblastic leukemia cell lines in the pro-B and pre-B stages accompanying activation of multiple caspases. Interestingly, simultaneous cross-linking of pre-BCR clearly inhibited CD24-mediated apoptosis in pre-B cells. We also observed that mitogen-activated protein kinases (MAPKs) were involved in the regulation of this apoptotic process. Pre-BCR cross-linking induced prompt and strong activation of extracellular signal-regulated kinase 1, whereas CD24 cross-linking induced the sustained activation of p38 MAPK, following weak extracellular signal-regulated kinase 1 activation. SC68376, a specific inhibitor of p38 MAPK, inhibited apoptosis induction by CD24 cross-linking, whereas anisomycin, an activator of p38 MAPK, enhanced the apoptosis. In addition, PD98059, a specific inhibitor of MEK-1, enhanced apoptosis induction by CD24 cross-linking and reduced the antiapoptotic effects of pre-BCR cross-linking. Collectively, whether pre-B cells survive or die may be determined by the magnitude of MAPK activation, which is regulated by cell surface molecules. Our findings should be important to understanding the role of CD24-mediated cell signaling in early B cell development.  相似文献   

17.
18.
Phthalate esters are ubiquitous environmental contaminants that are produced for a variety of common industrial and commercial purposes. We have shown that mono-(2-ethylhexyl) phthalate (MEHP), the toxic metabolite of di-(2-ethylhexyl) phthalate, induces bone marrow B cell apoptosis that is enhanced in the presence of the endogenous prostaglandin 15-deoxy-Delta((12, 14))-PGJ(2) (15d-PGJ(2)). Here, studies were performed to determine whether 15d-PGJ(2)-mediated enhancement of MEHP-induced apoptosis represents activation of an overlapping or complementary apoptosis pathway. MEHP and 15d-PGJ(2) induced significant apoptosis within 8 and 5 h, respectively, in a pro/pre-B cell line and acted cooperatively to induce apoptosis in primary pro-B cells. Apoptosis induced with each chemical was accompanied by activation of a combination of initiator caspases (caspases-2, -8, and -9) and executed by caspase-3. Apoptosis induced with MEHP and 15d-PGJ(2) was reduced in APAF1 null primary pro-B cells and accompanied by alteration of mitochondrial membranes, albeit with different kinetics, indicating an intrinsically activated apoptosis pathway. Significant Bax translocation to the mitochondria supports its role in initiating release of cytochrome c. Both chemicals induced Bid cleavage, a result consistent with a truncated Bid-mediated release of cytochrome c in an apoptosis amplification feedback loop; however, significantly more Bid was cleaved following 15d-PGJ(2) treatment, potentially differentiating the two pathways. Indeed, Bid cleavage and cytochrome c release following 15d-PGJ(2) but not MEHP treatment was profoundly inhibited by Z-VAD-FMK, suggesting that 15d-PGJ(2) activates apoptosis via two pathways, Bax mobilization and protease-dependent Bid cleavage. Thus, endogenous 15d-PGJ(2)-mediated enhancement of environmental chemical-induced apoptosis represents activation of an overlapping but distinct signaling pathway.  相似文献   

19.
The truncated/V(H)-less mouse H chain Dmu forms precursor B cell receptors with the surrogate L chain complex that promotes allelic exclusion but not other aspects of pre-B cell development, causing most progenitor B cells expressing this H chain to be eliminated at the pre-B cell checkpoint. However, there is evidence that Dmu-lambda1 complexes can be made and are positively selected during fetal life but cannot sustain adult B lymphopoiesis. How surrogate and conventional L chains interpret Dmu's unusual structure and how that affects signaling outcome are unclear. Using nonlymphoid and primary mouse B cells, we show that secretion-competent lambda1 L chains could associate with both full-length H chains and Dmu, whereas secretion-incompetent lambda1 L chains could only do so with full-length H chains. In contrast, Dmu could not form receptors with a panel of kappa L chains irrespective of their secretion properties. This was due to an incompatibility of Dmu with the kappa-joining and constant regions. Finally, the Dmu-lambda1 receptor was less active than the full-length mouse mu-lambda1 receptor in promoting growth under conditions of limiting IL-7. Thus, multiple receptor-dependent mechanisms operating at all stages of B cell development limit the contribution of B cells with Dmu H chain alleles to the repertoire.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号