首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Predicting the function of a protein from its sequence is a long-standing goal of bioinformatic research. While sequence similarity is the most popular tool used for this purpose, sequence motifs may also subserve this goal. Here we develop a motif-based method consisting of applying an unsupervised motif extraction algorithm (MEX) to all enzyme sequences, and filtering the results by the four-level classification hierarchy of the Enzyme Commission (EC). The resulting motifs serve as specific peptides (SPs), appearing on single branches of the EC. In contrast to previous motif-based methods, the new method does not require any preprocessing by multiple sequence alignment, nor does it rely on over-representation of motifs within EC branches. The SPs obtained comprise on average 8.4 +/- 4.5 amino acids, and specify the functions of 93% of all enzymes, which is much higher than the coverage of 63% provided by ProSite motifs. The SP classification thus compares favorably with previous function annotation methods and successfully demonstrates an added value in extreme cases where sequence similarity fails. Interestingly, SPs cover most of the annotated active and binding site amino acids, and occur in active-site neighboring 3-D pockets in a highly statistically significant manner. The latter are assumed to have strong biological relevance to the activity of the enzyme. Further filtering of SPs by biological functional annotations results in reduced small subsets of SPs that possess very large enzyme coverage. Overall, SPs both form a very useful tool for enzyme functional classification and bear responsibility for the catalytic biological function carried out by enzymes.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
Kinjo AR  Nakamura H 《PloS one》2012,7(2):e31437
Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures.  相似文献   

16.
Short motifs of many cis-regulatory elements (CREs) can be found in the promoters of most Arabidopsis genes, and this raises the question of how their presence can confer specific regulation. We developed a universal algorithm to test the biological significance of CREs by first identifying every Arabidopsis gene with a CRE and then statistically correlating the presence or absence of the element with the gene expression profile on multiple DNA microarrays. This algorithm was successfully verified for previously characterized abscisic acid, ethylene, sucrose and drought responsive CREs in Arabidopsis, showing that the presence of these elements indeed correlates with treatment-specific gene induction. Later, we used standard motif sampling methods to identify 128 putative motifs induced by excess light, reactive oxygen species and sucrose. Our algorithm was able to filter 20 out of 128 novel CREs which significantly correlated with gene induction by either heat, reactive oxygen species and/or sucrose. The position, orientation and sequence specificity of CREs was tested in silicio by analyzing the expression of genes with naturally occurring sequence variations. In three novel CREs the forward orientation correlated with sucrose induction and the reverse orientation with sucrose suppression. The functionality of the predicted novel CREs was experimentally confirmed using Arabidopsis cell-suspension cultures transformed with short promoter fragments or artificial promoters fused with the GUS reporter gene. Our genome-wide analysis opens up new possibilities for in silicio verification of the biological significance of newly discovered CREs, and allows for subsequent selection of such CREs for experimental studies.  相似文献   

17.
18.
19.
20.
Brakoulias A  Jackson RM 《Proteins》2004,56(2):250-260
A method is described for the rapid comparison of protein binding sites using geometric matching to detect similar three-dimensional structure. The geometric matching detects common atomic features through identification of the maximum common sub-graph or clique. These features are not necessarily evident from sequence or from global structural similarity giving additional insight into molecular recognition not evident from current sequence or structural classification schemes. Here we use the method to produce an all-against-all comparison of phosphate binding sites in a number of different nucleotide phosphate-binding proteins. The similarity search is combined with clustering of similar sites to allow a preliminary structural classification. Clustering by site similarity produces a classification of binding sites for the 476 representative local environments producing ten main clusters representing half of the representative environments. The similarities make sense in terms of both structural and functional classification schemes. The ten main clusters represent a very limited number of unique structural binding motifs for phosphate. These are the structural P-loop, di-nucleotide binding motif [FAD/NAD(P)-binding and Rossman-like fold] and FAD-binding motif. Similar classification schemes for nucleotide binding proteins have also been arrived at independently by others using different methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号