首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过对几种基质测定含不同碱基的寡核苷酸的灵敏度及精确度的比较,发现用混合基质α-氰基4-羟基肉桂酸(α-Cyano)/3-羟基吡啶羧酸(3HPA)用于基质辅助激光解吸附电离飞行时间质谱中测定脱氧寡核苷酸,不仅能得到较好的分子离子峰,而且一些金属离子的加合物峰能得到有效的抑制,提高了测定的灵敏度。用3′-和5′-外切酶对脱氧寡核苷酸12-mer(5′-ATGCATATGCAT-3′)进行部分降解,再进行MALDI-TOF-MS分析,得到了完整的寡核苷酸的序列。  相似文献   

2.
目的研究基质辅助激光解析电离飞行时间质谱(Matrix-Assisted Laser Desorption Ionization-Time of Flight MassSpectrometry,MALDI-TOF-MS)用于快速检测鉴定临床分离的酵母菌的可行性。方法应用Bruker MALDI-TOF-MS和VITEK 2-compact系统分别鉴定150株临床分离的酵母菌,结果不一致的菌株通过基因序列测定来鉴定。结果 MALDI-TOF-MS快速准确鉴定出了150株临床酵母菌,鉴定符合率在属水平上为100%,种水平上为94%。结论基于MALDI-TOF-MS鉴定方法具有很好的可重复性和准确性,并且其检测成本较低,实验准备时间很短,MALDI-TOF-MS可以用于临床分离的酵母菌的快速鉴定。  相似文献   

3.
A methodology based on matrix-assisted laser desorption ionization-time of flight mass spectrometry of intact bacterial cells was used for rapid discrimination of 24 bacterial species, and detailed analyses to identify Escherichia coli O157:H7 were carried out. Highly specific mass spectrometric profiles of pathogenic and nonpathogenic bacteria that are well-known major food contaminants were obtained, uploaded in a specific database, and made available on the Web. In order to standardize the analytical protocol, several experimental, sample preparation, and mass spectrometry parameters that can affect the reproducibility and accuracy of data were evaluated. Our results confirm the conclusion that this strategy is a powerful tool for rapid and accurate identification of bacterial species and that mass spectrometric methodologies could play an essential role in polyphasic approaches to the identification of pathogenic bacteria.  相似文献   

4.
Currently, the genus Lactococcus is classified into six species: Lactococcus chungangensis, L. garvieae, L. lactis, L. piscium, L. plantarum, and L. raffinolactis. Among these six species, L. lactis is especially important because of its use in the manufacture of probiotic dairy products. L. lactis consists of three subspecies: L. lactis subsp. cremoris, L. lactis subsp. hordniae, and L. lactis subsp. lactis. However, these subspecies have not yet been reliably discriminated. To date, mainly phenotypic identification has been used, with a few genotypic identifications. We discriminated species or subspecies in the genus Lactococcus not only by proteomics identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) but also by phenotypic and genotypic identification. The proteomics identification using differences in the mass spectra of ribosomal proteins was nearly identical to that by genotypic identification (i.e., by analyses of 16S rRNA and recA gene sequences and amplified fragment length polymorphism). The three ribosomal subunits 30S/L31, 50S/L31, and 50S/L35 were the best markers for discriminating L. lactis subsp. cremoris from L. lactis subsp. lactis. Proteomics identification using MALDI-TOF MS was therefore a powerful method for discriminating and identifying these bacteria. In addition, this method was faster and more reliable than others that we examined.Lactococci are lactic acid bacteria (LAB) that are important contributors to the production of fermented dairy products, and some species produce antimicrobial compounds. Most species in the genus Lactococcus have been isolated from food-related sources and plants and are generally regarded as safe. Probiotic foods use these LAB, and there have been various studies of the relationship between these foods and the maintenance of human intestinal health (32). Lactococcus was first established as a genus distinct from the genus Streptococcus in 1985 (29).Currently, six species and three subspecies in the genus Lactococcus have been validated. Lactococcus plantarum has been isolated mainly from plants; L. garvieae has been isolated from fish, animals, and milk, and L. piscium has been isolated from salmon. Lactococcus lactis is most commonly found in raw milk, cheese, and other dairy products; L. raffinolactis has been found in raw milk and cheese, and L. chunagangensis has been isolated from wastewater. Among the six species, L. lactis is considered one of the most important in food production because it is used to manufacture fermented milk, butter, and cheese. Because of this importance, the whole genomes of three strains of L. lactis—L. lactis subsp. cremoris SK11 (10), L. lactis subsp. cremoris MG 1363 (37), and L. lactis subsp. lactis IL1403 (2)—have been sequenced.Since L. lactis was first described by Orla-Jensen in 1919 (21), there have been various classifications. To date, L. lactis has been classified into three subspecies: L. lactis subsp. cremoris, L. lactis subsp. hordniae, and L. lactis subsp. lactis. However, this classification was based on only a few phenotypic characteristics and is considered imperfect because of its inherent disadvantages of sensitivity to culture conditions or bacterial growth phase. Discriminating between L. lactis subsp. cremoris and L. lactis subsp. lactis is particularly difficult but is very important in industrial applications, because the activities of the two subspecies in cheese manufacture differ. In addition, when newly isolated bacterial strains are registered in public culture collections, these strains have to be identified and discriminated at the subspecies level. Normally, these two subspecies are identified on the basis of the following phenotypic features: (i) the ability to ferment maltose and ribose, (ii) growth in 4% NaCl (pH 9.2) at 40°C, (iii) the ability to produce ammonia from arginine, and (iv) the presence of glutamate decarboxylase activity (18-20). However, determining the results of the phenotypic identification is difficult because they are sometimes ambiguous and time sensitive, as demonstrated by the sugar fermentation tests described below, which gave different results over time. In addition, the results of phenotypic identifications in previous reports were not identical each other (9, 28, 35).From an evolutionary viewpoint, it is reasonable to classify subspecies by using the divergence of housekeeping genes that are well preserved at the genus or species level. 16S rRNA gene sequencing is the most common technique currently used to identify species. At the subspecies level, however, 16S rRNA gene sequence identity is often very high, and these sequences therefore cannot be used for identification purposes (14, 24, 27, 36). Recently, for LAB, the partial sequences of the recA (recombinase A), pheS (phenylalanyl tRNA synthetase alpha subunit), and rpoA (DNA-directed RNA polymerase alpha chain) genes have been effectively used for species or subspecies identification (5, 7, 17), and the analysis of 16S rRNA gene sequences in combination with housekeeping gene sequences has been used to identify subspecies.In recent years, a number of important experiments have used matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for rapid bacterial identification, including clostridia (15), LAB (34), Listeria (1), mycobacteria (12), salmonellae (6), viridans group streptococci (8), and other nonfermenting bacteria (16). In these studies, MALDI-TOF MS spectra were obtained from intact cells without biomarker purification or chromatographic separation. MALDI-TOF MS is a good tool for the analysis of biopolymers because of its soft ionization, and it plays a central role in proteomic research. Because of their simplicity, speed, and accuracy, MS methods have been successfully applied to biomarker discovery and the characterization of various bacterial agents. Although DNA sequencing is the current standard for molecular characterization of bacteria, molecular methods cannot be easily applied for rapid classification and identification.Our aim was to examine whether a proteomic approach using MALDI-TOF MS was effective for rapid bacterial identification, especially of two of the subspecies of L. lactis.  相似文献   

5.
Vibrio parahaemolyticus is a pathogenic marine bacterium that is the main causative agent of bacterial seafood-borne gastroenteritis in the United States. An increase in the frequency of V. parahaemolyticus-related infections during the last decade has been attributed to the emergence of an O3:K6 pandemic clone in 1995. The diversity of the O3:K6 pandemic clone and its serovariants has been examined using multiple molecular techniques including multilocus sequence analysis, pulsed-field gel electrophoresis, and group-specific PCR analysis. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a powerful tool for rapidly distinguishing between related bacterial species. In the current study, we demonstrate the development of a whole-cell MALDI-TOF MS method for the distinction of V. parahaemolyticus from other Vibrio spp. We identified 30 peaks that were present only in the spectra of the V. parahaemolyticus strains examined in this study that may be developed as MALDI-TOF MS biomarkers for identification of V. parahaemolyticus. We detected variation in the MALDI-TOF spectra of V. parahaemolyticus strains isolated from different geographical locations and at different times. The MALDI-TOF MS spectra of the V. parahaemolyticus strains examined were distinct from those of the other Vibrio species examined including the closely related V. alginolyticus, V. harveyi, and V. campbellii. The results of this study demonstrate the first use of whole-cell MALDI-TOF MS analysis for the rapid identification of V. parahaemolyticus.Recent food-borne illness outbreaks have emphasized the need for rapid, robust, and low-cost methods for microbial identification. Vibrio parahaemolyticus is one of several Vibrio species that cause human infection and occur in coastal estuarine and marine environments worldwide. V. parahaemolyticus causes gastroenteritis, wound infections, and septicemia upon exposure to contaminated water or contaminated undercooked seafood. In the United States, V. parahaemolyticus is the leading causative agent of bacterial seafood-borne gastroenteritis (8). Gastroenteritis-associated V. parahaemolyticus strains typically possess one or both of the thermostable direct hemolysin genes (tdh and trh); however, recent studies have indicated the presence of additional virulence-associated genes including two type III secretion systems (6, 7, 26, 28, 33). Following the emergence of the V. parahaemolyticus O3:K6 pandemic clone in 1995, there has been a rise in the number of reported V. parahaemolyticus-associated infections each year, making this species a pathogen of increasing concern (8, 11). The V. parahaemolyticus pandemic clone was first isolated from outbreaks in Asia in 1995 with the O3:K6 serotype and has since emerged with additional serotypes (30). The worldwide spread of the V. parahaemolyticus O3:K6 clone is a recognized international public health issue that requires the use of standardized methods for global monitoring and surveillance such as pulsed-field gel electrophoresis (PFGE) (22, 34).Initial isolation of V. parahaemolyticus is often conducted by culturing strains on thiosulfate citrate bile salts sucrose (TCBS) growth medium (15, 23). TCBS is used to selectively enrich for Vibrio spp. from cooccurring non-Vibrio strains; however, TCBS cannot differentiate V. parahaemolyticus from closely related species such as Vibrio harveyi and Vibrio campbellii. Additional molecular analyses are required to positively distinguish V. parahaemolyticus from other, closely related Vibrio species. These methods include group-specific PCR (4), multiplex PCR (38), multilocus sequence analysis (MLSA) (9, 17), comparative gene arrays (43), and whole-genome arrays (18). Often, several of these techniques are employed to distinguish V. parahaemolyticus from closely related Vibrio spp. and to provide greater resolution for discriminating among the pandemic clones (17, 18, 27). The development of a rapid method to distinguish V. parahaemolyticus from other Vibrio species including Vibrio pathogens would greatly aid the identification of strains involved in disease outbreaks when time is critical.Recent studies have shown that whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a powerful tool for the rapid identification of bacteria including Streptococcus spp. (44), Salmonella strains (14), Mycobacterium spp. (35), Arthrobacter spp. (42), Listeria spp. (2), Burkholderia spp. (41), and other diverse nonfermenting clinical bacteria (12, 29). These studies have demonstrated the use of whole-cell MALDI-TOF MS analysis to generate highly reproducible and unique profiles to differentiate these bacterial strains at the species and subspecies levels. Whole-cell MALDI-TOF MS involves growing bacteria under standardized conditions and preparing cells for analysis by washing them to remove residual medium components, followed by resuspension of cells in a matrix that allows protein ionization. The cell-matrix suspension is then spotted onto a MALDI plate, each spot is ionized with a laser, and the ionizable proteins migrate based on their size resulting in the different peak sizes (kDa) in the MALDI-TOF MS spectra. Bacteria are typically grown overnight; however, the specific growth conditions and medium type must be determined and replicated to avoid condition-dependent differences in MADLI-TOF MS spectra (42). The method for preparation of the cells consists of only a few steps, and the protein ionization and generation of the spectra take several seconds. Whole-cell MALDI-TOF MS analysis can thus quickly provide accurate and reproducible generation of bacterial fingerprints that may be analyzed for the presence of biomarker peaks representative of a species or clonal group (2, 25, 35, 41, 44).In the current study, we have developed a method for whole-cell MALDI-TOF MS identification of V. parahaemolyticus. MALDI-TOF MS analysis was used to differentiate V. parahaemolyticus from nine other Vibrio spp. (V. campbellii, V. cholerae, V. fischeri, V. fluvialis, V. harveyi, V. vulnificus, V. alginolyticus, V. mimicus, and V. mediterranei) and to identify potential V. parahaemolyticus-specific biomarker peaks. The objectives of this study were to determine whether MALDI-TOF MS analysis is reliable for (i) distinguishing V. parahaemolyticus from closely related Vibrio spp. and (ii) detecting variation among the V. parahaemolyticus pandemic clones. Furthermore, we analyzed whether strains that have undergone single gene deletions will have unique fingerprints resulting from changes in their ionizable proteins. This is the first study to use whole-cell MALDI-TOF MS analysis to generate reproducible and unique fingerprints that may be used to rapidly identify Vibrio spp. and to distinguish V. parahaemolyticus from related vibrios.  相似文献   

6.
Listeria monocytogenes is a food-borne pathogen that is the causative agent of human listeriosis, an opportunistic infection that primarily infects pregnant women and immunologically compromised individuals. Rapid, accurate discrimination between Listeria strains is essential for appropriate therapeutic management and timely intervention for infection control. A rapid method involving matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) that shows promise for identification of Listeria species and typing and even allows for differentiation at the level of clonal lineages among pathogenic strains of L. monocytogenes is presented. A total of 146 strains of different Listeria species and serotypes as well as clinical isolates were analyzed. The method was compared with the pulsed-field gel electrophoresis analysis of 48 Listeria strains comprising L. monocytogenes strains isolated from food-borne epidemics and sporadic cases, isolates representing different serotypes, and a number of Listeria strains whose genomes have been completely sequenced. Following a short inactivation/extraction procedure, cell material from a bacterial colony was deposited on a sample target, dried, overlaid with a matrix necessary for the MALDI process, and analyzed by MALDI-TOF MS. This technique examines the chemistry of major proteins, yielding profile spectra consisting of a series of peaks, a characteristic “fingerprint” mainly derived from ribosomal proteins. Specimens can be prepared in a few minutes from plate or liquid cultures, and a spectrum can be obtained within 1 minute. Mass spectra derived from Listeria isolates showed characteristic peaks, conserved at both the species and lineage levels. MALDI-TOF MS fingerprinting may have potential for Listeria identification and subtyping and may improve infection control measures.  相似文献   

7.
Pantoea agglomerans is an ecologically diverse taxon that includes commercially important plant-beneficial strains and opportunistic clinical isolates. Standard biochemical identification methods in diagnostic laboratories were repeatedly shown to run into false-positive identifications of P. agglomerans, a fact which is also reflected by the high number of 16S rRNA gene sequences in public databases that are incorrectly assigned to this species. More reliable methods for rapid identification are required to ascertain the prevalence of this species in clinical samples and to evaluate the biosafety of beneficial isolates. Whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) methods and reference spectra (SuperSpectrum) were developed for accurate identification of P. agglomerans and related bacteria and used to detect differences in the protein profile within variants of the same strain, including a ribosomal point mutation conferring streptomycin resistance. MALDI-TOF MS-based clustering was shown to generally agree with classification based on gyrB sequencing, allowing rapid and reliable identification at the species level.Pantoea agglomerans (20) is a ubiquitous plant-epiphytic bacterium that belongs to the family Enterobacteriaceae. While several strains are commercialized for biological control of plant diseases (23), the species also includes two phytopathogenic pathovars that carry distinctive virulence plasmids (32). P. agglomerans has a Jekyll-Hyde nature, being described also as an opportunistic human pathogen (30), which raises biosafety regulatory issues for the utilization of beneficial isolates (45). Clinical reports predominantly involve septicemia following penetrating trauma (16, 56) or nosocomial infections (14, 55). Clinical pathogenicity of this species has not been confidently confirmed (unfulfilled Koch''s postulates). Infections attributed to P. agglomerans are typically of a polymicrobial nature involving patients affected by other diseases (14) and may represent secondary contamination of wounds. Standard clinical diagnostics and identification rely mainly on biochemical profiling analysis or alternatively on 16S rRNA gene sequencing, despite the inadequacy of these techniques for precise discrimination within the Enterobacter and Pantoea genera (5, 20, 39). Problems with correct identification have been observed for automated systems such as the API 20E (24, 39) and Vitek-2/GNI+ (39, 40) (both from bioMerieux) or the Phoenix (11, 38) and Crystal identification systems (40, 48) (both from BD Diagnostic Systems).P. agglomerans is a composite taxon conglomerating former Enterobacter agglomerans, Erwinia milletiae, and Erwinia herbicola strains. Accurate identification is complicated by the unsettled taxonomy of the “P. agglomerans-E. herbicola-E. agglomerans” complex (45). Recent analyses based on gyrB sequencing, multilocus sequence analysis (MLSA) (4), and fluorescent amplified fragment length polymorphisms (fAFLP) (45) indicate that strains belonging to Enterobacter or Erwinia archived in culture collections are often erroneously assigned to P. agglomerans and are likely also misidentified in clinical diagnostics. False classifications of environmental P. agglomerans strains as related Pantoea species, including human- or plant-pathogenic P. ananatis, are also common (45). Inadequate biochemical identification methods and uncertainty regarding current taxonomy are revealed also by the excessive number of 16S rRNA gene sequences incorrectly assigned to P. agglomerans that can be retrieved from GenBank (Fig. (Fig.1).1). Sequencing of housekeeping genes, MLSA, and fAFLP are labor-intensive, time-consuming, and impractical approaches as routine diagnostic tools.Open in a separate windowFIG. 1.Taxonomy of putative P. agglomerans isolates based on 16S rRNA gene sequences retrieved from GenBank under the currently accepted species name or under the old basonyms Enterobacter agglomerans and Erwinia herbicola. Out of a total of 331 complete or partial sequences found, 263 could be aligned over their 1,240-bp central region resulting in a minimum evolution tree. For the analysis, gaps and missing data were eliminated only in pairwise sequence comparisons, resulting in a total of 1,114 positions. Nodal supports were assessed by 1,000 bootstrap replicates. Only bootstrap values greater than 50% are shown. The scale bar represents the number of base substitutions per site. The number of “P. agglomerans” sequences clustering with a given reference strain in shown in parentheses. Reference strains and clades containing reference strains are marked in bold, and the corresponding accession numbers are indicated between brackets. For the genus Erwinia the following reference strains were used: E. persicina HK204 [NR_026049.1], E. rhapontici 2OP2 [FJ595873], E. billingiae Eb661 [AM055711], E. tasmaniensis Et2/99 [AM292080], and E. amylovora FAW 23482 [AY456711].Whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) (31) is an emerging technology for identification of bacteria (26, 46), fungi (17, 33), viruses (29, 51), insects (41), and helminths (42). MALDI-TOF MS-based identification can accurately resolve bacterial identity at the genus, species, and in some taxa subspecies levels (e.g., Salmonella enterica serovars, Listeria genotypes) (1, 18). Identity is based on unique mass/charge ratio (m/z) fingerprints of proteins, which are ionized using short laser pulses directed to bacterial cells obtained from a single colony embedded in a matrix. After desorption, ions are accelerated in vacuum by a high electric potential and separated on the basis of the time taken to reach a detector, which is directly proportional to the mass-to-charge ratio of an ion. This technique has been shown to deliver reproducible protein mass fingerprints starting from an aliquot of a single bacterial colony within minutes and without any prior separation, purification, or concentration of samples. Whole-cell MALDI-TOF MS is a reliable technique across broad conditions (e.g., different growth media, cell growth states), with limited variability in mass-peak signatures within a selected mass range (2,000 < m/z < 20,000) that does not affect reliability of identification (28, 31). MALDI-TOF MS profiles primarily represent ribosomal proteins, which are the most abundant cellular proteins and are synthesized under all growth conditions (47). MALDI-TOF MS identification profiles derived from several characterized strains for a given species are used to develop reference spectra (e.g., SuperSpectrum; AnagnosTec GmbH, Potsdam, Germany), and they include a subset of characteristic and reproducible markers. MALDI-TOF MS identification databases are currently available for a relatively wide range of clinical bacteria, and this method has become an accepted tool for routine clinical diagnostics due to enhanced simplicity, rapidity, and reliability. However, environmental bacteria, such as Pantoea, have not been widely evaluated using MALDI-TOF MS and are largely absent from identification databases, limiting the practical reach of this new technology.Our objectives were to develop a robust method for rapid identification of P. agglomerans and related bacteria based on MALDI-TOF MS and to compare MALDI-TOF MS results against those obtained from a phylogenetic analysis based on gyrB sequencing as well as against biochemical identification methods.  相似文献   

8.
Mass spectrometry has been a very useful method to rapidly identify microorganisms associated with infectious diseases, detect bioterrorism threats, and discriminate among different subtypes of a pathogen. In this study, we developed a universal method for bacterial identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry. The effects on the mass spectrum of different experimental conditions, including the amount of bacterial cells used and treatment procedures with different solutions, matrix species, and solvents, were examined, and an optimized protocol was developed. Several different bacterial species, including Yersinia pestis, Escherichia coli, Burkholderia cepacia, Bacillus anthracis, and Staphylococcus aureus, which covered the gram-negative and -positive species and spore-producing and non-spore-producing species, were analyzed to evaluate the utility of the protocol. The results showed that five different species and different strains of the same species (9 strains of S. aureus and 10 strains of E. coli) could be discriminated clearly by their peak profiles in a mass range of 1,000 to 20,000 Da. This protocol is simple, rapid, and easy to perform; has excellent reproducibility; and is suitable for the construction of a mass spectrum fingerprinting database, which helps in fast bacterial identification via database searching.  相似文献   

9.
MALDI-TOF-MS在病原微生物鉴定中的研究进展   总被引:5,自引:0,他引:5  
基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)是鉴定多种致病性细菌的快速、可靠的方法,具有较好的稳定性和可重复性,在快速和准确性方面的总体表现明显好于传统的细菌生化鉴定方法。适合于一些致病菌的快速、高通量的检测和鉴定。综述MALDI-TOF-MS技术在普通病原菌、多血清型病原菌、非发酵性细菌,以及植物病原菌等病原微生物鉴定方面的最新研究进展。  相似文献   

10.
This report demonstrates the applicability of a combination of matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) and chemometrics for rapid and reliable identification of vegetative cells of the causative agent of anthrax, Bacillus anthracis. Bacillus cultures were prepared under standardized conditions and inactivated according to a recently developed MS-compatible inactivation protocol for highly pathogenic microorganisms. MALDI-TOF MS was then employed to collect spectra from the microbial samples and to build up a database of bacterial reference spectra. This database comprised mass peak profiles of 374 strains from Bacillus and related genera, among them 102 strains of B. anthracis and 121 strains of B. cereus. The information contained in the database was investigated by means of visual inspection of gel view representations, univariate t tests for biomarker identification, unsupervised hierarchical clustering, and artificial neural networks (ANNs). Analysis of gel views and independent t tests suggested B. anthracis- and B. cereus group-specific signals. For example, mass spectra of B. anthracis exhibited discriminating biomarkers at 4,606, 5,413, and 6,679 Da. A systematic search in proteomic databases allowed tentative assignment of some of the biomarkers to ribosomal protein or small acid-soluble proteins. Multivariate pattern analysis by unsupervised hierarchical cluster analysis further revealed a subproteome-based taxonomy of the genus Bacillus. Superior classification accuracy was achieved when supervised ANNs were employed. For the identification of B. anthracis, independent validation of optimized ANN models yielded a diagnostic sensitivity of 100% and a specificity of 100%.Members of the genus Bacillus are rod-shaped bacteria that exhibit catalase activity and can be characterized as endospore-forming obligate or facultative aerobes. The genus Bacillus contains two important groups of bacteria named after B. subtilis and B. cereus. The best-characterized member of the former group is B. subtilis, a renowned model organism for genetic research. Other group members, like B. pumilis, B. licheniformis, B. atrophaeus, and B. amyloliquefaciens, exhibit a high degree of phenotypic similarity and are thus not easily distinguishable (15).The B. cereus group comprises a number of closely related bacteria, some of which interfere with human health. Bacteria classified as B. cereus are occasionally associated with food poisoning (16, 28), while B. thuringiensis is primarily an insect pathogen because of its ability to produce toxins that have been widely used for the biocontrol of insect pests (28, 30). A third member of the B. cereus group, B. anthracis, is the causative agent of anthrax and is highly relevant to human and animal health. Other members of the B. cereus group are B. mycoides, B. pseudomycoides, and B. weihenstephanensis (4, 15).B. anthracis is a possible agent in biological warfare and bioterrorism. Its applicability as a biological warfare agent was made apparent by an accidental release from a Soviet military facility in Sverdlovsk (1, 10). Also, the well-publicized mailing of B. anthracis spores in the United States, which caused 18 confirmed cases of cutaneous and inhalational anthrax and an additional 4 suspected cases of cutaneous anthrax (3, 22), demonstrated that B. anthracis may become a threat from terrorist groups (10).Rapid detection of B. anthracis may be challenging because of its great genetic similarity to other species of the B. cereus group (10) and the difficulties of phenotypic differentiation of B. cereus group members (15). There is some controversy in the literature regarding the taxonomy of the B. cereus group. Indeed, some authors state that B. anthracis, B. cereus, and B. thuringiensis are one species with various virulence plasmids for the toxin pXO1 and the capsule pXO2 of B. anthracis and the insecticidal toxin of B. thuringiensis (10, 19). Other authors do not support this opinion and suggest the presence of even more species within the group (21).Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) intact-cell mass spectrometry (ICMS) has been suggested as a rapid, objective, and reliable technique for bacterial identification (8, 13, 23, 25, 38). As a proteomic technique, ICMS of whole bacterial cells, or cell lysates, relies on the reproducible detection of microbial protein patterns and thus delivers information complementary to genotypic or phenotypic test methods. With the pattern-matching approach, microbial identification is achieved by comparing experimental mass spectra with a collection of mass spectra of known organisms. This requires the compilation of large databases of bacterial reference spectra but has the advantage that an extensive knowledge of biomarker identities is not required. Another advantage of the pattern-matching approach is that genus- and species-specific procedures or consumables are not required, i.e., the same methodology can in principle be applied to all kinds of microorganisms (multiplex advantage).It is thus believed that ICMS offers the possibility to systematically investigate the diversity of bacterial subproteomes, complementing existing methodologies of bacterial characterization. This potential and the need for a rapid, objective, and reliable microbial identification technique that does not rely on nucleic acid detection and the availability of an MS-compatible inactivation protocol for highly pathogenic biosafety level 3 microorganisms and bacterial endospores (26) prompted us to systematically study the MALDI-TOF MS profiles of Bacillus strains and to establish a database of bacterial mass spectra. In the present work, we describe strategies of spectral analysis that allow the identification and validation of group- and species-specific sets of biomarkers. Using unsupervised hierarchical cluster analysis (UHCA) and supervised artificial neural network (ANN) analysis, we also demonstrate how microbial spectra can be employed to establish an MS-based methodology for rapid, objective, and reliable identification of the target species, B. anthracis.  相似文献   

11.
The growing importance of mass spectrometry for the identification and characterization of bacterial protein toxins is a consequence of the improved sensitivity and specificity of mass spectrometry-based techniques, especially when these techniques are combined with affinity methods. Here we describe a novel method based on the use of immunoaffinity capture and matrix-assisted laser desorption ionization-time of flight mass spectrometry for selective purification and detection of staphylococcal enterotoxin B (SEB). SEB is a potent bacterial protein toxin responsible for food poisoning, as well as a potential biological warfare agent. Unambiguous detection of SEB at low-nanogram levels in complex matrices is thus an important objective. In this work, an affinity molecular probe was prepared by immobilizing anti-SEB antibody on the surface of para-toluene-sulfonyl-functionalized monodisperse magnetic particles and used to selectively isolate SEB. Immobilization and affinity capture procedures were optimized to maximize the density of anti-SEB immunoglobulin G and the amount of captured SEB, respectively, on the surface of magnetic beads. SEB could be detected directly “on beads” by placing the molecular probe on the matrix-assisted laser desorption ionization target plate or, alternatively, “off beads” after its acidic elution. Application of this method to complex biological matrices was demonstrated by selective detection of SEB present in different matrices, such as cultivation media of Staphylococcus aureus strains and raw milk samples.  相似文献   

12.
Mass spectrometry is a potentially attractive means of monitoring the survival and efficacy of bioaugmentation agents, such as the dioxin-mineralizing bacterium Sphingomonas wittichii strain RW1. The biotransformation activity of RW1 phenotypes is determined primarily by the presence and concentration of the dioxin dioxygenase, an enzyme initiating the degradation of both dibenzo-p-dioxin and dibenzofuran (DF). We explored the possibility of identifying and characterizing putative cultures of RW1 by peptide mass fingerprinting (PMF) targeting this characteristic phenotypic biomarker. The proteome from cells of RW1—grown on various media in the presence and absence of DF—was partially purified, tryptically digested, and analyzed using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Mascot online database queries allowed statistically significant identification of RW1 in disrupted, digested cells (P < 0.01 to 0.05) and in digested whole-cell extracts (P < 0.00001 to 0.05) containing hundreds of proteins, as determined by two-dimensional gel electrophoresis. Up to 14 peptide ions of the alpha subunit of the dioxin dioxygenase (43% protein coverage) were detected in individual samples. A minimum of 107 DF-grown cells was required to identify dioxin degradation-enabled phenotypes. The technique hinges on the detection of multiple characteristic peptides of a biomarker that can reveal at once the identity and phenotypic properties of the microbial host expressing the protein. The results demonstrate the power of PMF of minimally processed microbial cultures as a sensitive and specific technique for the positive identification and phenotypic characterization of certain microorganisms used in biotechnology and bioremediation.  相似文献   

13.
Species identification of Nocardia is not straightforward due to rapidly evolving taxonomy, insufficient discriminatory power of conventional phenotypic methods and also of single gene locus analysis including 16S rRNA gene sequencing. Here we evaluated the ability of a 5-locus (16S rRNA, gyrB, secA1, hsp65 and rpoB) multilocus sequence analysis (MLSA) approach as well as that of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in comparison with sequencing of the 5’-end 606 bp partial 16S rRNA gene to provide identification of 25 clinical isolates of Nocardia. The 5’-end 606 bp 16S rRNA gene sequencing successfully assigned 24 of 25 (96%) clinical isolates to species level, namely Nocardia cyriacigeorgica (n = 12, 48%), N. farcinica (n = 9, 36%), N. abscessus (n = 2, 8%) and N. otitidiscaviarum (n = 1, 4%). MLSA showed concordance with 16S rRNA gene sequencing results for the same 24 isolates. However, MLSA was able to identify the remaining isolate as N. wallacei, and clustered N. cyriacigeorgica into three subgroups. None of the clinical isolates were correctly identified to the species level by MALDI-TOF MS analysis using the manufacturer-provided database. A small “in-house” spectral database was established incorporating spectra of five clinical isolates representing the five species identified in this study. After complementation with the “in-house” database, of the remaining 20 isolates, 19 (95%) were correctly identified to species level (score ≥ 2.00) and one (an N. abscessus strain) to genus level (score ≥ 1.70 and < 2.00). In summary, MLSA showed superior discriminatory power compared with the 5’-end 606 bp partial 16S rRNA gene sequencing for species identification of Nocardia. MALDI-TOF MS can provide rapid and accurate identification but is reliant on a robust mass spectra database.  相似文献   

14.
Mass spectrometry imaging (MSI) determines the spatial localization and distribution patterns of compounds on the surface of a tissue section, mainly using MALDI (matrix assisted laser desorption/ionization)-based analytical techniques. New matrices for small-molecule MSI, which can improve the analysis of low-molecular weight (MW) compounds, are needed. These matrices should provide increased analyte signals while decreasing MALDI background signals. In addition, the use of ultrahigh-resolution instruments, such as Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, has the ability to resolve analyte signals from matrix signals, and this can partially overcome many problems associated with the background originating from the MALDI matrix. The reduction in the intensities of the metastable matrix clusters by FTICR MS can also help to overcome some of the interferences associated with matrix peaks on other instruments. High-resolution instruments such as the FTICR mass spectrometers are advantageous as they can produce distribution patterns of many compounds simultaneously while still providing confidence in chemical identifications. Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging. In this work, a protocol for the use of DT for MALDI imaging of endogenous lipids from the surfaces of mammalian tissue sections, by positive-ion MALDI-MS, on an ultrahigh-resolution hybrid quadrupole FTICR instrument has been provided.  相似文献   

15.
SELDI-TOF-MS技术   总被引:8,自引:0,他引:8  
张军  王惠芳 《生命的化学》2005,25(5):415-417
该文介绍了SELDI-TOF-MS的原理、特点及在临床医学研究中的应用,展望了SELDI-TOF-MS技术的应用前景。  相似文献   

16.
Imaging Matrix Assisted Laser Desorption Ionization Mass Spectrometry provides a new and powerful tool to analyse the distribution of metabolites within plant tissues. The two matrices alpha-cyano-4-hydroxycinnamic acid (alpha-CHCA) and 9-aminoacridine provide a useful combination that allows the measurement of amino acids, sugars, and phosphorylated metabolites. Results are presented showing that representatives of these metabolites are unevenly distributed in wheat seeds at different stages of development and under temperature stress.  相似文献   

17.
Products of the reaction of 4-hydroxy-2-nonenal (4HNE) with native and heat-denatured Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase (G6PDH) were analyzed to determine the structure and position of the protein modifications. Matrix assisted laser desorption time-of-flight mass spectrometry was used to measure molecular weights of the modified proteins and determine mass maps of peptides formed by digestion with cyanogen bromide. The molecular weight data show that one to two 4HNE molecules add to each subunit of native enzyme while approximately nineteen 4HNE molecules add to each subunit of heat-denatured enzyme. Peptides are observed in the cyanogen bromide mass map of modified native G6PDH that are consistent with selective modification of two segments of the amino acid sequence. One modified segment contains Lysine-182 that has been found to be part of the enzyme active site. Peptides are observed in the cyanogen bromide mass map of modified heat-denatured enzyme that are consistent with extensive modification of several segments of the amino acid sequence. The magnitude of the mass differences between modified and unmodified peptides were approximately 156 Da, consistent with a 1, 4-addition of 4HNE. These results support the conclusion that 4HNE inactivates G6PDH by selectively modifying only two or three sites in the protein by a 1, 4-addition reaction and that some aspect of the tertiary structure of the enzyme directs those modification reactions.  相似文献   

18.
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been widely used for structural characterization of bacterial endotoxins (lipid A). However, the mass spectrometric behavior of the lipid A molecule is highly dependent on the matrix. Furthermore, this dependence is strongly linked to phosphorylation patterns. Using lipid A from Escherichia coli O116 as a model system, we have investigated the effects of different matrices and comatrix compounds on the analysis of lipid A. In this paper, we report a highly sensitive matrix system for lipid A analysis, which consists of 5-chloro-2-mercaptobenzothiazole matrix and EDTA ammonium salt comatrix. This matrix system enhances the sensitivity of the analysis of diphosphorylated lipid A species by more than 100-fold and in addition provides tolerance to high concentrations of sodium dodecyl sulfate (SDS) and tolerance to sodium chloride and calcium chloride at 10 μM, 100 μM, and 10 μM concentrations. The method was further evaluated for analysis of lipid A species with different phosphorylation patterns and from different bacteria, including Helicobacter pylori, Salmonella enterica serovar Riogrande, and Francisella novicida.Lipopolysaccharide (LPS) is a major component of the outer membranes of Gram-negative bacteria (21). Typically, LPS molecules consist of a hydrophilic carbohydrate portion and a hydrophobic lipid A (or endotoxin). The lipid A molecule consists of a fatty acyl substituted β-d-GlcN-(1-6)-α-GlcN disaccharide unit that usually carries phosphate groups. Diphosphorylated lipid A is generally presumed to be phosphorylated at C-1 and C-4′ positions (9); however, lipid A moieties containing pyrophosphate (PP) groups have also been reported (13). The presence of phosphate groups in lipid A greatly affects the endotoxic properties of LPS (22). Deletion of either of these groups reduces an endotoxic activity of the resulting monophosphorylated LPS by approximately 100-fold (18). For example, monophosphorylated lipid A has been used as an adjuvant in a hepatitis B vaccine in Europe (1, 12).Mass spectrometry (MS) has been widely used to gain information about the heterogeneity, i.e., the number of different species of lipid A families and a distribution of fatty acids on each glucosamine residue (2, 3, 9, 16, 20, 23, 28, 29, 30, 32, 35, 36). Detailed structural information, including the phosphorylation pattern of lipid A, can be obtained by tandem mass spectrometry. Several matrices have been used for the analysis of lipid A using matrix-assisted laser desorption ionization-time of flight MS (MALDI-TOF MS), including 2,5-dihydroxybenzoic acid (DHB), 2,4,6-trihydroxyacetophenone (THAP), and 6-aza-2-thiothymine (ATT) (8). Although DHB has been widely used for peptide analysis, it produces uneven crystals and leads to poor spot-to-spot reproducibility (3, 6, 11). Furthermore, the low solubility in the solvent compatible with lipid A and nonuniformity in a matrix layer (crystals) can lead to variations in the ionization yield across the sample resulting in formation of “hot” (or “sweet”) spots (14). On the other hand, 5-chloro-2-mercaptobenzothiazole (CMBT) was found to offer excellent spot-to-spot reproducibility because of the homogeneous crystallization of the analyte/matrix mixture over the sample spot (33). CMBT is soluble in methanol-chloroform-water (4:4:1, vol:vol:vol), a solvent compatible with lipid A molecules, especially hexaacylated species. Thus, it has been widely used for lipid A analysis (4, 9, 23, 35, 33). Interestingly, different preparation procedures for analysis of lipid A species dictate a selection of the preferred matrix system (10). For example, lipid A prepared using a TRI Reagent-based procedure with a CMBT matrix was preferable for the detection of phosphoethanolamine modifications (35). On the other hand, the analysis of lipid A prepared using an LPS extraction kit-based procedure with DHB was preferable for the detection of aminoarabinose modification (10). In addition, divalent cations, such as Ca2+ or Mg2+, can bridge the phosphorylated negatively charged groups between neighboring LPS molecules to form aggregates (24). Thus, there is a need for technologies capable of characterizing lipid A from biologically relevant samples in an accurate, rapid, and highly sensitive manner. Here we attempt to establish an optimized MALDI MS matrix system for the sensitive analysis of lipid A, especially its diphosphorylated forms, including both pyrophosphorylated and bisphosphorylated species. We also propose to incorporate a complex reagent (additive or comatrix) for reducing the interference of cations (5, 7, 15).  相似文献   

19.
Malignant ascites is a fluid, which builds up in the abdomen and contains cancer cells in the form of single cells or multicellular clusters called spheroids. Malignant ascites has been observed in patients suffering from ovarian, cervical, gastric, colorectal, pancreatic, endometrial, or primary liver cancer. The spheroids are believed to play a major role in chemo resistance and metastasis of the cancer. To ease the discomfort of patients, malignant ascites (MA) is often drained from the abdomen using a procedure called paracentesis. MA retrieved via this minimal invasive procedure is a great source for cancer spheroids, which can be used for testing chemotherapeutic drugs and drug combinations. Herein, the existing workflow is adapted to make concurrent monitoring of drug accumulation, drug response, and drug metabolites feasible using primary spheroids or spheroids grown without a scaffolding matrix. To achieve this, those spheroids are embedded in matrigel, before fixing them with formalin. This makes it possible to process, store, and ship samples at room temperature. This new approach might be used to choose the best targeted therapy for each patient and thereby facilitate personalized medicine.  相似文献   

20.
Subtilosin A produced by Bacillus subtilis is a macrocyclic peptide antibiotic which comprises 35 amino acids. Its molecular mass (3399.7 Da), determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and chemical properties gave experimental support for unusual intramolecular linkages. The three-dimensional fold of native subtilosin in dimethylsulfoxide was determined from two-dimensional 1H-NMR spectra recorded at 600 MHz. Based on the backbone conformation, a structure for subtilosin A is presented which is characterized by three inter-residue bridges where two cysteines are linked with two phenylalanine residues, respectively, and a third cysteine is bound to a threonine residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号