首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During Drosophila eye development, cell differentiation is preceded by the formation of a morphogenetic furrow, which progresses across the epithelium from posterior to anterior. Cells within the morphogenetic furrow are apically constricted and shortened along their apical-basal axis. However, how these cell shape changes and, thus, the progression of the morphogenetic furrow are controlled is not well understood. Here we show that cells simultaneously lacking Hedgehog and Dpp signal transduction fail to shorten and do not enter the morphogenetic furrow. Moreover, we have identified a gene, cadherin Cad86C, which is highly expressed in cells of the leading flank of the morphogenetic furrow. Ectopic activation of either the Hedgehog or Dpp signal transduction pathway results in elevated Cad86C expression. Conversely, simultaneous loss of both Hedgehog and Dpp signal transduction leads to decreased Cad86C expression. Finally, ectopic expression of Cad86C in either eye-antennal imaginal discs or wing imaginal discs results in apical constriction and shortening of cells. We conclude that Hedgehog and Dpp signaling promote the shortening of cells within the morphogenetic furrow. Induction of Cad86C expression might be one mechanism through which Hedgehog and Dpp promote these cell shape changes.  相似文献   

2.
3.
Mao Y  Kerr M  Freeman M 《PloS one》2008,3(3):e1827

Background

The development of the Drosophila eye imaginal disc requires complex epithelial rearrangements. Cells of the morphogenetic furrow are apically constricted and this leads to a physical indentation in the epithelium. Posterior to the furrow, cells start to rearrange into distinct clusters and eventually form a precisely patterned array of ommatidia. These morphogenetic processes include regulated changes of adhesion between cells.

Methodology/Principal Findings

Here, we show that two transmembrane adhesion proteins, Capricious and Tartan, have dynamic and complementary expression patterns in the eye imaginal disc. We also describe novel null mutations in capricious and double null mutations in capricious and tartan. We report that they have redundant functions in regulating the architecture of the morphogenetic furrow and ommatidial spacing.

Conclusions/Significance

We conclude that Capricious and Tartan contribute to the adhesive properties of the cells in the morphogenetic furrow and that this regulated adhesion participates in the control of spacing ommatidial clusters.  相似文献   

4.

Background  

Decapentaplegic (Dpp) is one of the best characterized morphogens, required for dorso-ventral patterning of the Drosophila embryo and for anterior-posterior (A/P) patterning of the wing imaginal disc. In the larval wing pouch, the Dpp target gene optomotor-blind (omb) is generally assumed to be expressed in a step function above a certain threshold of Dpp signaling activity.  相似文献   

5.

Background  

Most differentiating cells are arrested in G1-phase of the cell cycle and this proliferative quiescence appears important to allow differentiation programmes to be executed. An example occurs in the Drosophila eye imaginal disc, where all cells are synchronized and arrested in G1 phase prior to making a fate choice either to initiate the first round of photoreceptor differentiation or to re-enter one terminal mitosis.  相似文献   

6.
7.
8.
Cells in the morphogenetic furrow of the Drosophila eye disc undergo a striking shape change immediately prior to their neuronal differentiation. We have isolated mutations in a novel gene, act up (acu), that is required for this shape change. acu encodes a homolog of yeast cyclase-associated protein, which sequesters monomeric actin; we show that acu is required to prevent actin filament polymerization in the eye disc. In contrast, profilin promotes actin filament polymerization, acting epistatically to acu. However, both acu and profilin are required to prevent premature Hedgehog-induced photoreceptor differentiation ahead of the morphogenetic furrow. These findings suggest that dynamic changes in actin filaments alter cell shape to control the movement of signals that coordinate a wave of differentiation.  相似文献   

9.
The Drosophila melanogaster eye disc is a powerful system that can be used to study many different biological processes. It contains approximately 800 separate eye units, termed ommatidia1. Each ommatidium contains eight neuronal photoreceptors that develop from undifferentiated cells following the passage of the morphogenetic furrow in the third larval instar2. Following the sequential differentiation of the photoreceptors, non-neuronal cells develop, including cone and pigment cells, along with mechanosensory bristle cells3. Final differentiation processes, including the structured arrangement of all the ommatidial cell types, programmed cell death of undifferentiated cell types and rhodopsin expression, occurs through the pupal phase4-7. This technique focuses on manipulating the pupal eye disc, providing insight and instruction on how to dissect the eye disc during the pupal phase, which is inherently more difficult to perform than the commonly dissected third instar eye disc. This technique also provides details on immunostaining to allow the visualization of various proteins and other cell components.  相似文献   

10.
11.
The onset of pattern formation in the developing Drosophila retina begins with the initiation of the morphogenetic furrow, the leading edge of a wave of retinal development that transforms a uniform epithelium, the eye imaginal disc into a near crystalline array of ommatidial elements. The initiation of this wave of morphogenesis is under the control of the secreted morphogens Hedgehog (Hh), Decapentaplegic (Dpp) and Wingless (Wg). We show that the Epidermal Growth Factor Receptor and Notch signaling cascades are crucial components that are also required to initiate retinal development. We also show that the initiation of the morphogenetic furrow is the sum of two genetically separable processes: (1) the 'birth' of pattern formation at the posterior margin of the eye imaginal disc; and (2) the subsequent 'reincarnation' of retinal development across the epithelium.  相似文献   

12.

Background  

In Xenopus the bone morphogenetic protein growth and differentiation factor 6 (GDF6) is expressed at the edge of the neural plate, and within the anterior neural plate including the eye fields. Here we address the role of GDF6 in neural and eye development by morpholino knockdown experiments.  相似文献   

13.
14.
15.
When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals.  相似文献   

16.
We previously cloned and characterized the Drosophila gene, tincar (tinc), which encodes a novel protein with eight putative transmembrane domains. Here, we have studied the expression pattern and functions of tinc during developmental processes. tinc mRNA is expressed in the central and peripheral nervous systems, and midgut during embryogenesis. In the third-instar larval eye disc, tinc mRNA is strongly expressed in all the differentiating ommatidial cells within and in the vicinity of the morphogenetic furrow. Loss-of-function analysis using the RNA-interference method revealed severe defects of eye morphogenesis during the late developmental stages. Our results suggested that tinc may have an indispensable role in the normal differentiation of ommatidial cells.Edited by C. Desplan  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号