首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
丹杨  杜灵通  王乐  马龙龙  乔成龙  吴宏玥  孟晨 《生态学报》2020,40(16):5638-5648
我国西北防沙治沙工程中大量的种植中间锦鸡儿(Caragana intermedia)会导致荒漠草原发生灌丛化现象,研究人工灌丛化对荒漠草原蒸散发的影响,不仅能够揭示半干旱区人为活动对生态系统水循环的影响机理,还可以指导区域生态治理实践。以宁夏盐池县荒漠草原为例,基于植被的生理生态参数和荒漠草原水热条件,采用生物地球化学模型(Biome Bio-Geochemical Cycles,Biome-BGC)和地球呼吸系统模拟模型(Breathing Earth System Simulator,BESS)结合的方法,模拟荒漠草原生态系统人工灌丛引入前后蒸散发及其组分的变化,定量研究荒漠草原人工灌丛化对区域生态水文循环中蒸散发的影响。结果表明,人工灌丛的引入使植被结构及特征发生了变化,叶面积指数(Leaf Area Index,LAI)年最大值由0.20增加为0.67,改变了植被年内与年际变化特征。荒漠草原人工灌丛化后,生态系统年均蒸散发由251.74 mm增加到了281.42 mm;人工灌丛化对生长季的蒸散发增强明显,8月蒸散发峰值时,日均蒸散发由1.27 mm/d增加到1.56 mm/d。...  相似文献   

2.
丁婧祎  尹彩春  韩逸  赵文武 《生态学报》2023,43(20):8257-8267
草原灌丛化现象在干旱半干旱区广泛发生,影响了生态系统的结构、过程和功能。生态系统具有同时提供多种功能的能力,即生态系统多功能性。灌丛化是否会引起草原生态系统多功能性的减少,其内在的作用机制又是什么?这些问题仍有待明晰。理解草原灌丛化对生态系统多功能性的影响,对于促进草原地区"草-畜-人"平衡和实现区域可持续发展至关重要。从响应规律、影响路径和控制因素三个方面总结评述了草原灌丛化对生态系统多功能性影响的研究进展,主要包括:(1)阐明了单一生态系统功能和多种生态系统功能对草原灌丛化的响应特征;(2)从生物路径、非生物路径以及气候变化和人类活动的影响方面探讨了灌丛化对生态系统多功能性的影响路径;(3)从灌丛化物种、灌丛化阶段和草原类型三个方面明晰了草原灌丛化对生态系统多功能性影响的控制因素。在此基础上,针对灌丛化对生态系统多功能性的影响机制,对生产-生态功能权衡的影响等方面对未来研究进行了展望,并面向可持续发展目标探讨了灌丛化生态系统的可持续管理路径。研究可为我国灌丛化草原的恢复和管理提供支撑。  相似文献   

3.
Encroachment of woody plants into grasslands has generated considerable interest among ecologists. Syntheses of encroachment effects on ecosystem processes have been limited in extent and confined largely to pastoral land uses or particular geographical regions. We used univariate analyses, meta-analysis and structural equation modelling to test the propositions that (1) shrub encroachment does not necessarily lead to declines in ecosystem functions and (2) shrub traits influence the functional outcome of encroachment. Analyses of 43 ecosystem attributes from 244 case studies worldwide showed that some attributes consistently increased with encroachment (e.g. soil C, N), and others declined (e.g. grass cover, pH), but most exhibited variable responses. Traits of shrubs were associated with significant, though weak, structural and functional outcomes of encroachment. Our review revealed that encroachment had mixed effects on ecosystem structure and functioning at global scales, and that shrub traits influence the functional outcome of encroachment. Thus, a simple designation of encroachment as a process leading to functionally, structurally or contextually degraded ecosystems is not supported by a critical analysis of existing literature. Our results highlight that the commonly established link between shrub encroachment and degradation is not universal.  相似文献   

4.
Aims Shrub encroachment is a common global change phenomenon occurring in arid and semi-arid regions. Due to the difficulty of partitioning evapotranspiration into shrub plants, grass plants and soil in the field, there are few studies focusing on shrub encroachment effect on the evapotranspiration and its component in China. This study aims to illustrate shrub encroachment effect on evapotranspiration by the numerical modeling method. Methods A two-source model was applied and calibrated with the measured evapotranspiration (ET) by the Bowen ratio system to simulate evapotranspiration and its component in a shrub encroachment grassland in Nei Mongol, China. Based on the calibrated model and previous shrub encroachment investigation, we set three scenarios of shrub encroachment characterized by relative shrub coverage of 5%, 15% and 30%, respectively, and quantified their effects caused by shrub encroachment through localized and calibrated two-source model. Important findings The two-source model can well reconstruct the evapotranspiration characteristics of a shrub encroachment grassland. Sensitivity analysis of the model shows that errors for the input variables and parameters have small influence on the result of partitioning evapotranspiration. The result shows that shrub encroachment has relatively small influence on the total amount of ET, but it has clear influence on the proportion of the components of evapotranspiration (E/ET). With shrub coverage increasing from 5% to 15% and then 30%, the evapotranspiration decreased from 182.97 to 180.38 and 176.72 W·m-2, decreasing amplitude values of 0.34% and 0.44%, respectively. On average, E/ET rises from 52.9% to 53.9% and 55.5%, increasing amplitude values to 2.04% and 3.25%. Data analysis indicates that shrub encroachment results in smaller soil moisture changes, but clear changes of ecosystem structure (decreasing ecosystem leaf area index while increasing vegetation height) which lead to the decrease of transpiration fraction through decreasing canopy conductance. The research highlights that, with the shrub encroachment, more water will be consumed as soil evaporation which is often regarded as invalid part of evapotranspiration and thus resulting in the decrease of water use efficiency.  相似文献   

5.
《植物生态学报》2017,41(3):348
Aims Shrub encroachment is a common global change phenomenon occurring in arid and semi-arid regions. Due to the difficulty of partitioning evapotranspiration into shrub plants, grass plants and soil in the field, there are few studies focusing on shrub encroachment effect on the evapotranspiration and its component in China. This study aims to illustrate shrub encroachment effect on evapotranspiration by the numerical modeling method. Methods A two-source model was applied and calibrated with the measured evapotranspiration (ET) by the Bowen ratio system to simulate evapotranspiration and its component in a shrub encroachment grassland in Nei Mongol, China. Based on the calibrated model and previous shrub encroachment investigation, we set three scenarios of shrub encroachment characterized by relative shrub coverage of 5%, 15% and 30%, respectively, and quantified their effects caused by shrub encroachment through localized and calibrated two-source model.Important findings The two-source model can well reconstruct the evapotranspiration characteristics of a shrub encroachment grassland. Sensitivity analysis of the model shows that errors for the input variables and parameters have small influence on the result of partitioning evapotranspiration. The result shows that shrub encroachment has relatively small influence on the total amount of ET, but it has clear influence on the proportion of the components of evapotranspiration (E/ET). With shrub coverage increasing from 5% to 15% and then 30%, the evapotranspiration decreased from 182.97 to 180.38 and 176.72 W·m-2, decreasing amplitude values of 0.34% and 0.44%, respectively. On average, E/ET rises from 52.9% to 53.9% and 55.5%, increasing amplitude values to 2.04% and 3.25%. Data analysis indicates that shrub encroachment results in smaller soil moisture changes, but clear changes of ecosystem structure (decreasing ecosystem leaf area index while increasing vegetation height) which lead to the decrease of transpiration fraction through decreasing canopy conductance. The research highlights that, with the shrub encroachment, more water will be consumed as soil evaporation which is often regarded as invalid part of evapotranspiration and thus resulting in the decrease of water use efficiency.  相似文献   

6.
郑肖然  李小雁  李柳  彭海英  张思毅 《生态学报》2015,35(23):7803-7811
灌丛斑块分布格局是灌木在干旱缺水条件下对生存环境的自我调节和适应的具体表现。应用熵理论和Klausmier模型,解释了灌丛斑块水分聚集原理并模拟了不同年降水条件下灌丛斑块的最佳面积比值(即最佳灌丛盖度)。研究结果表明:灌丛斑块生物量与其土壤含水量呈反比例函数关系,当生态系统处于稳定状态时(即熵最大状况下),年降水量与灌丛斑块面积比值符合一定的线性关系。研究采用内蒙古草原地区的野外调查数据,获得模型所需参数,进而模拟了不同年降水量条件下灌丛斑块最佳面积比值,研究结果可为半干旱地区植被保护与恢复提供参考。  相似文献   

7.
One of the most important changes taking place in drylands worldwide is the increase of the cover and dominance of shrubs in areas formerly devoid of them (shrub encroachment). A large body of research has evaluated the causes and consequences of shrub encroachment for both ecosystem structure and functioning. However, there are virtually no studies evaluating how shrub encroachment affects the ability of ecosystems to maintain multiple functions and services simultaneously (multifunctionality). We aimed to do so by gathering data from ten ecosystem functions linked to the maintenance of primary production and nutrient cycling and storage (organic C, activity of β-glucosidase, pentoses, hexoses, total N, total available N, amino acids, proteins, available inorganic P, and phosphatase activity), and summarizing them in a multifunctionality index (M). We assessed how climate, species richness, anthropic factors (distance to the nearest town, sandy and asphalted road, and human population in the nearest town at several historical periods) and encroachment by sprouting shrubs impacted both the functions in isolation and M along a regional (ca. 350 km) gradient in Mediterranean grasslands and shrublands dominated by a non-sprouting shrub. Values of M were higher in those grasslands and shrublands containing sprouting shrubs (43 and 62%, respectively). A similar response was found when analyzing the different functions in isolation, as encroachment by sprouting shrubs increased functions by 2–80% compared to unencroached areas. Encroachment was the main driver of changes in M along the regional gradient evaluated, followed by anthropic factors and species richness. Climate had little effects on M in comparison to the other factors studied. Similar responses were observed when evaluating the functions in isolation. Overall, our results showed that M was higher at sites with higher sprouting shrub cover, longer distance to roads and higher perennial plant species richness. Our study is the first documenting that ecosystem multifunctionality in shrublands is enhanced by encroaching shrubs differing in size and leaf attributes. Our findings reinforce the idea that encroachment effects on ecosystem functioning cannot be generalized, and that are largely dependent on the traits of the encroaching shrub relative to those of the species being replaced.  相似文献   

8.
王乐  杜灵通  马龙龙  丹杨 《生态学报》2022,42(1):246-254
宁夏盐池县从20世纪70年代开始在荒漠草原上人工种植柠条灌木用以防风固沙和生态恢复,这一人为措施极大地改变了区域生态系统的植被结构和碳循环,而定量评估人工灌丛化对荒漠草原生态系统碳储量的影响,不仅能够揭示人类活动的碳循环反馈机制,而且可为地方政府生态治理提供理论指导。结合Biome-BGC模型和Logistics生长模型模拟了1958—2017年间荒漠草原人工灌丛化前后的碳储量变化,定量分析了人工灌丛化对生态系统碳储量和组分的影响。结果表明:(1)结合Biome-BGC模型和Logistics生长模型可以较准确地模拟出荒漠草原人工灌丛化过程中生态系统碳储量的变化。(2)人工灌丛化会快速改变荒漠草原的碳储量累积特征,柠条灌木种植后的快速生长阶段极大增强了生态系统的总碳储量,导致生态系统的碳储量特征由草地型向灌木型转变。(3)人工灌丛化改变了生态系统各类型碳储量的组分结构,其对地上植被和枯落物碳储量的影响非常明显,灌丛化后生态系统的植被和枯落物碳分别增加了6倍和1.76倍;因植被碳向土壤碳转化过程较慢,故人工灌丛化对地下土壤碳储量的影响在短期内较为微弱。以上结果显示,荒漠草原人工灌丛化能显...  相似文献   

9.

Background and Aims

Soil texture is an important determinant of ecosystem structure and productivity in drylands, and may influence animal foraging and, indirectly, plant community composition.

Methods

We measured the density and composition of surface disturbances (foraging pits) of small, soil-foraging desert vertebrates in shrubland and grasslands, both with coarse- and fine-textured soils. We predicted that the density and functional significance of disturbances would be related more to differences in texture than shrub encroachment.

Results

Soil texture had a stronger influence on animal foraging sites than shrub encroachment. There were more disturbances, greater richness and abundance of trapped seed, and greater richness of germinating plants on coarse- than fine-textured soils. Pits in coarse soils trapped 50 % more litter than those in finer soils. Apart from slightly more soil removal and greater litter capture in shrubland pits, there were no effects of encroachment.

Conclusions

Although the process of woody encroachment has been shown to have marked effects on some ecosystem properties, it is likely to have a more subordinate effect on surface disturbances and therefore their effects on desert plant communities than soil texture. Our results highlight the importance of animal activity in shaping desert plant communities, and potentially, in maintaining or reinforcing shrub dominant processes.  相似文献   

10.
Ungulate abundance has increased dramatically worldwide, having strong impacts on ecosystem functioning. High ungulate densities can reduce the abundance, diversity and/or body condition of small mammals, which has been attributed to reductions in cover shelter and food availability by ungulates. The densities of wild ungulates have increased recently in high-diversity Mediterranean oak ecosystems, where acorn-dispersing small rodents are keystone species. We analysed experimentally ungulate effects on seed-dispersing rodents in two types of oak woodland: a forest with dense shrub layer and in dehesas lacking shrubs. Ungulates had no significant effects on vegetation structure or rodent body mass, but they reduced dramatically rodent abundance in the lacking-shrub dehesas. In the forest, ungulates modified the spatial distribution and space use of rodents, which were more concentrated under shrubs in the presence than in the absence of ungulates. Our results point to the importance of shrubs in mediating ungulate–rodent interactions in Mediterranean areas, suggesting that shrubs serve as shelter for rodents against ungulate physical disturbances such as soil compaction, trampling or rooting. Holm oak seedling density was reduced by ungulates in dehesa plots, but not in forests. Acorn consumption by ungulates may reduce oak recruitment to a great extent. Additionally, we suggest that ungulates may have a negative effect on oak regeneration processes by reducing the abundance of acorn-dispersing rodents. Given that shrubs seem to mediate ungulate effects on acorn dispersers, controlled shrub encroachment could be an effective alternative to ungulate population control or ungulate exclusion for the sustainability of the high-diversity Mediterranean oak ecosystems.  相似文献   

11.
气候变暖和过度放牧的共同作用使全球草地出现明显的灌丛化现象,灌木去除是草地灌丛化控制的重要方式,识别这些草灌植被转变对生态系统、生态水文、土壤侵蚀和侵蚀碳流失的影响对草地可持续管理具有重要意义。综述了草地灌木入侵及其控制对植物群落和土壤功能(如土壤有机碳)的影响,以及这些草灌植被变化对生态水文、土壤侵蚀和土壤侵蚀碳流失等水碳耦合过程的影响机制。针对目前草地灌木入侵和去除对植物群落、植被格局、水土过程和功能影响研究的薄弱环节,对未来相关研究提出以下建议:(1)需深化草灌植被转变对碳、氮等生物地球化学循环的影响机制研究,(2)需重视核磁共振光谱、生物标志物、同位素等新技术和植被格局的指数与连通性等新方法在草灌植被转变的水、碳等生态效应研究中的应用,(3)需加强草灌植被格局和生态水文、土壤侵蚀与土壤侵蚀碳等水碳过程的多要素、多过程和多尺度的综合研究。本文旨在为灌丛化草地科学有效的生态恢复与多目标的土地利用管理提供理论支撑。  相似文献   

12.
Aim  Evidence is accumulating of a general increase in woody cover of many savanna regions of the world. Little is known about the consequences of this widespread and fundamental ecosystem structural shift on biodiversity.
Location  South Africa.
Methods  We assessed the potential response of bird species to shrub encroachment in a South African savanna by censusing bird species in five habitats along a gradient of increasing shrub cover, from grassland/open woodland to shrubland dominated by various shrub species. We also explored historical bird species population trends across southern Africa during the second half of the 20th century to determine if any quantifiable shifts had occurred that support an ongoing impact of shrub encroachment at the regional scale.
Results  At the local scale, species richness peaked at intermediate levels of shrub cover. Bird species composition showed high turnover along the gradient, suggesting that widespread shrub encroachment is likely to lead to the loss of certain species with a concomitant decline in bird species richness at the landscape scale. Finally, savanna bird species responded to changes in vegetation structure rather than vegetation species composition: bird assemblages were very similar in shrublands dominated by Acacia mellifera and those dominated by Tarchonanthus camphoratus .
Main conclusions  Shrub encroachment might have a bigger impact on bird diversity in grassland than in open woodland, regardless of the shrub species. Species recorded in our study area were associated with historical population changes at the scale of southern Africa suggesting that shrub encroachment could be one of the main drivers of bird population dynamics in southern African savannas. If current trends continue, the persistence of several southern African bird species associated with open savanna might be jeopardized regionally.  相似文献   

13.
草原灌丛化是全球干旱半干旱地区面临的重要生态问题。灌丛化对草原生态系统结构与功能的影响较为复杂, 有待于在更广泛的区域开展研究。该研究在内蒙古锡林郭勒典型草原选择轻度、中度和重度灌丛化草地, 通过群落调查, 结合植物功能性状和土壤理化性质观测, 研究了小叶锦鸡儿(Caragana microphylla)灌丛化对草原群落结构(物种多样性、功能多样性和功能群组成)和生态系统功能(初级生产力、植被和土壤养分库)的影响。结果表明: 1)不同程度灌丛化草地的物种丰富度、功能性状多样性和群落加权性状平均值差异显著, 其中, 中度灌丛化草地的物种多样性和功能多样性较高, 表明一定程度的灌丛化有利于生物多样性维持。2)重度灌丛化草地的地上净初级生产力(ANPP)显著高于轻度和中度灌丛化草地, 其原因主要是随着灌丛化程度加剧, 群落内一/二年生草本植物显著增加, 而多年生禾草和多年生杂类草显著减少。三个灌丛化草地的植被叶片和土壤碳、氮库差异均不显著。3)灌丛化对草原生态系统功能包括ANPP、植被和土壤养分库均没有直接的影响, 而是通过影响功能群组成、土壤理化性质和功能多样性, 间接地影响生态系统功能; 灌丛化导致功能群发生替代和土壤旱碱化是最重要的生物和非生物因素。  相似文献   

14.
Desert grasslands, which are very sensitive to external drivers like climate change, are areas affected by rapid land degradation processes. In many regions of the world the common form of land degradation involves the rapid encroachment of woody plants into desert grasslands. This process, thought to be irreversible and sustained by biophysical feedbacks of global desertification, results in the heterogeneous distribution of vegetation and soil resources. Most of these shrub-grass transition systems at the desert margins are prone to disturbances such as fires, which affect the interactions between ecological, hydrological, and land surface processes. Here we investigate the effect of prescribed fires on the landscape heterogeneity associated with shrub encroachment. Replicated field manipulation experiments were conducted at a shrub-grass transition zone in the northern Chihuahuan desert (New Mexico, USA) using a combination of erosion monitoring techniques, microtopography measurements, infiltration experiments, and isotopic studies. The results indicate that soil erosion is more intense in burned shrub patches compared to burned grass patches and bare interspaces. This enhancement of erosion processes, mainly aeolian, is attributed to the soil–water repellency induced by the burning shrubs, which alters the physical and chemical properties of the soil surface. Further, we show that by enhancing soil erodibility fires allow erosion processes to redistribute resources accumulated by the shrub clumps, thereby leading to a more homogeneous distribution of soil resources. Thus fires counteract or diminish the heterogeneity-forming dynamics of land degradation associated with shrub encroachment by enhancing local-scale soil erodibility. Author Contributions  SR—Conceived of or designed study, performed research, analyzed data, wrote the paper; PD—Conceived of or designed study, performed research, wrote the paper; LW—Performed research, analyzed data; GO—Contributed new methods, analyzed data; SC—Conceived of or designed study; CW—Performed research, contributed new methods or models; and SM—Contributed new methods or models.  相似文献   

15.
干旱和半干旱地区灌木下土壤“肥岛”研究进展   总被引:15,自引:3,他引:15  
世界许多干旱、半干旱地区草地生态系统逐渐被灌木生态系统取代,这种取代过程的发展是由灌木冠幅下土壤中“肥岛”的形成和灌木的扩散相互作用直接造成的,这种“肥岛”的形成和灌木的扩散之间的反馈作用能够改变该系统中的植被组成、结构和土壤养分分布格局,从而改变该生态系统的结构和功能,文中从“肥岛”的概念和形成机制出发,对“肥岛”现象形成的原因、“肥岛”现象的研究意义、研究方法、灌木扩散与“肥岛”之间的相互关系及生物对“肥岛”的响应进行了总结,并分析了“肥岛”研究中应注意的问题,希望为中国干旱、半干旱区域土地退化的成因和过程以及植被恢复的研究提供一些参考。  相似文献   

16.
Salt marsh and mangrove have been recognized as being among the most valuable ecosystem types globally in terms of their supply of ecosystem services and support for human livelihoods. These coastal ecosystems are also susceptible to the impacts of climate change and rising sea levels, with evidence of global shifts in the distribution of mangroves, including encroachment into salt marshes. The encroachment of woody mangrove shrubs and trees into herbaceous salt marshes may represent a substantial change in ecosystem structure, although resulting impacts on ecosystem functions and service provisions are largely unknown. In this review, we assess changes in ecosystem services associated with mangrove encroachment. While there is quantitative evidence to suggest that mangrove encroachment may enhance carbon storage and the capacity of a wetland to increase surface elevation in response to sea‐level rise, for most services there has been no direct assessment of encroachment impact. On the basis of current understanding of ecosystem structure and function, we theorize that mangrove encroachment may increase nutrient storage and improve storm protection, but cause declines in habitat availability for fauna requiring open vegetation structure (such as migratory birds and foraging bats) as well as the recreational and cultural activities associated with this fauna (e.g., birdwatching and/or hunting). Changes to provisional services such as fisheries productivity and cultural services are likely to be site specific and dependent on the species involved. We discuss the need for explicit experimental testing of the effects of encroachment on ecosystem services in order to address key knowledge gaps, and present an overview of the options available to coastal resource managers during a time of environmental change.  相似文献   

17.
Expansion of woody vegetation in grasslands is a worldwide phenomenon with implications for C and N cycling at local, regional and global scales. Although woody encroachment is often accompanied by increased annual net primary production (ANPP) and increased inputs of litter, mesic ecosystems may become sources for C after woody encroachment because stimulation of soil CO2 efflux releases stored soil carbon. Our objective was to determine if young, sandy soils on a barrier island became a sink for C after encroachment of the nitrogen‐fixing shrub Morella cerifera, or if associated stimulation of soil CO2 efflux mitigated increased litterfall. We monitored variations in litterfall in shrub thickets across a chronosequence of shrub expansion and compared those data to previous measurements of ANPP in adjacent grasslands. In the final year, we quantified standing litter C and N pools in shrub thickets and soil organic matter (SOM), soil organic carbon (SOC), soil total nitrogen (TN) and soil CO2 efflux in shrub thickets and adjacent grasslands. Heavy litterfall resulted in a dense litter layer storing an average of 809 g C m?2 and 36 g N m?2. Although soil CO2 efflux was stimulated by shrub encroachment in younger soils, soil CO2 efflux did not vary between shrub thickets and grasslands in the oldest soils and increases in CO2 efflux in shrub thickets did not offset contributions of increased litterfall to SOC. SOC was 3.6–9.8 times higher beneath shrub thickets than in grassland soils and soil TN was 2.5–7.7 times higher under shrub thickets. Accumulation rates of soil and litter C were highest in the youngest thicket at 101 g m?2 yr?1 and declined with increasing thicket age. Expansion of shrubs on barrier islands, which have low levels of soil carbon and high potential for ANPP, has the potential to significantly increase ecosystem C sequestration.  相似文献   

18.
Encroachment of woody plants into grasslands is a global phenomenon that has substantial impacts on pastoral productivity and ecosystem services. Over the past half century, pastoralists and land management agencies have explored various options to control woody plants in order to improve ecosystem services in shrub‐encroached grasslands. We examined the effectiveness of controlling the encroachment of the shrub Caragana microphylla into grassland in Inner Mongolia, China. We cut and removed all of the aboveground biomass from 450 shrubs, predicting that the effectiveness of this technique to control shrubs would depend on shrub morphology. Specifically, we expected that larger shrubs with more biomass would be more difficult to kill by cutting than smaller shrubs. A year after treatment, we found that cutting killed only 11% of the 450 treated shrubs, and of these, three‐quarters of the locations that they occupied reverted to grasses and one‐quarter to bare soil. Shrubs that survived the cutting treatment produced more stems and leaf biomass, and therefore had a greater leaf to stem ratio. Shrubs that died after cutting had a lower crown area and basal area, and less stem biomass than shrubs that resprouted within 12 months of cutting. There were no effects of shrub height on the fate of treated shrubs. Cutting had no effect on understory plant cover or richness, but reproductive plants were taller under shrubs that were not cut. Overall, our study showed that removing aboveground shrub biomass by cutting is an ineffective technique for “restoring” the original grassland community unless shrubs are very small. Strategic targeting of small shrubs would be a more effective technique for controlling the spread of C. microphylla in the long term.  相似文献   

19.
In recent decades, pastoral abandonment has produced profound ecological changes in the Alps. In particular, the reduction in grazing has led to extensive shrub encroachment of semi-natural grasslands, which may represent a threat to open habitat biodiversity. To reverse shrub encroachment, we assessed short-term effects of two different pastoral practices on vegetation and dung beetles (Coleoptera, Scarabaeoidea). Strategic placement of mineral mix supplements (MMS) and arrangement of temporary night camp areas (TNCA) for cattle were carried out during summer 2011 in the Val Troncea Natural Park, north-western Italian Alps. In 2012, one year after treatment, a reduction in shrub cover and an increase in bare ground cover around MMS sites was detected. A more intense effect was detected within TNCA through increases in forage pastoral value, and in the cover and height of the herbaceous layer. Immediately after treatment, changes in dung beetle diversity (total abundance, species richness, Shannon diversity, taxonomic and functional diversity) showed a limited disturbance effect caused by high cattle density. In contrast, dung beetle diversity significantly increased one year later both at MMS and TNCA sites, with a stronger effect within TNCA. Multivariate Regression Trees and associated Indicator Value analyses showed that some ecologically relevant dung beetle species preferred areas deprived of shrub vegetation. Our main conclusions are: i) TNCA are more effective than MMS in terms of changes to vegetation and dung beetles, ii) dung beetles respond more quickly than vegetation to pastoral practices, and iii) the main driver of the rapid response by dung beetles is the removal of shrubs. The resulting increase in dung beetle abundance and diversity, which are largely responsible for grassland ecosystem functioning, may have a positive effect on meso-eutrophic grassland restoration. Shrub encroachment in the Alps may therefore be reversed, and restoration of grassland enhanced, by using appropriate pastoral practices.  相似文献   

20.
Semi-natural grasslands are key habitats for biodiversity conservation in Central Europe. Shrub encroachment is one of the most threatening drivers of grassland degradation and affects soil properties, microclimate, and vegetation with possible impacts on higher trophic levels. We aimed to analyse the impact of shrub encroachment with broom (Cytisus scoparius) on carabid beetle diversity, species composition, and functional traits. In a field study on dry grasslands on the island of Hiddensee (Germany) we studied 15 sites along a gradient of increasing broom encroachment and classified them into three dry grassland types with low, medium, and high shrub cover. Our results provide evidence that shrub encroachment initially has positive effects on species richness and activity densities of dry grassland carabids. Carabid species composition differed among differently shrub-covered dry grassland types, and sites with low and high shrub cover were each characterised by unique carabid assemblages. The species composition of sites with a medium shrub biomass had a transitional character and contained species which are typical for open dry grassland, but also shared species with sites with a high shrub cover. Among functional trait parameters investigated, especially the body size of carabid beetles was related to environmental parameters associated with shrub encroachment. Body size was positively correlated to shrub biomass and soil humidity, but negatively to temperature. Eurytopy values of carabids were related to high litter cover, i.e. habitat generalist (eurytopic) species mainly occurred in densely shrub-encroached sites. In order to preserve unique carabid assemblages of open dry grasslands with stenotopic and smaller species, it is most important to prevent a shrub encroachment higher than about 60% cover. For management we suggest extensive grazing (by cattle, sheep or horses) to prevent shrub encroachment on dry grasslands. In areas with high shrub cover additionally the use of goats or mechanical removal of shrubs might be necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号