首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Receptor-like protein kinases (RLKs) containing an extracellular leucine-rich repeat (eLRR) domain, a transmembrane domain and a cytoplasmic kinase domain play important roles in plant disease resistance. Simple eLRR domain proteins structurally resembling the extracellular portion of the RLKs may also participate in signalling transduction and plant defence response. Yet the molecular mechanisms and subcellular localization in regulating plant disease resistance of these simple eLRR domain proteins are still largely unclear. We provided the first experimental evidence to demonstrate the subcellular localization and trafficking of a novel simple eLRR domain protein (OsLRR1) in the endosomal pathway, using both confocal and electron microscopy. Yeast two-hybrid and in vitro pull-down assays show that OsLRR1 interacts with the rice hypersensitive-induced response protein 1 (OsHIR1) which is localized on plasma membrane. The interaction between LRR1 and HIR1 homologs was shown to be highly conserved among different plant species, suggesting a close functional relationship between the two proteins. The function of OsLRR1 in plant defence response was examined by gain-of-function tests using transgenic Arabidopsis thaliana . The protective effects of OsLRR1 against bacterial pathogen infection were shown by the alleviating of disease symptoms, lowering of pathogen titres and higher expression of defence marker genes.  相似文献   

2.

Background  

In Arabidopsis, INDOLE-3-BUTYRIC ACID RESPONSE5 (IBR5), a putative dual-specificity protein phosphatase, is a positive regulator of auxin response. Mutations in IBR5 result in decreased plant height, defective vascular development, increased leaf serration, fewer lateral roots, and resistance to the phytohormones auxin and abscisic acid. However, the pathways through which IBR5 influences auxin responses are not fully understood.  相似文献   

3.
The hypersensitive‐induced reaction (HIR) gene family is associated with the hypersensitive response (HR) that is a part of the plant defense system against bacterial and fungal pathogens. The involvement of HIR genes in response to viral pathogens has not yet been studied. We now report that the HIR3 genes of Nicotiana benthamiana and Oryza sativa (rice) were upregulated following rice stripe virus (RSV) infection. Silencing of HIR3s in N. benthamiana resulted in an increased accumulation of RSV RNAs, whereas overexpression of HIR3s in N. benthamiana or rice reduced the expression of RSV RNAs and decreased symptom severity, while also conferring resistance to Turnip mosaic virus, Potato virus X, and the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. Silencing of HIR3 genes in N. benthamiana reduced the content of salicylic acid (SA) and was accompanied by the downregulated expression of genes in the SA pathway. Transient expression of the two HIR3 gene homologs from N. benthamiana or the rice HIR3 gene in N. benthamiana leaves caused cell death and an accumulation of SA, but did not do so in EDS1‐silenced plants or in plants expressing NahG. The results indicate that HIR3 contributes to plant basal resistance via an EDS1‐ and SA‐dependent pathway.  相似文献   

4.

Background  

Hepatic expression of several gene products involved in glucose metabolism, including phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase) and insulin-like growth factor binding protein-1 (IGFBP-1), is rapidly and completely inhibited by insulin. This inhibition is mediated through the regulation of a DNA element present in each of these gene promoters, that we call the Thymine-rich Insulin Response Element (TIRE). The insulin signalling pathway that results in the inhibition of these gene promoters requires the activation of phosphatidylinositol 3-kinase (PI 3-kinase). However, the molecules that connect PI 3-kinase to these gene promoters are not yet fully defined. Glycogen Synthase Kinase 3 (GSK-3) is inhibited following activation of PI 3-kinase. We have shown previously that inhibitors of GSK-3 reduce the activity of two TIRE-containing gene promoters (PEPCK and G6Pase), whose products are required for gluconeogenesis.  相似文献   

5.

Background  

The 'lid' subcomplex of the 26S proteasome and the COP9 signalosome (CSN complex) share a common architecture consisting of six subunits harbouring a so-called PCI domain (proteasome,CSN, eIF3) at their C-terminus, plus two subunits containing MPN domains (Mpr1/Pad1N-terminal). The translation initiation complex eIF3 also contains PCI- and MPN-domain proteins, but seems to deviate from the 6+2 stoichiometry. Initially, the PCI domain was defined as the region of detectable sequence similarity between the components mentioned above.  相似文献   

6.

Background  

Methyl-DNA binding proteins help to translate epigenetic information encoded by DNA methylation into covalent histone modifications. MBD2/3 is the only candidate gene in the Drosophila genome with extended homologies to mammalian MBD2 and MBD3 proteins, which represent a co-repressor and an integral component of the Nucleosome Remodelling and Deacetylase (NuRD) complex, respectively. An association of Drosophila MBD2/3 with the Drosophila NuRD complex has been suggested previously. We have now analyzed the molecular interactions between MBD2/3 and the NuRD complex in greater detail.  相似文献   

7.

Background  

SAM68, SAM68-like mammalian protein 1 (SLM-1) and 2 (SLM-2) are members of the K homology (KH) and STAR (signal transduction activator of RNA metabolism) protein family. The function of these RNA binding proteins has been difficult to elucidate mainly because of lack of genetic data providing insights about their physiological RNA targets. In comparison, genetic studies in mice and C. elegans have provided evidence as to the physiological mRNA targets of QUAKING and GLD-1 proteins, two other members of the STAR protein family. The GLD-1 binding site is defined as a hexanucleotide sequence (NACUCA) that is found in many, but not all, physiological GLD-1 mRNA targets. Previously by using Systematic Evolution of Ligands by EXponential enrichment (SELEX), we defined the QUAKING binding site as a hexanucleotide sequence with an additional half-site (UAAY). This sequence was identified in QKI mRNA targets including the mRNAs for myelin basic proteins.  相似文献   

8.

Background  

The condensation of chromosomes and correct sister chromatid segregation during cell division is an essential feature of all proliferative cells. Structural maintenance of chromosomes (SMC) and non-SMC proteins form the condensin I complex and regulate chromosome condensation and segregation during mitosis. However, due to the lack of appropriate mutants, the function of the condensin I complex during vertebrate development has not been described.  相似文献   

9.

Background  

Rybp (Ring1 and YY1 binding protein) is a zinc finger protein which interacts with the members of the mammalian polycomb complexes. Previously we have shown that Rybp is critical for early embryogenesis and that haploinsufficiency of Rybp in a subset of embryos causes failure of neural tube closure. Here we investigated the requirement for Rybp in ocular development using four in vivo mouse models which resulted in either the ablation or overexpression of Rybp.  相似文献   

10.

Background  

A registry of patients with cervical dystonia (Cervical Dystonia Patient Registry for Observation of onaBotulinumtoxinA Efficacy [CD PROBE]) was initiated to capture data regarding physician practices and patient outcomes with onabotulinumtoxinA (BOTOX?, Allergan, Inc., Irvine, CA, USA). Methods and baseline demographics from an interim analysis are provided.  相似文献   

11.

Key message

Our results indicate that overexpression of OsSPL1 in transgenic tobacco plants attenuated disease resistance and facilitated programmed cell death.

Abstract

Long-chain base phosphates including sphingosine-1-phosphate have been shown to act as signaling mediators in regulating programmed cell death (PCD) and stress responses in mammals. In the present study, we characterized a rice gene OsSPL1, encoding a putative sphingosine-1-phosphate lyase that is involved in metabolism of sphingosine-1-phosphate. Expression of OsSPL1 was down-regulated in rice plants after treatments with salicylic acid, benzothiadiazole and 1-amino cyclopropane-1-carboxylic acid, but was induced by infection with a virulent strain of Magnaporthe oryzae, the causal agent of rice blast disease. Transgenic tobacco lines with overexpression of OsSPL1 were generated and analyzed for the possible role of OsSPL1 in disease resistance response and PCD. The OsSPL1-overexpressing tobacco plants displayed increased susceptibility to infection of Pseudomonas syringae pv. tabaci (Pst), the causal agent of wildfire disease, showing severity of disease symptom and bacterial titers in inoculated leaves, and attenuated pathogen-induced expression of PR genes after infection of Pst as compared to the wild-type and vector-transformed plants. Higher level of cell death, as revealed by dead cell staining, leakage of electrolyte and expression of hypersensitive response indicator genes, was observed in the OsSPL1-overexpressing plants after treatment with fumonisin B1, a fungal toxin that induces PCD in plants. Our results suggest that OsSPL1 has different functions in regulating disease resistance response and PCD in plants.  相似文献   

12.

Background  

In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X chromosome by studying histone modifications on the X chromosome in normal cells and in cells from patients with ICF syndrome (Immune deficiency, Centromeric region instability, and Facial anomalies syndrome). In normal cells the inactive X has characteristic silencing type histone modification patterns and the CpG islands of genes subject to X inactivation are hypermethylated. In ICF cells, however, genes subject to X inactivation are hypomethylated on the inactive X due to mutations in the DNA methyltransferase (DNMT3B) genes. Therefore, if DNA methylation is upstream of histone modification, the histones on the inactive X in ICF cells should not be modified to a silent form. In addition, we determined whether a specific methyl-CpG binding protein, MeCP2, is necessary for the inactive X histone modification pattern by studying Rett syndrome cells which are deficient in MeCP2 function.  相似文献   

13.

Background  

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative pathogen that must successfully adapt to the broad fluctuations in the concentration of dissolved dioxygen encountered in the host. In Escherichia coli, ArcA (Aerobic Respiratory Control) helps the cells to sense and respond to the presence of dioxygen. The global role of ArcA in E. coli is well characterized; however, little is known about its role in anaerobically grown S. Typhimurium.  相似文献   

14.
15.
16.
Current models of plasma membrane (PM) postulate its organization in various nano‐ and micro‐domains with distinct protein and lipid composition. While metazoan PM nanodomains usually display high lateral mobility, the dynamics of plant nanodomains is often highly spatially restricted. Here we have focused on the determination of the PM distribution in nanodomains for Arabidopsis thaliana flotillin (AtFLOT) and hypersensitive induced reaction proteins (AtHIR), previously shown to be involved in response to extracellular stimuli. Using in vivo laser scanning and spinning disc confocal microscopy in Arabidopsis thaliana we present here their nanodomain localization in various epidermal cell types. Fluorescence recovery after photobleaching (FRAP) and kymographic analysis revealed that PM‐associated AtFLOTs contain significantly higher immobile fraction than AtHIRs. In addition, much lower immobile fractions have been found in tonoplast pool of AtHIR3. Although members of both groups of proteins were spatially restricted in their PM distribution by corrals co‐aligning with microtubules (MTs), pharmacological treatments showed no or very low role of actin and microtubular cytoskeleton for clustering of AtFLOT and AtHIR into nanodomains. Finally, pharmacological alteration of cell wall (CW) synthesis and structure resulted in changes in lateral mobility of AtFLOT2 and AtHIR1. Accordingly, partial enzymatic CW removal increased the overall dynamics as well as individual nanodomain mobility of these two proteins. Such structural links to CW could play an important role in their correct positioning during PM communication with extracellular environment.  相似文献   

17.
18.
Hagihara T  Hashi M  Takeuchi Y  Yamaoka N 《Planta》2004,218(4):606-614
Syringolide elicitors produced by bacteria expressing Pseudomonas syringae pv. glycinea avirulence gene D (avrD) induce hypersensitive cell death (HCD) only in soybean (Glycine max [L.] Merr.) plants carrying the Rpg4 disease resistance gene. Employing a differential display method, we isolated 13 gene fragments induced in cultured cells of a soybean cultivar Harosoy (Rpg4) treated with syringolides. Several genes for isolated fragments were induced by syringolides in an rpg4 cultivar Acme as well as in Harosoy; however, the genes for seven fragments designated as SIH (for syringolide-induced/HCD associated) were induced exclusively or strongly in Harosoy. cDNA clones for SIH genes were obtained from a cDNA library of Harosoy treated with syringolide. Several sequences are homologous to proteins associated with plant defense responses. The SIH genes did not respond to a non-specific -glucan elicitor, which induces phytoalexin accumulation but not HCD, suggesting that the induction of the SIH genes is specific for the syringolide–Harosoy interaction. HCD and the induction of SIH genes by syringolides were independent of H2O2. On the other hand, Ca2+ was required for HCD and the induction of some SIH genes. These results suggest that the induction of SIH genes by syringolides could be activated through the syringolide-specific signaling pathway and the SIH gene products may play an important role(s) in the processes of HCD induced by syringolides.Abbreviations AOS active oxygen species - CHS chalcone synthase - DPI diphenylene iodonium - HCD hypersensitive cell death - HR hypersensitive response - PAL phenylalanine ammonia lyase - SID syringolide-induced/defense associated - SIG syringolide-induced/general - SIH for syringolide-induced/HCD associated - XET xyloglucan endotransglycosylase  相似文献   

19.

Background  

Members of the Kinesin-3 family of kinesin-like proteins mediate transport of axonal vesicles (KIF1A, KIF1Bβ), distribution of mitochondria (KIF1Bα) and anterograde Golgi to ER vesicle transport (KIF1C). Until now, little is known about the regulation of kinesin-like proteins. Several proteins interact with members of this protein family. Here we report on a novel, KIF1 binding protein (KBP) that was identified in yeast two-hybrid screens.  相似文献   

20.
He S  Tan G  Liu Q  Huang K  Ren J  Zhang X  Yu X  Huang P  An C 《PloS one》2011,6(4):e18750

Background

Hypersensitive cell death, a form of avirulent pathogen-induced programmed cell death (PCD), is one of the most efficient plant innate immunity. However, its regulatory mechanism is poorly understood. AtLSD1 is an important negative regulator of PCD and only two proteins, AtbZIP10 and AtMC1, have been reported to interact with AtLSD1.

Methodology/Principal Findings

To identify a novel regulator of hypersensitive cell death, we investigate the possible role of plant LITAF domain protein GILP in hypersensitive cell death. Subcellular localization analysis showed that AtGILP is localized in the plasma membrane and its plasma membrane localization is dependent on its LITAF domain. Yeast two-hybrid and pull-down assays demonstrated that AtGILP interacts with AtLSD1. Pull-down assays showed that both the N-terminal and the C-terminal domains of AtGILP are sufficient for interactions with AtLSD1 and that the N-terminal domain of AtLSD1 is involved in the interaction with AtGILP. Real-time PCR analysis showed that AtGILP expression is up-regulated by the avirulent pathogen Pseudomonas syringae pv. tomato DC3000 avrRpt2 (Pst avrRpt2) and fumonisin B1 (FB1) that trigger PCD. Compared with wild-type plants, transgenic plants overexpressing AtGILP exhibited significantly less cell death when inoculated with Pst avrRpt2, indicating that AtGILP negatively regulates hypersensitive cell death.

Conclusions/Significance

These results suggest that the LITAF domain protein AtGILP localizes in the plasma membrane, interacts with AtLSD1, and is involved in negatively regulating PCD. We propose that AtGILP functions as a membrane anchor, bringing other regulators of PCD, such as AtLSD1, to the plasma membrane. Human LITAF domain protein may be involved in the regulation of PCD, suggesting the evolutionarily conserved function of LITAF domain proteins in the regulation of PCD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号