首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomato strains were grown under low-K stress (71 μM K) over a wide range of external Na levels (from 0.014 to 27.8 mM Na) to measure strain response in Na substitution capacity in relation to Na concentration. Relative differences among strains for Na substitution capacity were similar at all Na levels except for the minus Na control treatment. Successive doubling of external Na concentration over the range of Na levels tested resulted in a positive linear response in plant dry weight, under low-K stress, with a similar slope for all five strains. The five strains also were grown at a toxic Na level (87 mM Na) under low K and adequate K conditions. Plant dry weight was not reduced at the toxic Na level relative to the minus Na control when the strains were grown under low-K stress; however, plant dry weight was reduced an average of fifty-five percent at the toxic Na level relative to the control when the strains were grown under adequate K conditions. There was no relationship between Na substitution capacity of strains grown under low-K stress and tolerance to toxic Na levels under adequate K conditions.  相似文献   

2.

Aims

Water use efficiency (WUE) of crop plants is an important plant trait for maintaining high yield in water limited areas. By influencing osmoregulation of plants, potassium (K) plays a critical role in stress avoidance and adaptation. However, whole plant physiological mechanisms modulated by K supply in respect of plant drought tolerance and water use efficiency are not well understood. In the present study, growth, development and transpiration dynamics of two barley cultivars were evaluated with and without PEG-induced osmotic stress using an automated balance system and image based leaf area determination.

Methods

Experiments were conducted to study the effects of varied K supply under different osmotic stress treatments on a wide range of morphological, biochemical and physiological characteristics of barley plants such as leaf area development, daily whole plant transpiration rate (DTR), stomatal conductance (gs), assimilation rate (AN), biomass and leaf water use efficiency (WUE) as well as foliar abscisic acid (ABA) concentrations. Two barley cultivars (cv. Sahin-91 and cv. Milford) were treated with two K supply levels (0.04 and 0.8 mM K) and osmotic stress induced by polyethylene glycol 6000 (PEG) for a period of 9 days (in total 48 days experiment) in the hydroponic plant culture (non-PEG and + 20% PEG ).

Results

Without PEG, low-K supply depressed dry matter (DM) by almost 60% averaged across both cultivars. Under osmotic stress (+PEG), total leaf area was reduced by almost 70% in low-K compared to adequate-K plants. Low K concentration under PEG stress was correlated with higher ABA concentration and was correlated with lower leaf- and whole plant transpiration rate. Biomass-WUE under low K supply decreased significantly in both barley cultivars, to a greater extent in cv. Milford under osmotic stress. However, leaf-WUE was not affected by K supply in the absence of osmotic stress.

Conclusions

It was suggested that reduced biomass-WUE in low-K treated barley plants was not related to inefficient stomatal control under K deficiency, but instead due to reduced assimilation rate. It was further hypothesized that under low K supply, a number of energy consuming activities reduce biomass-WUE, which are not distinguished by measuring leaf-WUE. This study showed that low K supply under osmotic stress increases foliar ABA concentration thereby decreasing plant transpiration.
  相似文献   

3.
Summary Plants of five tomato strains were grown under low-K stress at three Na levels. These plants were harvested at three time intervals, and Na accumulation and distribution were measured in their tissues. Strain differences were observed for the ability to substitute Na for K under low-K stress. In two strains with high Na-substitution capacity, efficiency in substitution was associated with the accumulation of more Na and the maintenance of higher Na concentrations in shoot tissues than in other strains. In a third strain which also had a relatively high Na-substitution capacity at the highest solution Na level, an unusual efficiency in Na substitution was indicated, because the strain neither accumulated Na nor maintained high tissue Na levels.  相似文献   

4.
Potassium (K) is reported to improve plant's resistance against environmental stress. A frequently experienced stress for plants in the tropics is water shortage. It is not known if sufficient K supply would help plants to partially overcome the effects of water stress, especially that of symbiotic nitrogen fixation which is often rather low in the tropics when compared to that of temperate regions. Thus, the impact of three levels of fertilizer potassium (0.1, 0.8 and 3.0 mM K) on symbiotic nitrogen fixation was evaluated with two legumes under high (field capacity to 25% depletion) and low (less than 50% of field capacity) water regimes. Plants were grown in single pots in silica sand under controlled conditions with 1.5 mM N (15N enriched NH4NO3). The species were faba bean (Vicia faba L.), a temperate, amide producing legume and common bean (Phaseolus vulgaris L.), a tropical, ureide producing species. In both species, 0.1 mM K was insufficient for nodulation at both moisture regimes, although plant growth was observed. The supply of 0.8 or 3.0 mM K allowed nodulation and subsequent nitrogen fixation which appeared to be adequate for respective plant growth. High potassium supply had a positive effect on nitrogen fixation, on shoot and root growth and on water potential in both water regimes. Where nodulation occurred, variations caused by either K or water supply had no consequences on the percentage of nitrogen derived from the symbiosis. The present data indicate that K can apparently alleviate water shortage to a certain extent. Moreover it is shown that the symbiotic system in both faba bean and common bean is less tolerant to limiting K supply than plants themselves. However, as long as nodulation occurs, N assimilation from the symbiotic source is not selectively affected by K as opposed to N assimilation from fertilizer.  相似文献   

5.
The effect of low root temperature on the growth and K requirements of young tomato (Lycopersicon esculentum Mill. cv Sonatine) plants was investigated. When K was supplied in solution at high concentration (5 mM), lowering the temperature of the root system from 25° to 15°C reduced the relative growth rate so that after ten days plant dry weight was 60% and leaf area 44% of that of controls maintained at 25°C. Shoot: root dry weight ratio was initially increased by cooling, but declined to 84% of controls after ten days. In spite of these changes in shoot: root ratio the concentration of K in whole plants, expressed on the basis of tissue water, was stable throughout the experiment and was significantly higher than that of controls. Further, the critical concentration of K for shoots (the concentration in the shoot associated with 90% maximum growth) was also increased at root temperatures of 15° and 30°C compared with 24°C. It is suggested that the higher concentration of K at low root temperature may reflect a real increase in requirement for the element at the physiological level. Preliminary measurements of the solute potential demonstrated a less osmotically active sap in leaves of root-cooled plants, thus there may be a greater reliance on K as an osmoticum in these individuals. When supplies of K limited growth, root-cooling had no effect on any of the parameters determining the efficiency of its use; the minimum concentration to which roots could deplete the solution of K was identical for cooled and control plants and at the same stage of visible deficiency there was no significant difference in the efficiency ratio (mg DW, mg-1 K) or utilization efficiency (mg DW mM -1 K), in spite of large differences in the partitioning of dry matter.  相似文献   

6.
Mgema  W. G.  Clark  R. B. 《Plant and Soil》1993,155(1):493-496
This study was conducted to define traits to screen sorghum (Sorghum bicolor L. Moench) genotypes for tolerance to excess Mn. Visual Mn toxicity symptoms, net and total root lengths, shoot and root dry matter yields, and shoot and root Mn concentrations were determined for plants grown in nutrient solutions (pH 4.5) at different levels of Mn (0, 3, 6, 9 and 12 mM above the initial 18 M) to assess plant responses to excess Mn. Dry matter yields showed greatest variability among genotypes, and was an effective trait to evaluate sorghum for tolerance to excess Mn. Reductions in dry matter yields did not occur until Mn levels were above 3 mM. Levels of Mn between 3 and 6 mM could effectively be used to screen sorghum for genotypic differences to excess Mn. Manganese levels above 6 mM were too severe to allow good genotypic differentiation. Of genotypes tested, NB9040 and Wheatland showed good tolerance and SC283 and ICA-Nataima were sensitive to excess Mn.  相似文献   

7.
Growth of mycorrhizal tomato and mineral acquisition under salt stress   总被引:19,自引:0,他引:19  
 High salt levels in soil and water can limit agricultural production and land development in arid and semiarid regions. Arbuscular mycorrhizal fungi (AMF) have been shown to decrease plant yield losses in saline soils. The objective of this study was to examine the growth and mineral acquisition responses of greenhouse-grown tomato to colonization by the AMF Glomus mosseae [(Nicol. And Gerd.) Gerd. and Trappe] under varied levels of salt. NaCl was added to soil in the irrigation water to give an ECe of 1.4 (control), 4.7 (medium) and 7.4 dS m–1 (high salt stress). Plants were grown in a sterilized, low P (silty clay) soil-sand mix. Mycorrhizal colonization was higher in the control than in saline soil conditions. Shoot and root dry matter yields and leaf area were higher in mycorrhizal than in nonmycorrhizal plants. Total accumulation of P, Zn, Cu, and Fe was higher in mycorrhizal than in nonmycorrhizal plants under both control and medium salt stress conditions. Shoot Na concentrations were lower in mycorrhizal than in nonmycorrhizal plants grown under saline soil conditions. The improved growth and nutrient acquisition in tomato demonstrate the potential of AMF colonization for protecting plants against salt stress in arid and semiarid areas. Accepted: 21 February 2000  相似文献   

8.
Deprivation of nitrogen (N) increases assimilate partitioning towards roots at the expense of that to shoots. This study was done to determine the physiological basis of increased root growth of tea (sCammellia sinensis L.) under N shortage. Nine-month-old clonal tea (clone TRI2025) was grown in quartz sand under naturally lit glasshouse conditions. Three levels of N (0, 3.75 and 7.5 mM N) were incorporated in to the nutrient solution and applied daily. Plant growth, photosynthesis, root respiration and plant N contents were measured at 10-day intervals over a 45-day period. Root dry weight showed a sharp increase during the first 15 days after the plants were transferred to 0 mM N, whereas no such increase was shown in plants transferred to 7.5 mM N. In contrast, shoot dry weight increased at 7.5 mM N and was significantly greater than at 0 mM N, where no increase was observed. Due to the above changes, root weight ratio increased and leaf weight ratio decreased during the first 15 days of N deprivation. Leaf photosynthetic rates did not vary between N levels during the initial 15-day period. Thereafter, photosynthetic rates were greater at 7.5 mM and 3.75 mM N than at 0 mM N. Root respiration rate decreased at 0 mM N, whereas it increased at 3.75 and 7.5 mM N, probably because of the greater respiratory cost for nitrate uptake. Root respiratory costs associated with maintenance (R m) and nitrate uptake (R u) were calculated to investigate whether the sharp increase of root growth observed upon nitrogen deprivation was solely due to the reduced respiratory costs for nitrate uptake. The estimated values for R m and R u were 3.241 × 10–4 mol CO2 g–1 (root dry matter) s–1 and 0.64 mol CO2 (mol N)–1, respectively. Calculations showed that decreased respiratory costs for nitrate uptake could not solely account for the significant increase of root biomass upon N deprivation. Therefore, it is concluded that a significant shift in assimilate partitioning towards roots occurs immediately following N deprivation in tea.  相似文献   

9.
As competition for the limited water supply available for irrigation of horticultural crops increases, research into crop management practices that enhance drought resistance, plant water-use efficiency and plant growth when water supply is limited has become increasingly essential. This experiment was conducted to determine the effect of potassium (K) nutritional status on the drought resistance of Hibiscus rosa-sinensis L. cv. Leprechaun (Hibiscus). All the treatments were fertilized with Hoagland's nutrient solution, modified to supply K as K2SO4, at 0 mM K (K0), 2.5 mM K (K2.5), and 10 mM K (K10), under two irrigation regimes (drought stressed [DS] and non-drought stressed [non-DS]). Regular irrigation and fertigation were adopted for 54 days, and drought stress treatment (initiated on day 55) lasted for 21 days; while non-DS control plants continued to receive regular irrigation and fertigation. Following the 21-day drought stress period, plants were labeled with 86Rb+ to determine the percentage of post-drought stress live roots. Both K deficiency (K0) and drought stress reduced shoot growth, but drought stress increased root growth and thus the root:shoot ratio. At K0, plants were K-deficient and had the lowest leaf K, Fe, Mn, Zn, Cu, B, Mo and Al, and highest Ca concentrations. Although the percentage of live roots was decreased by drought stress, K2.5 and K10 plants (with similar percent live roots) had greater root survival ratio after drought treatment than the K-deficient plants. These observations indicate that adequate K nutrition can improve drought resistance and root longevity in Hibiscus rosa-sinensis.  相似文献   

10.
Paterson  Eric  Sim  Allan 《Plant and Soil》1999,216(1-2):155-164
This study investigated the effects of N-supply and partial defoliation on C-partitioning, root morphology and soluble rhizodeposition, for Lolium perenne grown in axenic sand culture systems percolated with nutrient solution. Plants were grown for 36 d in nutrient solutions with differing N concentrations (4 mM or 0.02 mM NH4 +NO3 -), and effects of repeated defoliation to 4 cm were determined. The ‘low N’ supply reduced (P < 0.05) dry matter accumulation, with proportionately increased partitioning to the root systems. Root morphology was also altered at ‘low N’, with development of a finer root system, manifest as increased (P < 0.05) specific root length. Concurrent with these effects on growth of L. perenne, ‘low N’ increased (P < 0.05) exudation of C-compounds from roots on a per g root basis. Defoliation was found to increase exudation (P < 0.05) of soluble compounds for periods of 3-5 d following each cut, at both N-supply rates. The effects of N-supply and defoliation are of importance in understanding the coupling of plant productivity to nutrient cycling in soils with differing N availabilities and for grassland systems which are subject to grazing. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
The contribution of Mg deficiency to Al stress in twelve different sorghum (Sorghum bicolor (L.) Moench) genotypes was investigated in nutrient solution culture under conditions of low Mg supply (between 50 and 1000 M) at two pH values. At pH 4.2, 30 M Al strongly inhibited Mg uptake. When dry matter yield was plotted as a function of the plant Mg concentration, similar response curves were obtained in the absence and the presence of Al with three genotypes. With many other genotypes dry matter yields of the control (without Al treatment) and Al-stressed plants were remarkably different at similar internal Mg concentrations, suggesting that growth had been suppressed not by Mg deficiency but by another factor, i.e. Al-induced root damage. At pH 4.8, 30 M Al hardly induced root damage but reduced Mg uptake and Al-induced Mg deficiency could almost completely account for the growth reaction of all genotypes. Therefore, at this pH the efficiency of uptake or use of Mg in different genotypes was the basis of their respective susceptibility to Al toxicity. When specific root length surpassed a certain critical range below 80–100 m per g dry root, growth control by Al-induced Mg deficiency was nearly abolished. The pH and Al concentration where this range was reached depended on the Al sensitivity of the genotypes.  相似文献   

12.
Summary Soybean (Glycine max (L) Merr. cv. Bragg) seedlings were grown in nutrient solutions to evaluate the response to manganese nutrition as affected by potassium supply. In solutions containing 275 M manganese, increasing the solution concentration of potassium from 1 mM to 10 mM alleviated symptoms of manganese toxicity, decreased manganese concentrations in the leaves and increased dry matter yields of the plants. The reduction in manganese toxicity was brought about by a reduced rate of root absorption of manganese at high potassium supply levels.Increasing the supply of either potassium or manganese decreased the leaf concentration of magnesium although there were no apparent symptoms of magnesium deficiency in any treatment. The reduced concentration of magnesium in the leaves was due to effects of potassium and manganese on the rate of root absorption of magnesium.Under manganese deficiency conditions, growth was reduced and manganese concentrations in plant parts were very low; there was no effect of potassium supply when manganese was absent from the nutrient solution.  相似文献   

13.
The root morphology of ten temperate pasture species (four annual grasses, four perennial grasses and two annual dicots) was compared and their responses to P and N deficiency were characterised. Root morphologies differed markedly; some species had relatively fine and extensive root systems (Vulpia spp., Holcus lanatus L. and Lolium rigidum Gaudin), whilst others had relatively thick and small root systems (Trifolium subterraneum L. and Phalaris aquatica L.). Most species increased the proportion of dry matter allocated to the root system at low P and N, compared with that at optimal nutrient supply. Most species also decreased root diameter and increased specific root length in response to P deficiency. Only some of the species responded to N deficiency in this way. Root morphology was important for the acquisition of P, a nutrient for which supply to the plant depends on root exploration of soil and on diffusion to the root surface. Species with fine, extensive root systems had low external P requirements for maximum growth and those with thick, small root systems generally had high external P requirements. These intrinsic root characteristics were more important determinants of P requirement than changes in root morphology in response to P deficiency. Species with different N requirements could not be distinguished clearly by their root morphological attributes or their response to N deficiency, presumably because mass flow is relatively more important for N supply to roots in soil.Section editor: H. Lambers  相似文献   

14.
Growth and shoot: root ratio of seedlings in relation to nutrient availability   总被引:30,自引:2,他引:28  
Ericsson  Tom 《Plant and Soil》1995,168(1):205-214
The influence of mineral nutrient availability, light intensity and CO2 on growth and shoot:root ratio in young plants is reviewed. Special emphasis in this evaluation is given to data from laboratory experiments with small Betula pendula plants, in which the concept of steady-state nutrition has been applied.Three distinctly different dry matter allocation patterns were observed when growth was limited by the availability of mineral nutrients: 1, Root growth was favoured when N, P or S were the major growth constraints. 2, The opposite pattern obtained when K, Mg and Mn restricted growth. 3, Shortage of Ca, Fe and Zn had almost no effect on the shoot:root ratio. The light regime had no effect on dry matter allocation except at very low photon flux densities (< 6.5 mol m-2 day-1), in which a small decrease in the root fraction was observed. Shortage of CO2, on the other hand, strongly decreased root development, while an increase of the atmospheric CO2 concentration had no influence on dry matter partitioning. An increased allocation of dry matter to below-ground parts was associated with an increased amount of starch in the tissues. Depletion of the carbohydrate stores occurred under all conditions in which root development was inhibited. It is concluded that the internal balance between labile nitrogen and carbon in the root and the shoot system determines how dry matter is being partitioned in the plant. The consistency of this statement with literature data and existing models for shoot:root regulation is examined.  相似文献   

15.
Possible Involvement of Cytokinin in Nitrate-mediated Root Growth in Maize   总被引:1,自引:1,他引:0  
Response of root system architecture to nutrient availability in soils is an essential way for plants to adapt to soil environments. Nitrate can affect root development either as a result of changes in the external concentration, or through changes in the internal nutrient status of the plant. Nevertheless, less is known about the physiological mechanisms. In the present study, two maize (Zea mays L.) inbred lines (478 and Wu312) were used to study a possible role of cytokinin in nitrate-mediated root growth in nutrient solutions. Root elongation of 478 was more sensitive to high nitrate supply than that of Wu312. Medium high nitrate (5 mM) inhibited root elongation in 478, while, root elongation in Wu312 was only inhibited at high NO 3 supply (20 mM). Under high nitrate supply, the root elongation zone in 478 became swollen and the site of lateral root elongation was close towards the root tip. Both of the phenomena are typical of root growth induced by exogenous cytokinin treatments. Correspondingly, zeatin and zeatin nucleotide (Z + ZR) concentrations were increased at higher nitrate supply in 478, whereas they were constant in Wu312. Furthermore, exogenous cytokinin 6-benzylaminopurine (6-BA) completely reversed the stimulatory effect of low nitrate on root elongation. Therefore, it is supposed that the inhibitory effect of high concentration of nitrate on root elongation is, at least in part, mediated by increased cytokinin level in roots. High nitrate supply may have negative influences on root apex activity by affecting cytokinin metabolism so that root apical dominance is weakened and, therefore, root elongation is suppressed and lateral roots grow closer to the root apex. Nitrate suppressed lateral root elongation in Wu312 at concentration higher than 5 mM. In 478, however, this phenomenon was not significant even at 20 mM nitrate. Although exogenous 6-BA (20 nM) could suppress lateral root elongation as well, the inhibitory effect of high NO 3 concentration of nitrate on lateral root growth cannot be explained by changes in endogenous cytokinin alone.  相似文献   

16.
The effects of nickel were studied in two serpentine species with different metal tolerance strategies:Silene italica L., which limits nickel uptake and translocation, andAlyssum bertolonii Desv., a serpentine endemic, which accumulates nickel mostly in the leaves. InS. italica, nickel 7.5 μM inhibited root growth and depressed mitotic activity in root tips. Peroxidase activity and phenol concentration both in roots and shoots were increased; under the same conditions nickel did not produce any relevant effect onA. bertolonii. InS. italica an adequate calcium concentration (25 mM) was able to reverse the effects of nickel on root growth and metabolism. InA. bertolonii the same calcium concentration reduced root growth, confirming this species adaptation also to low calcium concentrations, typical of serpentines.  相似文献   

17.
Summary Two barley cultivars differing in Al tolerance, Kearney (Al-sensitive) and Dayton (Al-tolerant) were exposed to Al stress with varied Ca and Mg concentrations in the nutrient solution. Increase in calcium and magnesium supply protected root meristems and root growth from Al toxicity more effectively in the Al-tolerant cultivar than in the Al-sensitive one. Lateral roots were much more sensitive to Al than adventitious roots. Exposure to 0.33 mM Al with low concentrations of Ca (1.3 mM) and Mg (0.3 mM) caused damage to root tips in both cultivars. Increasing the Ca concentration to 4.3 and 6.3 mM prevented root tip damage in Dayton but not in Kearney. In the Al-tolerant cultivar Dayton, however, the root tips regenerated even at the low Ca concentration of 1.3 mM, whereas 6.3 mM Ca was necessary for this to occur in Kearney. This difference was due to the fact that Dayton's root meristem cells were more resistant to damage. Magnesium responses also varied between the two cultivars. At the lowest Ca concentration an increase in Mg to 6.3 mM permitted regeneration of damaged Kearney root tips and completely prevented any damage in Dayton. It is to be assumed that the different responses of the two cultivars are due to differences in plasma membrane properties.  相似文献   

18.
Nutrient culture studies frequently involve the use of balancing ions to equalize concentrations of essential nutrient elements. In a pot experiment in controlled environment with Lupinus angustifolius, growth and nodulation were assessed following calcium treatment (15 mM) using the acetate, chloride and sulphate salts in various combinations. Chloride depressed nodulation at levels higher than 20 mM; nodule mass and number were highest at the maximum sulphate concentration (13 mM). At the lowest sulphate level (2 mM), nodulation and root growth were depressed by 4 mM or higher acetate. Nodulation (dry weight and numbers of nodules) was maximized at 13 mM sulphate/4 mM chloride.  相似文献   

19.
Summary Vesicular-arbuscular mycorrhizal fungi (VAM) are known to increase plant growth in saline soils. Previous studies, however, have not distinguished whether this growth response is due to enhanced P uptake or a direct mechanism of increased plant salt tolerance by VAM. In a glasshouse experiment onions (Allium cepa L.) were grown in sterilized, low-P sandy loam soil amended with 0, 0.8, 1.6 mmol P kg–1 soil with and without mycorrhizal inoculum. Pots were irrigated with saline waters having conductivities of 1.0, 2.8, 4.3, and 5.9 dS m–1. Onion colonized withGlomus deserticola (Trappe, Bloss, and Menge) increased growth from 394% to 100% over non-inoculated control plants when soil P was low ( 0.2 mmol kg–1 NaHCO3-extractable P) at soil saturation extract salinities from 1.1 dS m–1 to 8.8 dS m–1. When 0.8 and 1.6 mM P was added no dry weight differences due to VAM were observed, however, K and P concentrations were higher in VAM plants in saline treatments.Glomus fasciculatum (Gerdeman and Trappe) andGlomus mosseae (Nicol. and Gerd.) isolates increased growth of VAM tomato 44% to 193% in non-sterilized, saline soil (10 dS m–1 saturation extract) despite having little effect on growth in less saline conditions when soil P was low. Higher tomato water potentials, along with improved K nutrition by VAM in onion, indicate mechanisms other than increased P nutrition may be important for VAM plants growing under saline stress. These effects appear to be secondary to the effects of VAM on P uptake.  相似文献   

20.
Effects of arbuscular mycorrhizal fungi (AMF) and salt stress on nutrient acquisition and growth of two tomato cultivars exhibiting differences in salt tolerance were investigated. Plants were grown in a sterilized, low-P (silty clay) soil-sand mix. Salt was applied at saturation extract (ECe) values of 1.4 (control), 4.9 (medium) and 7.1 dS m–1 (high salt stress). Mycorrhizal colonization occurred irrespective of salt stress in both cultivars, but AMF colonization was higher under control than under saline soil conditions. The salt-tolerant cultivar Pello showed higher mycorrhizal colonization than the salt-sensitive cultivar Marriha. Shoot dry matter (DM) yield and leaf area were higher in mycorrhizal than nonmycorrhizal plants of both cultivars. Shoot DM and leaf area but not root DM were higher in Pello than Marriha. The enhancement in shoot DM due to AMF inoculation was 22% and 21% under control, 31% and 58% under medium, and 18% and 59% under high salinity for Pello and Marriha, respectively. For both cultivars, the contents of P, K, Zn, Cu, and Fe were higher in mycorrhizal than nonmycorrhizal plants under control and medium saline soil conditions. The enhancement in P, K, Zn, Cu, and Fe acquisition due to AMF inoculation was more pronounced in Marriha than in the Pello cultivar under saline conditions. The results suggest that Marriha benefited more from AMF colonization than Pello under saline soil conditions, despite the fact that Pello roots were highly infected with the AMF. Thus, it appears that Marriha is more dependent on AMF symbiosis than Pello. Accepted: 22 January 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号