首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
P R Warman 《Plant and Soil》1987,101(1):67-72
A four-year field study was conducted on a Hebert gravelly sandy loam (pH 4.5) in Nova Scotia to assess the effects of pruning management and seven fertility amendments on lowbush blueberry (Vaccinium augustifolium Ait) production (yield, above ground and root tissue composition) and soil fertility. Pruning by oil burning produced higher fruit yields than flail mowing but burning had the opposite effect on the plant N content (with a lesser influence on above ground Mn and Zn). None of the fertility treatments (chicken manure, dairy manure, swine manure, urea, sawdust, NPK, NPK+S+Lime+Micronutrients) produced fruit yields significantly greater than the control. Treatments provided the equivalent of 50kg total N/ha/2-yr cycle. Treatments influenced tissue N, P, K, Ca, Mg, B, Mn, Cu, Zn and Mo levels. In general, the three manure treatments produced the highest levels of plant macronutrients; the urea treatment produced the lowest levels of plant nutrients. In most cases, extractable levels of soil P, K, Ca and Mg were highly correlated with the plant tissue content of these elements. Overall, the dairy manure treated soils were the highest in soil fertility.  相似文献   

2.
长期施肥对玉米生育期土壤微生物量碳氮及酶活性的影响   总被引:36,自引:0,他引:36  
以小麦-玉米轮作长期肥料定位试验为平台,探讨不同养分管理对玉米生育期塿土微生物量碳、氮和酶活性动态变化的影响。试验包括6个处理,分别为不施肥(CK)、单施氮肥(N)、氮磷配合(NP)、氮磷钾配合(NPK)、NPK+秸秆(SNPK)以及有机肥+NPK(MNPK)。结果表明玉米生育期土壤微生物量碳、氮变化显著。不同施肥管理下土壤微生物量碳、氮的高低显著性分别为MNPK>SNPK、NP、NPK>N、CK。玉米生育期内土壤酶活性也变化显著,蔗糖酶、脲酶和纤维素酶在玉米抽雄期达到活性高峰,而磷酸酶在玉米拔节期出现活性高峰。不同施肥管理对土壤酶活性的影响总体表现为MNPK处理最高,其次为SNPK处理,再次为NPK和NP处理,N和CK处理最低。不同施肥处理间土壤微生物量碳、氮以及酶活性与土壤有机碳、全氮、速效磷水平密切相关。塿土长期施用氮磷或氮磷钾化肥可以提高土壤微生物量碳、氮以及酶活性。一季作物秸秆还田配合氮磷钾化肥与氮磷钾相比有提高土壤微生物量碳、氮以及酶活性的趋势。在等氮量下,有机肥配合化肥与其他施肥模式相比,均显著提升土壤化学肥力因素、微生物量碳氮和酶活性。因此,塿土上建议进行有机无机肥配合以提高土壤肥力,保持土壤生物健康。  相似文献   

3.
This study aimed to evaluate the effects of chemical fertilizer (NPK), NPK with livestock manure (NPK+M), NPK with straw (NPK+S), and NPK with green manure (NPK+G) on soil enzyme activities and microbial characteristics of albic paddy soil, which is a typical soil with low productivity in China. The responses of extracellular enzyme activities and the microbial community diversity (determined by phospholipid fatty acid analysis [PLFA] and denaturing gradient gel electrophoresis [DGGE]) were measured. The results showed that NPK+M and NPK+S significantly increased rice yield, with NPK+M being approximately 24% greater than NPK. The NPK+M significantly increased soil organic carbon (SOC) and available phosphate (P) and enhanced phosphatase, β-cellobiosidase, L-leucine aminopeptidase and urease activities. The NPK+S significantly increased SOC and available potassium (K) and significantly enhanced N-acetyl-glucosamidase, β-xylosidase, urease, and phenol oxidase activities. The NPK+G significantly improved total nitrogen (N), ammonium N, available P, and N-acetyl-glucosamidase activity. The PLFA biomass was highest under NPK+S, followed by NPK+M and NPK+G treatments. Principal component analysis (PCA) of the PLFA indicated that soils with NPK+M and NPK+S contained higher proportions of unsaturated and cyclopropane fatty acids (biomarkers of fungi and gram-negative bacteria) and soil under NPK+G contained more straight chain saturated fatty acids (representing gram-positive bacteria). PCA of the DGGE patterns showed that organic amendments had a greater influence on fungal community. Cluster analysis of fungal DGGE patterns revealed that NPK+G was clearly separated. Meanwhile, the bacterial community of NPK+M treatment was the most distinct. RDA analysis revealed changes of microbial community composition mostly depended on β-xylosidase, β-cellobiosidase activities, total N and available K contents. The abundances of gram-negative bacterial and fungal PLFAs probably effective in improving fertility of low-yield albic paddy soil because of their significant influence on DGGE profile.  相似文献   

4.
A field study on phytoremediation of hydrocarbon contaminated soil was designed to assess the effects of organic manures (poultry droppings and cassava peels) and NPK fertilization on the potentials of cowpea (Vigina unguiculata) and maize (Zea mays) to stimulate hydrocarbon degradation in soil. Cowpea and maize crops were established on the hydrocarbon contaminated soil amended with three rates (0, 4, and 8 ton/ha) of the soil amendments, and arranged in 3 x 3 x 3 factorial in Randomized Complete Block Design. Hydrocarbon was significantly (P < 0.05) reduced in plots treated with the combined forms of the soil amendments. While the treatment combinations of 8 t/ha Poultry Droppings (PD) + 8 t/ha Cassava Peels (CP) + 4 t/ha NPK fertilizer was optimal for hydrocarbon degradation in the cowpea plots, 4 t/ha PD + 8 t/ha CP + 8 t/ha NPK fertilizer was the most preferred in the maize plot. Cowpea showed greater potential for hydrocarbon degradation at the first year. The mean values of hydrocarbon concentrations at the cowpea and maize plots indicated no significant difference at the second year. Grain yield of cowpea increased by 87% at the second year, while maize was unable to grow to maturity in the first year.  相似文献   

5.
Soil organic carbon (SOC) is essential for soil fertility and climate change mitigation, and carbon can be sequestered in soil through proper soil management, including straw return. However, results of studies of long‐term straw return on SOC are contradictory and increasing SOC stocks in upland soils is challenging. This study of North China upland agricultural fields quantified the effects of several fertilizer and straw return treatments on SOC storage changes and crop yields, considering different cropping duration periods, soil types, and cropping systems to establish the relationships of SOC sequestration rates with initial SOC stocks and annual straw C inputs. Our meta‐analysis using long‐term field experiments showed that SOC stock responses to straw return were greater than that of mineral fertilizers alone. Black soils with higher initial SOC stocks also had lower SOC stock increases than did soils with lower initial SOC stocks (fluvo‐aquic and loessial soils) following applications of nitrogen‐phosphorous‐potassium (NPK) fertilizer and NPK+S (straw). Soil C stocks under the NPK and NPK+S treatments increased in the more‐than‐20‐year duration period, while significant SOC stock increases in the NP and NP+S treatment groups were limited to the 11‐ to 20‐year period. Annual crop productivity was higher in double‐cropped wheat and maize under all fertilization treatments, including control (no fertilization), than in the single‐crop systems (wheat or maize). Also, the annual soil sequestration rates and annual straw C inputs of the treatments with straw return (NP+S and NPK+S) were significantly positively related. Moreover, initial SOC stocks and SOC sequestration rates of those treatments were highly negatively correlated. Thus, long‐term straw return integrated with mineral fertilization in upland wheat and maize croplands leads to increased crop yields and SOC stocks. However, those effects of straw return are highly dependent on fertilizer management, cropping system, soil type, duration period, and the initial SOC content.  相似文献   

6.
This is the second of two papers presenting the data from an experiment on the application of aerobically-digested sewage sludge (AES), anaerobic lagoon septic wastes (ANS), sewage sludge compost and fertilizer to soils for grass forage and feed corn production at two different sites in Nova Scotia. Crop yields, plant tissue and Mehlich-1 extractable soil nutrients were evaluated; 15 elements were analyzed in the plant tissue and 9 elements in the soil extracts. This paper describes the Ca, Mg, S, Fe, Mn, Cu, Zn and B content of the crops and the Mehlich-1 extractable content of the soils. The response to the amendments was not consistent at the two sites with the two different crops. We found that the septic sludge (ANS) produced the highest forage Fe, Cu and Zn levels and was equal to compost in elevating corn stover and forage S and the forage B content. The compost produced the highest forage Ca and corn Zn, the AES produced the highest corn Mn, and fertilizer produced the highest forage Mn. None of the amendments produced excessive levels of the above nutrients; rather, the amendments improved the feed quality of the forage and corn stover. Lastly, it was noted that the Mehlich-1 extract only had a significantly positive correlation with forage Cu content.  相似文献   

7.
Lee H  Ha HS  Lee CH  Lee YB  Kim PJ 《Bioresource technology》2006,97(13):1490-1497
Paddy soils in Korea generally require the addition of Si to enhance rice productivity. Coal combustion fly ash, which has a high available Si content and alkaline pH, was selected as a potential source of Si in this study. Two field experiments were carried out to evaluate rice (Oryza sativa) productivity in silt loam and loamy sand soils to which 0, 40, 80, and 120 Mg ha(-1) of fly ash were added with 2 Mg ha(-1) Si as a control. Fly ash increased the soil pH and available Si and P contents of both soils. The amount of available B increased to a maximum of 2.57 mg kg(-1), and the B content of the rice plants increased to a maximum of 52-53 mg kg(-1) following the addition of 120 Mg ha(-1) fly ash. The rice plants did not show toxicity effects. The highest rice yields were achieved following the addition of around 90 Mg ha(-1) fly ash. The application of fly ash increased Si, P and K uptake by the rice plants, but did not result in an excessive uptake of heavy metals in the submerged paddy soil. In conclusion, fly ash could be a good supplement to other inorganic soil amendments to improve the nutrient balance in paddy soils.  相似文献   

8.
A field experiment was conducted to determine the effects of integrated use of organic and inorganic nutrient sources with effective microorganisms on growth and yield of cotton. Treatments included: control; organic materials (OM); effective microorganisms (EM); OM+EM; mineral NPK (170:85:60 kg); 1/2 mineral NPK+EM; 1/2 mineral NPK+OM+EM and mineral NPK+OM+EM. OM and EM alone did not increase the yield and yield attributing components significantly but integrated use of both resulted in a 44% increase over control. Application of NPK in combination with OM and EM resulted in the highest seed cotton yield (2470 kg ha-1). Integrated use of OM+EM with 1/2 mineral NPK yielded 2091 kg ha-1, similar to the yield (2165 kg ha-1) obtained from full recommended NPK, indicating that this combination can substitute for 85 kg N ha-1. Combination of both N sources with EM also increased the concentrations of NPK in plants. Economic analysis suggested the use of 1/2 mineral NPK with EM+OM saves the mineral N fertilizer by almost 50% compared to a system with only mineral NPK application. This study indicated that application of EM increased the efficiency of both organic and mineral nutrient sources but alone was ineffective in increasing yield.  相似文献   

9.
Frequent occurrences of soil compaction damage resulting from high raindrop impact energy, and from human and animal trafficking during field operations pose a problem to farmers around the tropics. We studied the effect of some crop and soil management practices (manure, mulch, NPK applications, tillage and crop type) on some soil compactibility indices (dry bulk density, cone index, total soil porosity, gravimetric soil water content) in a Typic Paleustult in southeastern Nigeria. The study was carried out for three consecutive planting seasons using two tillage systems and four other soil management practices (poultry droppings + NPK, mulch + NPK, NPK alone and no amendment). These were laid out as split-plot in a RCB design replicated three times and using maize (Zea mays L.) and groundnut (Arachis hypogea) as test crops. Results indicate that the different soil management techniques adopted influenced dry bulk density, penetration resistance, total soil porosity and gravimetric soil water content at 44 and 66 days after planting (DAP) whereas only gravimetric soil water content was affected at 90 DAP. The dry bulk density of tilled maize and groundnut plots increased significantly (P<0.05) by between 2 and 14% relative to no-till plots at 44 and 66 DAP. In both maize and groundnut plots, dry bulk density decreased significantly (P<0.05) in plots amended with poultry droppings +NPK relative to the control plots by 3–10% at 44 and 66 DAP. Tilled maize and groundnut plots had 37–45% lower (P< 0.05) penetration resistance than their corresponding no-till plots at both 44 and 66 DAP. Penetration resistance measurements were lower by 16.5–25% in plots amended with poultry droppings + NPK relative to unamended plots at 44 and 66 DAP. Cumulative (1996, 1997, 1998) data indicate that gravimetric soil water content in maize and groundnut plots generally increased significantly (P<0.05) in no-till plots relative to tilled plots by 18–27% at both 44 and 66 DAP. Plots amended with poultry droppings + NPK had between 24 and 111% increase (P<0.05) in soil gravimetric soil water content at both 44 and 66 DAP. Results are indicative that all soil compactibility indices measured were not affected at 90 DAP except for soil gravimetric soil water content in 1996 and 1998. Results from this work demonstrate that some crop and soil management practices could be used to reduce soil compactibility problems thus increasing productivity of such soils.  相似文献   

10.

Background and aims

Winter cover crop cultivation during the fallow season has been strongly recommended in mono-rice paddy soil to improve soil quality, but its impact in increasing the greenhouse gases (GHGs) emissions during rice cultivation when applied as green manure has not been extensively studied. In order to recommend a preferable cover crop which can increase soil productivity and suppress GHG emission impact in paddy soil, the effect of winter cover crop addition on rice yield and total global warming potential (GWP) was studied during rice cultivation.

Methods

Two cover crops (Chinese milk vetch, Astragalus sinicus L., hereafter vetch, and rye, Secale cerealis) having different carbon/nitrogen (C/N) ratios were cultivated during the rice fallow season. The fresh above-ground biomasses of vetch [25 Mg fresh weight (FW) ha?1, moisture content (MC) 86.9 %, C/N ratio 14.8] and rye (29 Mg rye FW ha?1, MC 78.0 %, C/N ratio 64.3) were incorporated as green manure 1 week before rice transplanting (NPK + vetch, and NPK + rye). The NPK treatment was installed for comparison as the control. During the rice cultivation, methane (CH4) and nitrous oxide (N2O) gases were collected simultaneously once a week using the closed-chamber method, and carbon dioxide (CO2) flux was estimated using the soil C balance analysis. Total GWP impact was calculated as CO2 equivalents by multiplying the seasonal CH4, CO2, and N2O fluxes by 25, 1, and 298, respectively.

Results

Methane mainly covered 79–81 % of the total GWP, followed by CO2 (14–17 %), but the N2O contribution was very small (2–5 %) regardless of the treatment. Seasonal CH4 fluxes significantly increased to 61 and 122 % by vetch and rye additions, respectively, compared to that of the NPK treatment. Similarly, the estimated seasonal CO2 fluxes increased at about 197 and 266 % in the vetch and rye treatments, respectively, compared with the NPK control plots. Based on these results, the total GWP increased to 163 and 221 % with vetch and rye applications, respectively, over the control treatment. Rice productivity was significantly increased with the application of green manure due to nutrient supply; however, vetch was more effective. Total GWP per grain yield was similar with the vetch (low C/N ratio) and NPK treatments, but significantly increased with the rye (high C/N ratio) application, mainly due to its higher CH4 emission characteristic and lower rice productivity increase.

Conclusions

A low C/N ratio cover crop, such as vetch, may be a more desirable green manure to reduce total GWP per grain yield and to improve rice productivity.  相似文献   

11.
A field experiment was conducted on a Vertisol for three consecutive years (1998-2000) to study the effects of combined use of inorganic fertilizer (NPK) and organic manure (farmyard manure) on soil physical properties, water-use efficiency, root growth and yield of soybean [Glycine max (L.) Merr.] in a soybean-mustard cropping system. Application of 10 Mg farmyard manure and recommended NPK (NPK+FYM) to soybean for three consecutive years improved the organic carbon content of the surface (0-15 cm) soil from an initial value of 4.4 g kg(-1) to 6.2 g kg(-1) and also increased seed yield and water-use efficiency by 103% and 76%, respectively, over the control. The surface (0-15 cm) soil of the plots receiving both farmyard manure and recommended NPK had larger mean weight diameter (0.50 mm) and a higher percentage of water stable aggregates (55%) than both the inorganically fertilized (NPK) (0.44 mm and 49%) and unfertilized control plots (0.41 mm and 45.4%). The saturated hydraulic conductivity (13.32 x 10(-6) m s(-1)) of the NPK+FYM treatment of the 0-7.5 cm depth was also significantly greater than that of the NPK (10.53 x 10(-6) m s(-1)) and control (8.61 x 10(-6) m s(-1)) treatments. The lowest bulk density (1.18 Mg m(-3)) in the 0-7.5 cm layer was recorded in NPK+FYM whereas it was highest in the control plots (1.30 Mg m(-3)). However, at sub-surface (22.5-30 cm) layer, fertilizer and manure application had little effect on bulk density and saturated hydraulic conductivity. Root length density (RLD) up to the 30 cm depth was highest in the NPK+FYM plots and it was 31.9% and 70.5% more than NPK and control plots. The RLD showed a significant and negative correlation (r=-0.88( * *)) with the penetration resistance.  相似文献   

12.
The aims of the study were to evaluate the effect of organic wastes (biosludge and dairy sludge) and biofertilizer (Azotobacter chroococcum) on the planting conditions of Jatropha curcas in metal contaminated soils. Results showed that the plants survival rate in heavy metal contaminated soil increased with addition of amendments. Treatment T6 (heavy metal contaminated soils+dairy sludge+biofertilizer) observed to be the best treatment for growth (height and biomass) as compared with the treatment T5 (heavy metal contaminated soils+biosludge+biofertilizer). In addition, organic amendments provided nutrients such as carbon, N, P and K to support plant growth and reduced the metal toxicity to plant. The present study showed that metal contaminated lands/soils could be suitably remediated by adapting appropriate measures.  相似文献   

13.
Soil amendment with two types of composts: animal manure (AC) and vegetable waste (VC) induced composts have potential to alleviate Cd toxicity to maize in contaminated soil. Therefore, Cd mobility in waste water irrigated soil can be addressed through eco-friendly and cost effective organic soil amendments AC and VC that eventually reduces its translocation from polluted soil to maize plant tissues. The comparative effectiveness of AC and VC at 3% rate were evaluated on Cd solubility, its accumulation in maize tissues, translocation from root to shoot, chlorophyll contents, plant biomass, yield and soil properties (pH, NPK, OM). Results revealed that the addition of organic soil amendments significantly minimized Cd mobility and leachability in soil by 58.6% and 47%, respectively in VC-amended soil over control. While, the reduction was observed by 61.7% and 57%, respectively when AC was added at 3% over control. Comparing the control soil, Cd uptake effectively reduced via plants shoots and roots by 50%, 46% respectively when VC was added in polluted soil. However, Cd uptake was decreased in maize shoot and roots by 58% and 52.4% in AC amended soil at 3% rate, respectively. Additionally, NPK contents were significantly improved in polluted soil as well as in plant tissues in both composts amended soil Comparative to control, the addition of composts significantly improved the maize dry biomass and chlorophyll contents at 3% rate. Thus, present study confirmed that the addition of animal manure derived compost (AC) at 3% rate performed well and might be consider the suitable approach relative to vegetable compost for maize growth in polluted soil.  相似文献   

14.
Mismanagement of crop straw and coal gas residue threatens the atmosphere and the economy. Nevertheless, thermal-pyrolysis is an option for management that turns bio-waste into biochar; its viability and adoption by the public as soil amendments is dependent on the agronomic and environmental values compared between biochar and the raw materials. We undertook a 60-day short-term analysis to assess the impact of various wastes and biochars, as well as inorganic nutrients (N), on carbon dioxide (CO2) fluxes, soil enzyme activities, soil fertility status, and microbial activities. There were eight treatments of soil amendments: without an amendment (CK), Nutrients (N), straw + nutrients (S+N), straw biochar + nutrients (SB+N), coal gas residue + nutrients (C+N), coal gas residue biochar + nutrients (CB+N), straw + straw biochar + nutrients (S+SB+N) and coal gas residue waste + coal gas residue biochar + nutrients (C+ CB +N). The results indicated that soil EC, pH, nitrate N (NO3- N), SOC, TN and available K were significantly (p < 0.05) increased coal gas residue biochar and combined with coal fly ash as compared to maize straw biochar and combined with maize straw and N treatments. The higher concentrations of soil MBC and MBN activities were increased in the maize straw application, while higher soil enzyme activity such as, invertase, urease and catalase were enhanced in the coal fly ash derived biochar treatments. The higher cumulative CO2 emissions were recorded in the combined applications of maize straw and its biochar as well as coal gas residue and its biochar treatment. Our study concludes, that maize straw and coal fly ash wastes were converted into biochar product could be a feasible substitute way of discarding, since land amendment and decreased CO2 fluxes and positive changes in soil microbial, and chemical properties, and can be confirmed under long-term conditions for reduction of economical and environment issues.  相似文献   

15.
《农业工程》2022,42(4):289-295
A field experiment was conducted in 2019 (minor season) and 2020 (major season) to study soil properties and net income response to inorganic NPK fertilizer and biochar application for maize production. The experiment was made up of 2 × 3 factorial combinations of biochar (0 kg ha?1, 2000 kg ha?1) and inorganic NPK fertilizer (0:0:0 kg NPK ha?1, recommended rate; 90:60:60 kg N: P:K ha?1, half of recommended rate; 45:30:30 kg N:P:K ha?1). In both seasons, biochar and inorganic NPK fertilizer applied separately or in combination improved soil properties (dehydrogenase activity, CEC, organic carbon, bacterial and fungal population, microbial biomass carbon and basal respiration rates) and yield significantly. In 2019, however, mineral N and available P did not increase in biochar amended plots. Significant interaction effect was observed between biochar and NPK fertilizer application which could be related to positive soil conditioning of biochar and biochar surface charges which enhanced retention and steady release of nutrient supplied by NPK fertilizer for maize use. Maize grain yield and profit in both crop seasons increased significantly and followed an increasing order of control < sole biochar < NPK (half rate) < NPK (full rate) < combined biochar + NPK (full rate) = combined biochar + NPK (half rate). Farmers in this agro ecological zone are encouraged to apply biochar + inorganic NPK fertilizer (45:30:30) due to its low total production cost, improved maize grain yield and high net income compared to the full rate (90:60:60) or full rate + biochar.  相似文献   

16.
On-farm field experiments were carried out at two sites having 38- and 10-year-old orchard cropping systems under sub-tropical climatic regions to evaluate changes in organic carbon accumulation and chemical and microbiological properties of the soils. Under a system of different intercropped fruit trees, the cultivation of coconut (Cocos nucifera L.) intercropped with guava (Psidium guajava L.) enhanced the soil microbial activity approximately 2-fold after 38 yrs over 10 yrs of the same intercropped system. Soil organic carbon increased from 3.4 to 7.8 and 2.4 to 6.2 g kg-1 after 38 and 10 yrs, respectively, following the establishment of orchards. The increase was attributed to greater recycling of bio-litters. Levels of dehydrogenase, phosphatase and soil microbial biomass under field conditions generally depended more on the nature of the cropping system than on soil types. Similarly, average carbon inputs of bio-litter to the soil in monocrop (0.98 Mg ha-1 yr-1) was less than intercropped fruit trees (2.07 Mg ha-1 yr-1). The average level of soil microbial biomass carbon was 1158 kg ha-1 (0-0.15 m depth) and the organic carbon turnover rate was 8.5 yr-1 after 38 yrs of intercropped fruit trees, which resulted in a lower ratio (1.81) of carbon inputs to soil microbial biomass carbon.  相似文献   

17.
《农业工程》2020,40(5):388-397
Today, to achieve sustainable agriculture with maximum yield and minimum environmental risks, the use of nanofertilizers has riveted ample consideration. Field experiments were conducted during binary season of 2016 and 2017 at Research Farm, Faculty of Agriculture, Minia University, Egypt to estimate whether NPK nanofertilizers applied in equivalent or lower rates could replace recommended levels of NPK chemical fertilizers in potato farming systems without retrograde effects upon yield production or quality. Impacts of recommended rates of NPK chemical fertilizers (control treatments) compared to NPK nanofertilizers in equivalent or lower rates (100%, 50% and 25%), foliar or soil applied on potato productivity and quality were studied.Compared with control treatments, plots receiving foliar application of NPK nanofertilizers at 50% or 25% of recommended level showed higher values of economic yield (23.59-ton ha−1), starch rates (79.62%), NPK nutrient use efficiency (67.74, 278.92, 118.54 kg potato/kg nutrient), harvest index (59.24%) and only lower potato nitrate content (1.15 g kg−1) as a harmful indicator. Among all treatments, foliar application of NPK nanofertilizers at 50% rate was found to be the most economical treatment as it gave highest potato yield and quality plus highest profit: cost ratio of potato production. This research recommends foliar application of nanofertilizers in potato production to increase production and quality compared to soil applications. As yet, using lower rates of nanofertilizers as foliar application in the present study proved to be an eco-friendly environmental and economic alternative to recommended rates of chemical fertilizers with significant increase in potato productivity and quality.  相似文献   

18.

Aims

A pot study spanning four consecutive crop seasons was conducted to compare the effects of successive rice straw biochar/rice straw amendments on C sequestration and soil fertility in rice/wheat rotated paddy soil.

Methods

We adopted 4.5 t ha?1, 9.0 t ha?1 biochar and 3.75 t ha?1 straw for each crop season with an identical dose of NPK fertilizers.

Results

We found no major losses of biochar-C over the 2-year experimental period. Obvious reductions in CH4 emission were observed from rice seasons under the biochar application, despite the fact that the biochar brought more C into the soil than the straw. N2O emissions with biochar were similar to the controls without additives over the 2-year experimental period. Biochar application had positive effects on crop growth, along with positive effects on nutrient (N, P, K, Ca and Mg) uptake by crop plants and the availability of soil P, K, Ca and Mg. High levels of biochar application over the course of the crop rotation suppressed NH3 volatilization in the rice season, but stimulated it in the wheat season.

Conclusions

Converting straw to biochar followed by successive application to soil is viable for soil C sequestration, CH4 mitigation, improvements of soil and crop productivity. Biochar soil amendment influences NH3 volatilization differently in the flooded rice and upland wheat seasons, respectively.  相似文献   

19.
Field studies were conducted over three growing seasons during 2 years to assess the relative effect of market crop waste (MCW)‐derived soil fertility amendments and conventional fertiliser (NPK) on tritrophic relations as well as yield performance of white cabbage. A randomised complete block design with four treatments and a control replicated four times was used. Treatments were (a) MCW compost incorporated in the soil, (b) uncomposted MCW incorporated in the soil, (c) uncomposted MCW applied as surface mulch, (d) a conventional chemical fertiliser (NPK) incorporated in the soil and (e) the untreated control. Results indicated that relative to NPK‐amended plants, MCW‐amended cabbage performed better in plant growth parameters as well as yield, despite having sustained aphid and Plutella xylostella infestations that could be as much as double as those in the NPK treatment. Natural enemy occurrence followed the trend of host insect infestations. The average yield performance and net financial benefits from MCW‐compost‐amended plants were three‐fold as that of NPK‐amended plants. Soil analysis results indicated an advantage in soil quality accruing from the MCW amendments. This study, therefore, provides documentation for the utilisation of MCW, previously handled as garbage to be disposed of, as a key component in integrated management of insect pests and depleted soils in crop production in sub‐Saharan Africa and beyond.  相似文献   

20.
Field experiment was conducted on fodder maize to explore the potential of integrated use of chemical, organic and biofertilizers for improving maize growth, beneficial microflora in the rhizosphere and the economic returns. The treatments were designed to make comparison of NPK fertilizer with different combinations of half dose of NP with organic and biofertilizers viz. biological potassium fertilizer (BPF), Biopower, effective microorganisms (EM) and green force compost (GFC). Data reflected maximum crop growth in terms of plant height, leaf area and fresh biomass with the treatment of full NPK; and it was followed by BPF+full NP. The highest uptake of NPK nutrients by crop was recorded as: N under half NP+Biopower; P in BPF+full NP; and K from full NPK. The rhizosphere microflora enumeration revealed that Biopower+EM applied along with half dose of GFC soil conditioner (SC) or NP fertilizer gave the highest count of N-fixing bacteria (Azotobacter, Azospirillum, Azoarcus andZoogloea). Regarding the P-solubilizing bacteria,Bacillus was having maximum population with Biopower+BPF+half NP, andPseudomonas under Biopower+EM+half NP treatment. It was concluded that integration of half dose of NP fertilizer with Biopower+BPF / EM can give similar crop yield as with full rate of NP fertilizer; and through reduced use of fertilizers the production cost is minimized and the net return maximized. However, the integration of half dose of NP fertilizer with biofertilizers and compost did not give maize fodder growth and yield comparable to that from full dose of NPK fertilizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号