首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human colon carcinoma cells express 25-hydroxyvitamin D(3)-1alpha-hydroxylase (CYP27B1) and thus produce the vitamin D receptor (VDR) ligand 1alpha,25-dihydroxyvitamin D(3) (1,25-D3), which can be metabolized by 25-hydroxyvitamin D(3)-24-hydroxylase (CYP24). Expression of VDR, CYP27B1, and CYP24 determines the efficacy of the antimitotic action of 1,25-D3 and is distinctly related to the degree of differentiation of cancerous lesions. In the present study we addressed the question of whether the effects of epidermal growth factor (EGF) and of 1,25-D3 on VDR, CYP27B1, and CYP24 gene expression in human colon carcinoma cell lines also depend on the degree of cellular differentiation. We were able to show that slowly dividing, highly differentiated Caco-2/15 cells responded in a dose-dependent manner to both EGF and 1,25-D3 by up-regulation of VDR and CYP27B1 expression, whereas in highly proliferative, less differentiated cell lines, such as Caco-2/AQ and COGA-1A and -1E, negative regulation was observed. CYP24 mRNA was inducible in all clones by 1,25-D3 but not by EGF. From the observed clonal differences in the regulatory effects of EGF and 1,25-D3 on VDR and CYP27B1 gene expression we suggest that VDR-mediated growth inhibition by 1,25-D3 would be efficient only in highly differentiated carcinomas even when under mitogenic stimulation by EGF.  相似文献   

2.
Although ectopic expression of 25-hydroxyvitamin D3-1α-hydroxylase (1α-OHase) has been recognized for many years, the precise function of this enzyme outside the kidney remains open to debate. Three specific aspects of extra-renal 1α-OHase have attracted most attention: (i) expression and regulation in non-classical tissues during normal physiology; (ii) effects on the immune system and inflammatory disease; (iii) expression and function in tumors. The most well-recognized manifestation of extra-renal 1α-OHase activity remains that found in some patients with granulomatous diseases where locally synthesized 1α,25(OH)2D3 has the potential to spill-over into the general circulation. However, immunohistochemistry and mRNA analyses suggest that 1α-OHase is also expressed by a variety of normal human tissues including the gastrointestinal tract, skin, vasculature and placenta. This has promoted the idea that autocrine/paracrine synthesis of 1,25(OH)2D3 contributes to normal physiology, particularly in mediating the potent effects of vitamin D on innate (macrophage) and acquired (dendritic cell) immunity. We have assessed the capacity for synthesis of 1,25(OH)2D3 in these cells and the functional significance of autocrine responses to 1α-hydroxylase. Data suggest that local synthesis of 1,25(OH)2D3 may be a preferred mode of response to antigenic challenge in many tissues.  相似文献   

3.
Kidney tubules obtained from chicks fed a high-calcium low-phosphorus diet retained 25-hydroxyvitamin D3-1-hydroxylase activity after a 10 h incubation in serum-free minimum essential medium. Inclusion of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) in the medium prompted a suppression of 25-hydroxyvitamin D3-1-hydroxylase and the induction of 25-hydroxyvitamin D3-24-hydroxylase activities. The enzyme switch-over response could be prompted by 1.6 × 10?7 M 1,25-dihydroxyvitamin D3 and occurred within 6 h following treatment. Medium calcium appeared to augment the metabolite's switch-over action.  相似文献   

4.
The biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), regulates osteoblast proliferation and differentiation. Production of 1,25(OH)2D3 is catalysed by the enzyme 25-hydroxyvitamin D3-1α-hydroxylase (CYP27B1). Though highly expressed in the kidney, the CYP27B1 gene is also expressed in non-renal tissues including bone. It is hypothesised that local production of 1,25(OH)2D3 by osteoblasts plays an autocrine or paracrine role. The aim of this study was to investigate what factors regulate expression of the CYP27B1 gene in osteoblast cells. ROS 17/2.8 osteoblast cells were transiently transfected with plasmid constructs containing the 5′-flanking sequence of the human CYP27B1 gene fused to a luciferase reporter gene. Cells were treated with either parathyroid hormone (PTH), 1,25(OH)2D3, transforming growth factor-beta (TGF-β) or insulin-like growth factor-1 (IGF-1) and luciferase activity was measured 24 h later. The results showed that 1,25(OH)2D3 did not alter expression of the reporter construct, however treatment with PTH, IGF-1 and TGF-β decreased expression by 18, 53 and 58% respectively. The repressive action of TGF-β was isolated to the region between −531 and −305 bp. These data suggest that expression of the 5′-flanking region for the CYP27B1 gene in osteoblast cells may be regulated differently to that previously described in kidney cells.  相似文献   

5.
1,25(OH)2D3 inhibits adipogenesis in mouse 3T3-L1 adipocytes, but little is known about its effects or local metabolism in human adipose tissue. We showed that vitamin D receptor (VDR) and 1α-hydroxylase (CYP27B1), the enzyme that activates 25(OH)D3 to 1,25(OH)2D3, were expressed in human adipose tissues, primary preadipocytes and newly-differentiated adipocytes. Preadipocytes and newly-differentiated adipocytes were responsive to 1,25(OH)2D3, as indicated by a markedly increased expression of CYP24A1, a primary VDR target. 1,25(OH)2D3 enhanced adipogenesis as determined by increased expression of adipogenic markers and triglyceride accumulation (50% to 150%). The magnitude of the effect was greater in the absence of thiazolidinediones. 1,25(OH)2D3 was equally effective when added after the removal of differentiation cocktail on day 3, but it had no effect when added only during the induction period (day 0–3), suggesting that 1,25(OH)2D3 promoted maturation. 25(OH)D3 also stimulated CYP24A1 expression and adipogenesis, most likely through its conversion to 1,25(OH)2D3. Consistent with this possibility, incubation of preadipocytes with 25(OH)D3 led to 1,25(OH)2D3 accumulation in the media. 1,25(OH)2D3 also enhanced adipogenesis in primary mouse preadipocytes. We conclude that vitamin D status may regulate human adipose tissue growth and remodeling.  相似文献   

6.
Activation of precursor 25‐hydroxyvitamin D3 (25D) to hormonal 1,25‐dihydroxyvitamin D3 (1,25D) is a pivotal step in vitamin D physiology, catalysed by the enzyme 25‐hydroxyvitamin D‐1α‐hydroxylase (1α‐hydroxylase). To establish new models for assessing the physiological importance of the 1α‐hydroxylase‐25D‐axis, we used Danio rerio (zebrafish) to characterize expression and biological activity of the gene for 1α‐hydroxylase (cyp27b1). Treatment of day 5 zebrafish larvae with inactive 25D (5–150 nM) or active 1,25D (0.1–10 nM) induced dose responsive expression (15–95‐fold) of the vitamin D‐target gene cyp24a1 relative to larvae treated with vehicle, suggesting the presence of Cyp27b1 activity. A full‐length zebrafish cyp27b1 cDNA was then generated using RACE and RT‐PCR methods. Sequencing of the resulting clone revealed an open reading frame encoding a protein of 505 amino acids with 54% identity to human CYP27B1. Transfection of a cyp27b1 expression vector into HKC‐8, a human kidney proximal tubular epithelial cell line, enhanced intracrine metabolism of 25D to 1,25D resulting in greater than twofold induction of CYP24A1 mRNA expression and a 25‐fold increase in 1,25D production compared to empty vector. These data indicate that we have cloned a functional zebrafish CYP27B1, representing a phylogenetically distant branch from mammals of this key enzyme in vitamin D metabolism. Further analysis of cyp27b1 expression and activity in zebrafish may provide new perspectives on the biological importance of 25D metabolism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The most biologically active metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has well known direct effects on osteoblast growth and differentiation in vitro. The precursor 25-hydroxyvitamin D3 (25(OH)D3) can affect osteoblast function via conversion to 1,25(OH)2D3, however, it is largely unknown whether 25(OH)D3 can affect primary osteoblast function on its own. Furthermore, 25(OH)D3 is not only converted to 1,25(OH)2D3, but also to 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) which may have bioactivity as well. Therefore we used a primary human osteoblast model to examine whether 25(OH)D3 itself can affect osteoblast function using CYP27B1 silencing and to investigate whether 24R,25(OH)2D3 can affect osteoblast function. We showed that primary human osteoblasts responded to both 25(OH)D3 and 1,25(OH)2D3 by reducing their proliferation and enhancing their differentiation by the increase of alkaline phosphatase, osteocalcin and osteopontin expression. Osteoblasts expressed CYP27B1 and CYP24 and synthesized 1,25(OH)2D3 and 24R,25(OH)2D3 dose-dependently. Silencing of CYP27B1 resulted in a decline of 1,25(OH)2D3 synthesis, but we observed no significant differences in mRNA levels of differentiation markers in CYP27B1-silenced cells compared to control cells after treatment with 25(OH)D3. We demonstrated that 24R,25(OH)2D3 increased mRNA levels of alkaline phosphatase, osteocalcin and osteopontin. In addition, 24R,25(OH)2D3 strongly increased CYP24 mRNA. In conclusion, the vitamin D metabolites 25(OH)D3, 1,25(OH)2D3 and 24R,25(OH)2D3 can affect osteoblast differentiation directly or indirectly. We showed that primary human osteoblasts not only respond to 1,25(OH)2D3, but also to 24R,25(OH)2D3 by enhancing osteoblast differentiation. This suggests that 25(OH)D3 can affect osteoblast differentiation via conversion to the active metabolite 1,25(OH)2D3, but also via conversion to 24R,25(OH)2D3. Whether 25(OH)D3 has direct actions on osteoblast function needs further investigation.  相似文献   

8.
Homogenates of kidney from laying Japanese quail incubated in vitro with 25-hydroxy-[26,27-3H] vitamin D3 produce more 1,25-dihydroxy-[26,27-3H]vitamin D3 than do homogenates of kidney from mature nonlaying females or males maintained on the same diet and under identical conditions. Instead, the homogenates from male quail or nonlaying female quail convert 25-hydroxyvitamin D3 to 24,25-dihydroxyvitamin D3. The administration of 5 mg of estradiol to mature male quail 24 h prior to sacrifice suppressed the 25-hydroxyvitamin D3-24-hydroxylase and markedly stimulated 25-hydroxyvitamin D3-1-hydroxylase. The administration of estradiol to male quail caused hypercalcemia, which responded more slowly than did the 1-hydroxylase. As little as 0.1 mg of estradiol/quail was found effective in stimulating the 1-hydroxylase and suppressing the 24-hydroxylase. Other hormones such as follicle stimulating hormone (FSH), cortisone, testosterone, and progesterone, even at high dose levels, produced little or no change in the 25-hydroxyvitamin D3-1-hydroxylase. Testosterone did, however, suppress the 25-hydroxyvitamin D3-24-hydroxylase. The stimulation of the 25-hydroxyvitamin D3-1-hydroxylase by parathyroid hormone was of a smaller magnitude than that of the estradiol, and the effects of the two hormones were additive, suggesting that they function by a different mechanism.  相似文献   

9.
10.
Although local synthesis of 1,25D has been postulated to regulate parameters of cell growth and differentiation in non-renal cells, the physiological role of 1,25D production in bone cells remains unclear. We used the technique of RNA interference to inhibit the mRNA encoding the enzyme responsible for 1,25D synthesis, 25-hydroxyvitamin D 1α-hydroxylase (CYP27B1). Human osteosarcoma (HOS) cells were transfected with siRNA for CYP27B1 or non-silencing RNA before being treated with 25D for 48 h under normal growth conditions. De novo synthesis of 1,25D was measured in the media as well as mRNA levels for CYP27B1, osteocalcin (OCN) and 25-hydroxyvitamin D 24-hydroxylase (CYP24). We demonstrated that HOS cells express CYP27B1 mRNA, metabolize 25D and secrete detectable levels of de novo synthesized 1,25D. CYP27B1 mRNA silencing by RNAi, resulted in the suppression of 1,25D production and subsequent reduction of OCN and CYP24 mRNA expression. Our findings suggest that local 1,25D synthesis has paracrine effects in the bone microenvironment implying that vitamin D metabolism in human osteoblasts represents a physiologically important pathway, possibly regulating the maturation of osteoblasts.  相似文献   

11.
A single 325-pmol dose of 1,25-dihydroxyvitamin D3 given to chicks fed a vitamin D-deficient diet containing 3% calcium and 0.6% phosphorus suppresses renal mitochondrial 25-hydroxyvitamin D3-1α-hydroxylase and stimulates the 25-hydroxyvitamin D3-24-hydroxylase as measured by in vitro assay. This alteration in the enzymatic activity takes place over a period of hours. The administration of parathyroid hormone rapidly suppresses the 25-hydroxyvitamin D3-24-hydroxylase. The alterations in the hydroxylases by parathyroid hormone or 1,25-dihydroxyvitamin D3 are not related to changes in serum clacium or phosphate but could be related to changes in intracellular levels of these ions. Actinomycin D or cycloheximide given in vivo reduces the 25-hydroxyvitamin D3-24-hydroxylase activity rapidly which suggests that the turnover of the enzyme and its messenger RNA is rapid (1- and 5-h half-life, respectively). The half-lives of the hydroxylases are sufficiently short to permit a consideration that the regulation by 1,25-dihydroxyvitamin D3 and parathyroid hormone may involve enzyme synthesis and degradation.  相似文献   

12.
CYP24A1 is the cytochrome P450 component of the 25-hydroxyvitamin D(3)-24-hydroxylase enzyme that catalyzes the conversion of 25-hydroxyvitamin D(3) (25-OH-D(3)) and 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) into 24-hydroxylated products, which constitute the degradation of the vitamin D molecule. This review focuses on recent data in the CYP24A1 field, including biochemical, physiological and clinical developments. Notable among these are: the first crystal structure for rat CYP24A1; mutagenesis studies which change the regioselectivity of the enzyme; and the finding that natural inactivating mutations of CYP24A1 cause the genetic disease idiopathic infantile hypercalcemia (IIH). The review also discusses the emerging correlation between rising serum phosphate/FGF-23 levels and increased CYP24A1 expression in chronic kidney disease, which in turn underlies accelerated degradation of both serum 25-OH-D(3) and 1,25-(OH)(2)D(3) in this condition. This review concludes by evaluating the potential clinical utility of blocking this enzyme with CYP24A1 inhibitors in various disease states.  相似文献   

13.
1,25-Dihydroxyvitamin D3 (calcitriol) is the most active natural metabolite of Vitamin D3. It has strong antiproliferative and differentiating effects on various cell types including breast cancer cells. 25-Hydroxyvitamin D3-1α-hydroxylase (1α-hydroxylase, CYP27B1) is one of the key enzymes in the formation of calcitriol. It has been found in breast cancer cells suggesting an autocrine regulation of formation of calcitriol in these cells. Alternative splicing of the encoding genes for this enzyme can possibly play a role in regulating the enzyme level and can explain tissue specific variations of 1α-hydroxylase activity. Splice variants containing intron 1 may encode for truncated proteins with deletion of protein domains which are essential for its enzymatic activity. In order to obtain more information on the abundance of 1α-hydroxylase splice variants, we performed a highly specific nested touchdown PCR in MCF-7 cells. The full-length sequence of 1α-hydroxylase and two different splice variants of this enzyme containing intron 1 were isolated. By Western blot technique we then confirmed the protein products of the full-length enzyme and its splice variants. We hypothesize that that the expression of splice variants can lead to a quantitatively lower expression of the mRNA of the full-length enzyme. The abundance of less active 1α-hydroxylase protein variants can alter the local synthesis of calcitriol in the cells and may explain variations of enzymatic activity in different cells and tissues.  相似文献   

14.
Details of the molecular mechanisms determining levels of the secosteroid, 1,25-dihydroxyvitamin D(3) (1,25D) remain to be elucidated. The current paradigm for the control of serum 1,25D levels is the tight regulation of renal 25-hydroxyvitamin D-1alpha-hydroxlase (CYP27B1) activity by a number of physiological factors. 1,25D production is also regulated by the cytochrome P450 enzyme, 25-hydroxyvitamin D-24-hydroxylase (CYP24), which through side chain hydroxylation reactions, inactivates 1,25D. We have recently demonstrated that renal CYP27B1 and CYP24 expression contribute equally to regulating serum 1,25D levels. We now describe the contribution of renal Vitamin D receptor (VDR) expression in determining serum 1,25D levels. Serum 1,25D levels were decreased when the dietary calcium intake was increased. We measured mRNA levels for CYP27B1, CYP24 and VDR receptor in kidney RNA extracts from animals fed diets containing different levels of calcium, ranging from 0.05 to 1%. Serum 1,25D levels were negatively correlated with renal CYP24 mRNA levels (R2 = 0.35, P < 0.01) while renal VDR is positively correlated with renal CYP24 mRNA (R2 = 0.80, P < 0.001). However, only renal VDR mRNA remained a significant determinant of renal CYP24 expression when both these variables were included in multiple linear regression analysis (multiple R2 = 0.89, P < 0.001). These findings suggest that kidney CYP24 activity acts in concert with kidney CYP27B1 to control serum 1,25D levels and that serum 1,25D stimulates renal CYP24 expression by acting through the renal VDR.  相似文献   

15.
The vitamin D3 receptor (VDR) is present in all microenvironments of the breast, yet it is hypothesized to signal through the epithelium to regulate hormone induced growth and differentiation. However, the influence or contribution of the other microenvironments within the breast that express VDR, like the breast adipose tissue, are yet to be investigated. We hypothesized that the breast adipocytes express the signaling components necessary to participate in vitamin D3 synthesis and signaling via VDR, modulating ductal epithelial cell growth and differentiation. We utilized human primary breast adipocytes and VDR wild type (WT) and knockout (KO) mice to address whether breast adipocytes participate in vitamin D3‐induced growth regulation of the ductal epithelium. We report in this study that breast primary adipocytes express VDR, CYP27B1 (1α‐hydroxylase, 1α‐OHase), the enzyme that generates the biologically active VDR ligand, 1α,25‐dihydroxyvitamin D3 (1,25D3), and CYP24 (24‐hydroxylase, 24‐OHase), a VDR‐1,25D3 induced target gene. Furthermore, the breast adipocytes participate in bioactivating 25‐hydroxyvitamin D3 (25D3) to the active ligand, 1,25D3, and secreting it to the surrounding microenvironment. In support of this concept, we report that purified mammary ductal epithelial fragments (organoids) from VDR KO mice, co‐cultured with WT breast adipocytes, were growth inhibited upon treatment with 25D3 or 1,25D3 compared to vehicle alone. Collectively, these results demonstrate that breast adipocytes bioactivate 25D3 to 1,25D3, signal via VDR within the adipocytes, and release an inhibitory factor that regulates ductal epithelial cell growth, suggesting that breast adipose tissue contributes to vitamin D3‐induced growth regulation of ductal epithelium. J. Cell. Biochem. 112: 3393–3405, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

16.
17.
A simplified method for the determination of 25-hydroxy and 1α,25-dihydroxy metabolites of vitamins D2 and D3 in human plasma was developed. Plasma samples were deproteinizated and applied to a Bond Elut C18 OH cartridge to separate 25-hydroxyvitamin D (25-OH-D) and 1α-25-dihydroxyvitamin D [1,25(OH)2D] fractions. The 25-OH-D fraction was purified by a Bond Elut C18 cartridge and 25-OH-D2 and 25-OH-D3 were assayed by HPLC using a Zorbax SIL column. The 1,25(OH)2D fraction obtained above was subsequently applied to HPLC using a Zorbax SIL column to separate 1,25(OH)2D2 and 1,25(OH)2D3 fractions which were determined by a radioreceptor assay (RRA) using calf thymus receptor. The method was applied to nutritional studies.  相似文献   

18.
25-Hydroxyvitamin D3 1α-hydroxylase encoded by CYP27B1 converts 25-hydroxyvitamin D3 into 1α,25-dihydroxyvitamin D3, a vitamin D receptor ligand. 25-Hydroxyvitamin D3 has been regarded as a prohormone. Using Cyp27b1 knockout cells and a 1α-hydroxylase-specific inhibitor we provide in four cellular systems, primary mouse kidney, skin, prostate cells and human MCF-7 breast cancer cells, evidence that 25-hydroxyvitamin D3 has direct gene regulatory properties. The high expression of megalin, involved in 25-hydroxyvitamin D3 internalisation, in Cyp27b1?/? cells explains their higher sensitivity to 25-hydroxyvitamin D3. 25-Hydroxyvitamin D3 action depends on the vitamin D receptor signalling supported by the unresponsiveness of the vitamin D receptor knockout cells. Molecular dynamics simulations show the identical binding mode for both 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3 with the larger volume of the ligand-binding pocket for 25-hydroxyvitamin D3. Furthermore, we demonstrate direct anti-proliferative effects of 25-hydroxyvitamin D3 in human LNCaP prostate cancer cells. The synergistic effect of 25-hydroxyvitamin D3 with 1α,25-dihydroxyvitamin D3 in Cyp27b1?/? cells further demonstrates the agonistic action of 25-hydroxyvitamin D3 and suggests that a synergism between 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3 might be physiologically important. In conclusion, 25-hydroxyvitamin D3 is an agonistic vitamin D receptor ligand with gene regulatory and anti-proliferative properties.  相似文献   

19.
The main autocrine/paracrine role of the active metabolite of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25-D3), is inhibition of cell growth and induction of cell differentiation and/or apoptosis. Synthesis and degradation of the secosteroid occurs not only in the kidney but also in normal tissue or malignant extrarenal tissues such as the colon. Because 25-hydroxyvitamin D3 24-hydroxylase (CYP24A1) is considered to be the main enzyme determining the biological half-life of 1,25-D3, we have examined expression of the CYP24A1 mRNA (by real-time RT-PCR) and protein (by immunohistochemistry) in normal human colon mucosa, colorectal adenomas, and adenocarcinomas in 111 patients. Although 76% of the normal and benign colonic tissue was either completely devoid of or expressed very low levels of CYP24A1, in the majority of the adenocarcinomas (69%), the enzyme was present at high concentrations. A parallel increased expression of the proliferation marker Ki-67 in the same samples suggests that overexpression of CYP24A1 reduced local 1,25-D3 availability, decreasing its antiproliferative effect. (J Histochem Cytochem 58:277–285, 2010)  相似文献   

20.
Hapten derivatives of 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3 were synthesized using the Wittig–Horner approach. Both haptens bearing a carboxylic group at the side chain that can be linked to a protein for raising antibodies of potential utility for the determination of 25-hydroxyvitamin D3, 1α,25-dihydroxyvitamin D3 and 1α-hydroxylated vitamin D3 analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号