共查询到20条相似文献,搜索用时 15 毫秒
1.
NAD(+)-dependent malic enzyme (NAD-ME) gene from Escherichia coli K12 was inserted into an expression vector pET24b(+) and transformed into E. coli BL21 (DE3). Recombinant NAD-ME was expressed upon IPTG induction, purified with affinity chromatography, and biochemically characterized. The results showed that recombinant NAD-ME could be produced mainly in a soluble form. The monomeric molecular weight of recombinant NAD-ME was about 65 kDa, whereas monomer, homotetramer, and homooctamer were formed in solution as revealed by nondenaturing polyacrylamide gel electrophoresis analysis. Finally, the K(m) values of NAD-ME for L-malate and NAD were determined as 0.420+/-0.174 and 0.097+/-0.038 mM, respectively, at pH 7.2. By using this over-expression and purification system, recombinant E. coli K12 NAD-ME can now be obtained in large quantity necessary for further biochemical characterization and applications. 相似文献
2.
Alpha-glucan phosphorylase from Escherichia coli. Cloning of the gene, and purification and characterization of the protein 总被引:13,自引:0,他引:13
F Yu Y Jen E Takeuchi M Inouye H Nakayama M Tagaya T Fukui 《The Journal of biological chemistry》1988,263(27):13706-13711
By using a synthetic oligonucleotide probe identical to a part of the gene for the Escherichia coli major outer membrane lipoprotein, we have cloned a gene from E. coli chromosomal DNA. However, the cloned gene was not one of the lipoprotein genes. The amino acid sequence deduced from its nucleotide sequence shows extensive similarities instead to alpha-glucan phosphorylase (EC 2.4.1.1). The gene, glgP, is located immediately downstream from glgA, the gene for glycogen synthase. The glgP gene was inserted into pUC9 vector and expressed in the presence of the lac inducer. The gene product was purified to apparent homogeneity as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In all chromatographies, the protein was eluted accompanied by a low phosphorylase activity. The final preparation showed phosphorolytic activity to various alpha-glucans, although the specific activity was extremely low compared to other alpha-glucan phosphorylases under the standard assay conditions. Its enzymatic activity, however, increased almost linearly as the concentration of glucan increased, reaching a value comparable with those of other phosphorylases. The amino acid sequence deduced was compared with those of alpha-glucan phosphorylases from other sources. 相似文献
3.
Xu G Potter JA Russell RJ Oggioni MR Andrew PW Taylor GL 《Journal of molecular biology》2008,384(2):436-449
The Streptococcus pneumoniae genomes encode up to three sialidases (or neuraminidases), NanA, NanB and NanC, which are believed to be involved in removing sialic acid from host cell surface glycans, thereby promoting colonization of the upper respiratory tract. Here, we present the crystal structure of NanB to 1.7 Å resolution derived from a crystal grown in the presence of the buffer Ches (2-N-cyclohexylaminoethanesulfonic acid). Serendipitously, Ches was found bound to NanB at the enzyme active site, and was found to inhibit NanB with a Ki of ∼ 0.5 mM. In addition, we present the structure to 2.4 Å resolution of NanB in complex with the transition-state analogue Neu5Ac2en (2-deoxy-2,3-dehydro-N-acetyl neuraminic acid), which inhibits NanB with a Ki of ∼ 0.3 mM. The sulphonic acid group of Ches and carboxylic acid group of Neu5Ac2en interact with the arginine triad of the active site. The cyclohexyl group of Ches binds in the hydrophobic pocket of NanB occupied by the acetamidomethyl group of Neu5Ac2en. The topology around the NanB active site suggests that the enzyme would have a preference for α2,3-linked sialoglycoconjugates, which is confirmed by a kinetic analysis of substrate binding. NMR studies also confirm this preference and show that, like the leech sialidase, NanB acts as an intramolecular trans-sialidase releasing Neu2,7-anhydro5Ac. All three pneumoccocal sialidases possess a carbohydrate-binding domain that is predicted to bind sialic acid. These studies provide support for a possible differential role for NanB compared to NanA in pneumococcal virulence. 相似文献
4.
László Fülöp Son Lam Phan Trân Zoltán Prágai Ferenc Felföldi tamás Ponyi 《FEMS microbiology letters》1996,145(3):355-360
Abstract A gene library of a newly isolated Cellulomonas sp. strain was constructed in Escherichia coli and clones were screened for endoglucanase activity using dye-labelled carboxymethylcellulose. Seventeen clones were isolated that carried DNA inserts coding for endoglucanase enzymes. Of the 17 clones, one carrying the gene cegA , was further characterized. The recombinant endoglucanase was purified by FPLC. The endoglucanase was active against carboxymethylcellulose, lichenin and also degraded crystalline cellulose and birchwood xylan. The molecular mass of the enzyme (36 kDa), and its pH (7.4) and temperature (35 °C) optima were determined. 相似文献
5.
The first step in the biosynthesis of melatonin in the pineal gland is the hydroxylation of tryptophan to 5-hydroxytryptophan. A cDNA of human tryptophan hydroxylase (TPH) was cloned from a library of human pineal gland and expressed in Escherichia coli. This cDNA sequence is identical to the cDNA sequence published from the human carcinoid tissue [1]. This human pineal hydroxylase gene encodes a protein of 444 amino acids and a molecular mass of 51 kDa estimated for the purified enzyme. Tryptophan hydroxylase from human brainstem exhibits high sequence homology (93% identity) with the human pineal hydroxylase. The recombinant tryptophan hydroxylase exists in solution as tetramers. The expressed human pineal tryptophan hydroxylase has a specific activity of 600 nmol/min/mg when measured in the presence of tetrahydrobiopterin and L-tryptophan. The enzyme catalyzes the hydroxylation of tryptophan and phenylalanine at comparable rates. Phosphorylation of the hydroxylase by protein kinase A or calmodulin-dependent kinase II results in the incorporation of 1 mol of phosphate/mol of subunit, but this degree of phosphorylation leads to only a modest (30%) increase in BH(4)-dependent activity when assayed in the presence of 14-3-3. Rapid scanning ultraviolet spectroscopy has revealed the formation of the transient intermediate compound, 4alpha-hydroxytetrahydrobiopterin, during the hydroxylation of either tryptophan or phenylalanine catalyzed by the recombinant pineal TPH. 相似文献
6.
J Lee S Filosa J Bonvin S Guyon R A Aponte J L Turnbull 《Protein expression and purification》2001,22(2):180-188
Recombinant purine nucleoside phosphorylase (PNPase) from Escherichia coli was prepared in high yield in order to facilitate its use in coupled assays to measure the kinetics of phosphate-liberating enzymes. The E. coli enzyme was overexpressed in E. coli by inserting the genomic fragment containing the deoD gene downstream of the isopropyl beta-d-thiogalactoside-inducible promotor of pSE380 expression vector. The recombinant protein was purified to approximately 90% homogeneity and with a yield of approximately 9000 units of activity/L of culture, using an efficient one-column procedure. A continuous spectrophotometric assay coupling P(i) release to the phosphorolysis of the nucleoside analogue 7-methylinosine (m(7)Ino) was recently described. Here, we report the steady-state kinetic parameters of the recombinant E. coli PNPase catalyzed reaction with m(7)Ino and P(i) as substrates and compare these parameters with those of a bacterial PNPase commercially available for use in coupled assays. Under the assay conditions described, the recombinant E. coli protein is active at higher pH values and is stable up to a temperature of approximately 55 degrees C and following multiple freeze-thaw cycles. It is activated by high ionic strength but loses some activity following dialysis or concentration under pressure. Finally, a new procedure for the synthesis of m(7)Ino from inosine is described which is safe and cost effective, making the use of this methylated nucleoside in PNPase-coupled P(i) assays more attractive. 相似文献
7.
Romanello V Marcacci M Dal Molin F Moschioni M Censini S Covacci A Baritussio AG Montecucco C Tonello F 《Protein expression and purification》2006,45(1):142-149
The IgA1 protease of Streptococcus pneumoniae is a Zn-metalloproteinase of 1964 amino acids that specifically cleaves the hinge region of IgA1, the predominant class of immunoglobulin present on mucosal membranes. This protease is associated to the bacterial cell surface via an N-terminal membrane anchor. Following proteolysis it is released in several forms of different molecular weight. Here, we describe the cloning, expression, and characterization of the enzymatic activity and immunogenicity of three fragments of IgA1 protease, including a large one lacking only the 103 N-terminal amino acids that constitute a typical prokaryotic signal sequence. Further, a proteolytically inactive mutant was generated by replacement of the glutamate residue with an alanine residue in the active site motif HExxH (1605-1609). This is the first report of recombinant active forms of S. pneumoniae IgA1 protease, which open the possibility of identifying specific inhibitors that could interfere with the mucosal colonization by pneumococcus. Moreover the inactive mutant could be considered as a candidate vaccine component. 相似文献
8.
Zhao C Kumada Y Imanaka H Imamura K Nakanishi K 《Protein expression and purification》2006,47(2):607-613
O-Acetylserine sulfhydrylase-B (OASS-B, EC 2.5.1.47) is one of the two isozymes produced by Escherichia coli that catalyze the synthesis of L-cysteine from O-acetyl-L-serine and sulfide. The cysM gene encoding OASS-B was cloned and the enzyme was overexpressed in E. coli using pUC19 with a lacUV5 promoter. The enzyme was purified to homogeneity, as evidenced by SDS-PAGE. Approximately 300 mg of purified OASS-B was obtained from 1600 mL of culture broth with a purification yield of 60% or higher. The purified OASS-B was characterized and its properties compared with OASS-A. OASS-B did not form a complex with E. coli serine acetyltransferase (SAT, EC 2.3.1.30) and showed a wide range of substrate specificity in nonproteinaceous amino acid synthesis. 相似文献
9.
10.
Cloning and expression of the beta-D-galactosidase gene from Streptococcus thermophilus in Escherichia coli. 总被引:4,自引:3,他引:4
下载免费PDF全文

The beta-D-galactosidase (beta-gal) gene from Streptococcus thermophilus was cloned to isolate and characterize it for potential use as a selection marker in a food-grade cloning vector. Chromosomal DNA from S. thermophilus 19258 was cleaved with the restriction enzyme PstI and ligated to pBR322 for transformation into Escherichia coli JM108. A beta-galactosidase-positive clone was detected by its blue color on a medium supplemented with 5-bromo-4-chloro-3-indolyl-beta-D-galactoside. This transformant possessed a single plasmid, designated pRH116, which contained, in addition to the vector DNA, a 7.0-kilobase (kb) PstI insertion fragment coding for beta-gal activity. An extract from JM108(pRH116) contained a beta-gal protein with the same electrophoretic mobility as the beta-gal from S. thermophilus 19258. Compared with the beta-gal from E. coli HB101, the S. thermophilus beta-gal was of lower molecular weight. A restriction map of pRH116 was constructed from cleavage of both the plasmid and the purified insert. The construction of deletion derivatives of pRH116 with BglII, BstEII, and HindIII revealed the approximate location of the gene on the 7.0-kb fragment. The beta-gal gene was further localized to a 3.85-kb region. 相似文献
11.
The Escherichia coli unc-operon encodes the genes for the subunits of the F0F1-ATP synthase and an integral membrane protein of unknown function called UncI. UncI influences the cell-growth and activity of F0F1, but its exact function is still unknown. The expression level is too low to extract milligram amounts of UncI from E. coli membranes and the existing purification protocol based on methanol/chloroform is not suitable for structural and functional studies. Here we present protocols to increase the expression level, to purify UncI in a detergent where UncI is monodisperse, and we characterize its oligomeric state. 相似文献
12.
Cloning, expression, purification, and characterization of biosynthetic threonine deaminase from Escherichia coli 总被引:3,自引:0,他引:3
E Eisenstein 《The Journal of biological chemistry》1991,266(9):5801-5807
Feedback inhibition of the regulatory enzyme threonine deaminase by isoleucine provides an important level of enzymic control over branched chain amino acid biosynthesis in Escherichia coli. Cloning ilvA, the structural gene for threonine deaminase, under control of the trc promoter results in expression of active enzyme upon induction by isopropyl 1-thio-beta-D-galactoside to levels of approximately 20% of the soluble protein in cell extracts. High level expression of threonine deaminase has facilitated the development of a rapid and efficient protocol for the purification of gram quantities of enzyme with a specific activity 3-fold greater than previous preparations. The catalytic activity of threonine deaminase is absolutely dependent on the presence of pyridoxal phosphate, and the tetrameric molecule is isolated containing 1 mol of cofactor/56,000-Da chain. Wild-type threonine deaminase demonstrates a sigmoidal dependence of initial velocity on threonine concentration in the absence of isoleucine, consistent with a substrate-promoted conversion of the enzyme from a low activity to a high activity conformation. The enzymic dehydration of threonine to alpha-ketobutyrate measured by steady-state kinetics, performed at 20 degrees C in 0.05 M potassium phosphate, pH 7.5, is described by a Hill coefficient, nH, of 2.3 and a K0.5 of 8.0 mM. The negative allosteric effector L-isoleucine strongly inhibits the enzyme, yielding a value for nH of 3.9 and K0.5 of 74 mM whereas enzyme activity is greatly increased by L-valine, which yields nearly hyperbolic kinetics characterized by a value for nH of 1.0 and a K0.5 of 5.7 mM. Thus, these effectors promote dramatic and opposing effects on the transition from the low activity to the high activity conformation of the tetrameric enzyme. 相似文献
13.
14.
The beta-D-galactosidase (beta-gal) gene from Streptococcus thermophilus was cloned to isolate and characterize it for potential use as a selection marker in a food-grade cloning vector. Chromosomal DNA from S. thermophilus 19258 was cleaved with the restriction enzyme PstI and ligated to pBR322 for transformation into Escherichia coli JM108. A beta-galactosidase-positive clone was detected by its blue color on a medium supplemented with 5-bromo-4-chloro-3-indolyl-beta-D-galactoside. This transformant possessed a single plasmid, designated pRH116, which contained, in addition to the vector DNA, a 7.0-kilobase (kb) PstI insertion fragment coding for beta-gal activity. An extract from JM108(pRH116) contained a beta-gal protein with the same electrophoretic mobility as the beta-gal from S. thermophilus 19258. Compared with the beta-gal from E. coli HB101, the S. thermophilus beta-gal was of lower molecular weight. A restriction map of pRH116 was constructed from cleavage of both the plasmid and the purified insert. The construction of deletion derivatives of pRH116 with BglII, BstEII, and HindIII revealed the approximate location of the gene on the 7.0-kb fragment. The beta-gal gene was further localized to a 3.85-kb region. 相似文献
15.
16.
It has been shown previously that Escherichia coli contains three fumarase genes designated fumA, fumB, and fumC. The gene products fumarases A, B, and C have been divided into two classes. Class I contains fumarases A and B, which have amino acid sequences that are 90% identical to each other, but have almost no similarity to the sequence of porcine fumarase. Class II contains fumarase C and porcine fumarase, which have amino acid sequences 60% identical to each other [Woods, S.A., Schwartzbach, S.D., & Guest, J.R. (1988) Biochim. Biophys. Acta 954, 14-26]. In this work it is shown that purified fumarase A contains a [4Fe-4S] cluster. This conclusion is based on the following observations. Fumarase A contains 4 Fe and 4 S2- per mole of protein monomer. (The mobility of fumarase A in native polyacrylamide gel electrophoresis and the elution volume on a gel permeation column indicate that it is a homodimer.) Its visible and circular dichroism spectra are characteristic of proteins containing an Fe-S cluster. Fumarase A can be reduced to an EPR active-state exhibiting a spectrum consisting of a rhombic spectrum at high fields (g-values = 2.03, 1.94, and 1.88) and a broad peak at g = 5.4. Upon addition of substrate, the high field signal shifts upfield (g-values = 2.035, 1.92, and 1.815) and increases in total spins by 8-fold, while the g = 5.4 signal disappears.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
Cloning and expression of the Bacteroides fragilis TAL2480 neuraminidase gene, nanH, in Escherichia coli. 总被引:9,自引:1,他引:9
下载免费PDF全文

We have cloned the Bacteroides fragilis TAL2480 neuraminidase (NANase) structural gene, nanH, in Escherichia coli. This was accomplished by using the cloning shuttle vector pJST61 and a partial Sau3A library of TAL2480 chromosomal inserts created in E. coli. The library was mobilized into the NANase-deficient B. fragilis TM4000 derivative TC2. NANase-producing colonies were enriched by taking advantage of the inability of TC2, but not the wild-type of NANase+ revertant, to grow in vitro in fluid aspirated from the rat granuloma pouch. Plasmids pJST61-TCN1 and pJST61-TCN3, containing inserts of 9.1 and 4.5 kilobases (kb), respectively, were found in the TC2 derivatives that grew in the rat pouch medium. In B. fragilis, NANase production from the two plasmids was inducible by free N-acetylneuraminic acid or sialic acid-containing substrates, just as in the parental TAL2480 strain. However, when these plasmids were transferred back to E. coli, NANase activity was barely detectable. A 3.5-kb portion of the insert in pJST61-TCN3 was subcloned in pJST61 to give plasmid pJST61-SC3C; NANase was produced from this plasmid both in E. coli and in B. fragilis. In E. coli, NANase expression was under the control of the vector promoter lambda pR and was therefore completely abolished by the presence of a lambda prophage. In B. fragilis, NANase production was inducible by free N-acetylneuraminic acid or sialic acid-containing substrates. By using deletion analysis and Tn1000 mutagenesis, the NANase structural gene and control region that functions in B. fragilis were localized to a 1.5- to 2.0-kb region of the insert. A partial nucleotide sequence of the NANase-deficient Tn1000 insertion mutants allowed us to identify the nanH gene and deduce the amino acid sequence of a portion of the NANase protein. We identified five regions showing great similarity to the Asp boxes, -Ser-X-Asp-X-Gly-X-Thr-Trp-, of other bacterial and viral NANase proteins. 相似文献
18.
Cloning and expression of the Vibrio cholerae neuraminidase gene nanH in Escherichia coli 总被引:7,自引:2,他引:7
下载免费PDF全文

A cosmid gene bank of Vibrio cholerae 395, classical Ogawa, was screened in Escherichia coli HB101 for expression of the vibrio neuraminidase (NANase) gene nanH (N-acylneuraminate glycohydrolase). Positive clones were identified by their ability to cleave the fluorogenic NANase substrate 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid. Seven NANase-positive clones were detected after screening 683 cosmid isolates with a rapid, qualitative plate assay method. The nanH gene was subcloned from one of the cosmids and was located within a 4.8-kilobase-pair BglII restriction endonuclease fragment. Evidence that nanH was the NANase structural gene was obtained by transposon mutagenesis and by purification and comparison of the cloned gene product with the secreted NANase purified from the parent V. cholerae strain. The sequence of the first 20 amino-terminal amino acids of the secreted NANase purified from V. cholerae was determined by automated Edman degradation and matched perfectly with the amino acid sequence predicted from nucleotide sequencing of nanH. The sequence data also revealed the existence of a potential signal peptide that was apparently processed from NANase in both V. cholerae and E. coli. In contrast to V. cholerae, E. coli nanH+ clones did not secrete NANase into the growth medium, retaining most of the enzyme in the periplasmic compartment. Kinetic studies in V. cholerae showed that nanH expression and NANase secretion were temporally correlated as cells in batch culture entered late-exponential-phase growth. Similar kinetics were observed in at least one of the E. coli nanH+ clones, suggesting that nanH expression in E. coli might be controlled by some of the same signals as in the parent V. cholerae strain. 相似文献
19.
The aminopeptidase P gene in Escherichia coli HB101 was cloned into the plasmid pBR322. Introduction of the hybrid plasmid, pAPP01, into the E. coli DH1 resulted in an 8-fold increase of aminopeptidase P activity as compared with that of the host. The enzyme was purified by series of chromatographies on DEAE-Sephadex, QAE-Sephadex, and hydroxyapatite. The purified enzyme was homogeneous as judged by disc-gel and SDS-gel electrophoreses. the enzyme was inhibited strongly by EDTA and slightly by p-chloromercuribenzoate, but was not affected by diisopropyl phosphorofluoridate, E-64, or iodoacetic acid. The optimum pH of the enzyme was 8.5. The enzyme was stable at pH 8 to 9. After incubation for 30 min at pH 8.0, 50% remaining activity was observed at 50 degrees C. The enzyme was activated 3-fold by the addition of 5 microM Mn2+. The molecular weight of the enzyme was estimated to be 50,000 and 200,000 by SDS-PAGE and gel filtration, respectively. The amino terminal amino acid was identified to be serine by Edman degradation, indicating that the enzyme is composed of a homo-tetramer. The enzyme hydrolyzed X-Pro bonds (X = amino acid) of peptides. These characteristics suggest that cloned aminopeptidase P is identical to APP-II reported by Yoshimoto et al. (Agric. Biol. Chem. 52(8), in press (1988]. 相似文献
20.
A genomic library of Bacillus subtilis CD4 was constructed in Escherichia coli JM83. A clone designated as E. coli pBcelR was identified which formed blue colony in presence of 5-bromo-4-chloro-3-indolyl--d-glucopyranoside (X-Glu) and hydrolysed carboxymethyl cellulose (CMC). The clone E. coli (pBcelR) expressed both cellobiase and endoglucanase activities and contained an insert of 1.2 kb. E. coli pBcelR encoded a protein of 12.9 kDa which was endowed with bifunctional (endoglucanase and cellobiase) activities. In recombinant E. coli, the encoded protein and enzyme activity were localized in periplasm. Recombinant E. coli pBcelR utilized CMC, cellobiose and soluble cellulose as sole carbon source. 相似文献