首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The β2 integrins and intercellular adhesion molecule-1 (ICAM-1) are important for monocyte migration through inflammatory endothelium. Here we demonstrate that the integrin αvβ3 is also a key player in this process. In an in vitro transendothelial migration assay, monocytes lacking β3 integrins revealed weak migratory ability, whereas monocytes expressing β3 integrins engaged in stronger migration. This migration could be partially blocked by antibodies against the integrin chains αL, β2, αv, or IAP, a protein functionally associated with αvβ3 integrin. Transfection of β3 integrin chain cDNA into monocytes lacking β3 integrins resulted in expression of the αvβ3 integrin and conferred on these cells an enhanced ability to transmigrate through cell monolayers expressing ICAM-1. These monocytes also engaged in αLβ2-dependent locomotion on recombinant ICAM-1 which was enhanced by αvβ3 integrin occupancy. Antibodies against IAP were able to revert this αvβ3 integrin-dependent cell locomotion to control levels. Finally, adhesion assays revealed that occupancy of αvβ3 integrin could decrease monocyte binding to ICAM-1.In conclusion, we show that αvβ3 integrin modulates αLβ2 integrin-dependent monocyte adhesion to and migration on ICAM-1. This could represent a novel mechanism to promote monocyte motility on vascular ICAM-1 and initiate subsequent transendothelial migration.  相似文献   

2.
Cancer cell invasion is a key element in metastasis that requires integrins for adhesion/de-adhesion, as well as matrix metalloproteinases (MMPs) for focalized proteolysis. Herein we show that MMP-2 is up-regulated in resected colorectal tumors and degrades β1 integrins with the release of fragments containing the β1 I-domain. The β1 cleavage pattern is similar to that produced by digestion of α5β1 and α2β1 with MMP-2. Two such fragments, at 25 and 75 kDa, were identified after immunoprecipitation, with monoclonal antibody BD610468 reacting with the NH2-terminal I-like ectodomain followed by SDS-PAGE and microsequencing using electrospray (ISI-Q-TOF-Micromass) spectrometry. Cleavage of the β1 integrin can be abolished by inhibition of MMP-2 activity; it can be induced by up-regulation of MMP-2 expression, as exemplified by HT29 colon cancer cells transfected with pCMV6-XL5-MMP-2. Co-immunoprecipitation studies of colon cancer cells showed that the β1 integrin subunit is associated with MMP-2. The MMP-2-mediated shedding of the I-like domain from β1 integrins resulted in decreased adhesion of colon cancer cells to collagen and fibronectin, thus abolishing their receptivity. Furthermore, such cells showed enhanced motility as evaluated by a “wound healing-like” assay and time-lapse microscopy, indicating their increased invasiveness. Altogether, our data demonstrate that MMP-2 amplifies the motility of colon cancer cells, not only by digesting the extracellular matrix components in the vicinity of cancer cells but also by inactivating their major β1 integrin receptors.  相似文献   

3.
The carboxyl-terminal domain of thrombospondin-1 enhances the migration and proliferation of smooth muscle cells. Integrin-associated protein (IAP or CD47) is a receptor for the thrombospondin-1 carboxyl-terminal cell-binding domain and binds the agonist peptide 4N1K (kRFYVVMWKk) from this domain. 4N1K peptide stimulates chemotaxis of both human and rat aortic smooth muscle cells on gelatin-coated filters. The migration on gelatin is specifically blocked by monoclonal antibodies against IAP and a β1 integrin, rather than αvβ3 as found previously for 4N1K-stimulated chemotaxis of endothelial cells on gelatin. Both human and rat smooth muscle cells displayed a weak migratory response to soluble type I collagen; however, the presence of 4N1K peptide or intact thrombospondin-1 provoked a synergistic chemotactic response that was partially blocked by antibodies to α2 and β1 integrin subunits and to IAP. A combination of antiα2 and IAP monoclonal antibodies completely blocked chemotaxis. RGD peptide and antiαvβ3 mAb were without effect. 4N1K and thrombospondin-1 did not augment the chemotactic response of smooth muscle cells to fibronectin, vitronectin, or collagenase-digested type I collagen. Complex formation between α2β1 and IAP was detected by the coimmunoprecipitation of both α2 and β1 integrin subunits with IAP. These data suggest that IAP can associate with α2β1 integrin and modulate its function.  相似文献   

4.
The matrix metalloproteinase 72-kDa type IV collagenase (also known as gelatinase A) is thought to be involved in both normal connective tissue remodeling and invasive pathological processes. Like other matrix metalloproteinases, 72-kDa type IV collagenase is secreted by fibroblast monolayers as an inactive proenzyme, but is unique among this enzyme family in that it is not activated by serine proteinases such as plasmin. However, when fibroblasts are cultured in a collagen lattice, a situation thought to better approximate in vivo conditions, we have invariably found much of the secreted 72-kDa type IV collagenase in its enzymatically active 62-kDa form. Although collagen lattice contraction appeared to be required for the activation of 72-kDa type IV collagenase, we have found that the process of contraction can be dissociated from proenzyme activation. Both cytochalasin D and α-methylmannoside completely blocked lattice contraction, but not proenzyme activation. Furthermore, the monoclonal antibody M-13, which is directed against the β1 integrin chain, blocked collagen lattice contraction but not 72-kDa type IV procollagenase activation. At concentrations significantly higher than required to block lattice contraction or cell adhesion to collagen, M-13 was able to inhibit proenzyme activation. A second monoclonal antibody to the β1 integrin, P5D2, had little effect on collagen lattice contraction at low concentrations, but could significantly inhibit the activation of 72-kDa type IV procollagenase. Antibodies to the integrin α2 chain also inhibited proenzyme activation. These data show that the activation of 72-kDa type IV collagenase proenzyme, like collagen lattice contraction, is mediated by β1 integrin receptors, possibly α2β1. Although both anti-β1 antibodies used are directed to the same site on the integrin chain, the fact that each antibody preferentially blocks a different event, either lattice contraction or activation of 72-kDa type IV collagenase, suggests the existence of branch points in the receptor-mediated signal transduction pathway.  相似文献   

5.
Mammalian adenoviruses (AdVs) comprise more than ~350 types including over 100 human (HAdVs) and just three mouse AdVs (MAdVs). While most HAdVs initiate infection by high affinity/avidity binding of their fiber knob (FK) protein to either coxsackievirus AdV receptor (CAR), CD46 or desmoglein (DSG)-2, MAdV-1 (M1) infection requires arginine-glycine-aspartate (RGD) binding integrins. To identify the receptors mediating MAdV infection we generated five novel reporter viruses for MAdV-1/-2/-3 (M1, M2, M3) transducing permissive murine (m) CMT-93 cells, but not B16 mouse melanoma cells expressing mCAR, human (h) CD46 or hDSG-2. Recombinant M1 or M3 FKs cross-blocked M1 and M3 but not M2 infections. Profiling of murine and human cells expressing RGD-binding integrins suggested that αvβ6 and αvβ8 heterodimers are associated with M1 and M3 infections. Ectopic expression of mβ6 in B16 cells strongly enhanced M1 and M3 binding, infection, and progeny production comparable with mαvβ6-positive CMT-93 cells, whereas mβ8 expressing cells were more permissive to M1 than M3. Anti-integrin antibodies potently blocked M1 and M3 binding and infection of CMT-93 cells and hαvβ8-positive M000216 cells. Soluble integrin αvβ6, and synthetic peptides containing the RGDLXXL sequence derived from FK-M1, FK-M3 and foot and mouth disease virus coat protein strongly interfered with M1/M3 infections, in agreement with high affinity interactions of FK-M1/FK-M3 with αvβ6/αvβ8, determined by surface plasmon resonance measurements. Molecular docking simulations of ternary complexes revealed a bent conformation of RGDLXXL-containing FK-M3 peptides on the subunit interface of αvβ6/β8, where the distal leucine residue dips into a hydrophobic pocket of β6/8, the arginine residue ionically engages αv aspartate215, and the aspartate residue coordinates a divalent cation in αvβ6/β8. Together, the RGDLXXL-bearing FKs are part of an essential mechanism for M1/M3 infection engaging murine and human αvβ6/8 integrins. These integrins are highly conserved in other mammals, and may favour cross-species virus transmission.  相似文献   

6.
Abnormal mesangial extracellular matrix remodeling by mesangial cells (MCs) is the hallmark of progressive glomerulonephritis (GN). We recently showed, using a type I collagen gel contraction assay, that α1β1 integrin-dependent MC adhesion and migration are necessary cell behaviors for collagen matrix remodeling. To further determine the mechanism of α1β1 integrin-mediated collagen remodeling, we studied the signaling pathways of MCs that participate in the regulation of collagen gel contraction. Immunoprecipitation and phosphotyrosine detection revealed that gel contraction is associated with the enhanced activity and phosphorylation of ERK1/2 by MCs. The tyrosine kinase inhibitors herbimycin and genistein inhibited collagen gel contraction dose dependently. Furthermore, targeting ERK1/2 activity with a MEK inhibitor, PD98059, and antisense ERK1/2 hindered gel contraction in a dose-dependent manner. Similar inhibitory effects on gel contraction and ERK1/2 phosphorylation were observed when MC-mediated gel contraction was performed in the presence of function-blocking anti-α1 or anti-β1 integrin antibodies. However, cell adhesion and migration assays indicated that PD98059 and antisense ERK1/2 blocked α1β1 integrin-dependent MC migration, but did not interfere with collagen adhesion, although there was a marked decrease in ERK1/2 phosphorylation and ERK1/2 protein expression in cell adhesion on type I collagen. None of the above could affect membrane expression of α1β1 integrin. These results suggested that ERK1/2 activation is critical for the α1β1 integrin-dependent MC migration necessary for collagen matrix reorganization. We therefore conclude that ERK1/2 may serve as a possible target for pharmacological inhibition of pathological collagen matrix formation in GN.  相似文献   

7.
8.
Mutations in ITGA2B and ITGB3 cause Glanzmann thrombasthenia, an inherited bleeding disorder in which platelets fail to aggregate when stimulated. Whereas an absence of expression or qualitative defects of αIIbβ3 mainly affect platelets and megakaryocytes, αvβ3 has a widespread tissue distribution. Little is known of how amino acid substitutions of β3 comparatively affect the expression and structure of both integrins. We now report computer modelling including molecular dynamics simulations of extracellular head domains of αIIbβ3 and αvβ3 to determine the role of a novel β3 Pro189Ser (P163S in the mature protein) substitution that abrogates αIIbβ3 expression in platelets while allowing synthesis of αvβ3. Transfection of wild-type and mutated integrins in CHO cells confirmed that only αvβ3 surface expression was maintained. Modeling initially confirmed that replacement of αIIb by αv in the dimer results in a significant decrease in surface contacts at the subunit interface. For αIIbβ3, the presence of β3S163 specifically displaces an α-helix starting at position 259 and interacting with β3R261 while there is a moderate 11% increase in intra-subunit H-bonds and a very weak decrease in the global H-bond network. In contrast, for αvβ3, S163 has different effects with β3R261 coming deeper into the propeller with a 43% increase in intra-subunit H-bonds but with little effect on the global H-bond network. Compared to the WT integrins, the P163S mutation induces a small increase in the inter-subunit fluctuations for αIIbβ3 but a more rigid structure for αvβ3. Overall, this mutation stabilizes αvβ3 despite preventing αIIbβ3 expression.  相似文献   

9.
The objective of the study was to examine the regulation of CCN2 by inflammatory cytokines, IL-1β, and TNF-α and to determine whether CCN2 modulates IL-1β-dependent catabolic gene expression in nucleus pulposus (NP) cells. IL-1β and TNF-α suppress CCN2 mRNA and protein expression in an NF-κB-dependent but MAPK-independent manner. The conserved κB sites located at −93/−86 and −546/−537 bp in the CCN2 promoter mediated this suppression. On the other hand, treatment of NP cells with IL-1β in combination with CCN2 suppressed the inductive effect of IL-1β on catabolic genes, including MMP-3, ADAMTS-5, syndecan 4, and prolyl hydroxylase 3. Likewise, silencing of CCN2 in human NP cells resulted in elevated basal expression of several catabolic genes and inflammatory cytokines like IL-6, IL-4, and IL-12 as measured by gene expression and cytokine protein array, respectively. Interestingly, the suppressive effect of CCN2 on IL-1β was independent of modulation of NF-κB signaling. Using disintegrins, echistatin, and VLO4, peptide inhibitors to αvβ3 and α5β1 integrins, we showed that CCN2 binding to both integrins was required for the inhibition of IL-1β-induced catabolic gene expression. It is noteworthy that analysis of human tissues showed a trend of altered expression of these integrins during degeneration. Taken together, these results suggest that CCN2 and inflammatory cytokines form a functional negative feedback loop in NP cells that may be important in the pathogenesis of disc disease.  相似文献   

10.
Osteoarthritis (OA) is characterized by degradation of the cartilage matrix, leading to pathologic changes in the joints. However, the pathogenic effects of synovial tissue inflammation on OA knees are not clear. To investigate whether the inflammation caused by the medial plica is involved in the pathogenesis of osteoarthritis, we examined the expression of matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), interleukin (IL)-1β, and tumor necrosis factor (TNF)-α in the medial plica and pannus-like tissue in the knees of patients with medial compartment OA who underwent either arthroscopic medial release (stage II; 15 knee joints from 15 patients) or total knee replacement (stage IV; 18 knee joints from 18 patients). MMP-2, MMP-3, MMP-9, IL-1β, and TNF-α mRNA and protein levels measured, respectively, by quantitative real-time PCR and Quantibody human MMP arrays, were highly expressed in extracts of medial plica and pannus-like tissue from stage IV knee joints. Immunohistochemical staining also demonstrated high expression of MMP-2, MMP-3, and MMP-9 in plica and pannus-like tissue of stage IV OA knees and not in normal cartilage. Some TIMP/MMP ratios decreased significantly in both medial plica and pannus-like tissue as disease progressed from stage II to stage IV. Furthermore, the migration of cells from the pannus-like tissue was enhanced by IL-1β, while plica cell migration was enhanced by TNF-α. The results suggest that medial plica and pannus-like tissue may be involved in the process of cartilage degradation in medial compartment OA of the knee.  相似文献   

11.
We evaluated cellular mechanisms involved in the activation pathway of matrix prometalloproteinase-2 (pro-MMP-2), an enzyme implicated in the malignant progression of many tumor types. Membrane type-1 matrix metalloproteinase (MT1-MMP) cleaves the N-terminal prodomain of pro-MMP-2 thus generating the activation intermediate that then matures into the fully active enzyme of MMP-2. Our results provide evidence on how a collaboration between MT1-MMP and integrin αvβ3 promotes more efficient activation and specific, transient docking of the activation intermediate and, further, the mature, active enzyme of MMP-2 at discrete regions of cells. We show that coexpression of MT1-MMP and integrin αvβ3 in MCF7 breast carcinoma cells specifically enhances in trans autocatalytic maturation of MMP-2. The association of MMP-2′s C-terminal hemopexin-like domain with those molecules of integrin αvβ3 which are proximal to MT1-MMP facilitates MMP-2 maturation. Vitronectin, a specific ligand of integrin αvβ3, competitively blocked the integrin-dependent maturation of MMP-2. Immunofluorescence and immunoprecipitation studies supported clustering of MT1-MMP and integrin αvβ3 at discrete regions of the cell surface. Evidently, the identified mechanisms appear to be instrumental to clustering active MMP-2 directly at the invadopodia and invasive front of αvβ3-expressing cells or in their close vicinity, thereby accelerating tumor cell locomotion.  相似文献   

12.
Integrins of the epidermis have been implicated both in intercellular adhesion and in cell-substratum adhesion. In the present study the role of α2β1 and α3β1 integrins has been evaluated further using human keratinocyte culture. α3β1 but not α2β1 strongly colocalizes with talin in adhesion plaques, consistent with a role for the former in adhesion to endogenous matrix. Upon elevation of the extracellular Ca2+ concentration from 30 μM to 1.0 mM, which is known to induce the organization of intercellular junctions, all three integrin subunits redistribute to concentrate along the cell-cell borders, but α3 redistributes more slowly. Blocking antibody to E-cadherin, which has previously been shown to delay the establishment of cell-cell adhesion upon Ca2+ elevation, delays the redistribution of α2β1 and α3β1 integrins. Elevation of the Ca2+ concentration also induces a rapid morphological change in the keratinocytes and organization of the culture into colonies with tight cell-cell connections. Blocking antibodies to β1 or to α3, but not to α2, delays this morphological change and the organization into colonies; however, the effect is much more pronounced in subconfluent cultures. These data are consistent with the hypothesis that anti-β1 or anti-α3 antibodies affect cell-cell interactions primarily through their previously described inhibition of motility. Stratification of the culture, which follows the formation of intercellular interactions, is normal in the presence of blocking antibody to β1 integrin. In summary, these data suggest that integrins do not play a major role in intercellular keratinocyte adhesion, but may appear to do so under certain conditions because of their involvement in motility.  相似文献   

13.
We have shown in a variety of human wounds that collagenase-1 (MMP-1), a matrix metalloproteinase that cleaves fibrillar type I collagen, is invariably expressed by basal keratinocytes migrating across the dermal matrix. Furthermore, we have demonstrated that MMP-1 expression is induced in primary keratinocytes by contact with native type I collagen and not by basement membrane proteins or by other components of the dermal or provisional (wound) matrix. Based on these observations, we hypothesized that the catalytic activity of MMP-1 is necessary for keratinocyte migration on type I collagen. To test this idea, we assessed keratinocyte motility on type I collagen using colony dispersion and colloidal gold migration assays. In both assays, primary human keratinocytes migrated efficiently on collagen. The specificity of MMP-1 in promoting cell movement was demonstrated in four distinct experiments. One, keratinocyte migration was completely blocked by peptide hydroxymates, which are potent inhibitors of the catalytic activity of MMPs. Two, HaCaTs, a line of human keratinocytes that do not express MMP-1 in response to collagen, did not migrate on a type I collagen matrix but moved efficiently on denatured type I collagen (gelatin). EGF, which induces MMP-I production by HaCaT cells, resulted in the ability of these cells to migrate across a type I collagen matrix. Three, keratinocytes did not migrate on mutant type I collagen lacking the collagenase cleavage site, even though this substrate induced MMP-1 expression. Four, cell migration on collagen was completely blocked by recombinant tissue inhibitor of metalloproteinase-1 (TIMP-1) and by affinity-purified anti–MMP-1 antiserum. In addition, the collagen-mediated induction of collagenase-1 and migration of primary keratinocytes on collagen was blocked by antibodies against the α2 integrin subunit but not by antibodies against the α1 or α3 subunits. We propose that interaction of the α2β1 integrin with dermal collagen mediates induction of collagenase-1 in keratinocytes at the onset of healing and that the activity of collagenase-1 is needed to initiate cell movement. Furthermore, we propose that cleavage of dermal collagen provides keratinocytes with a mechanism to maintain their directionality during reepithelialization.  相似文献   

14.
BackgroundThe integrin αvβ3 plays an important role in angiogenesis and tumor cell metastasis, and is currently being evaluated as a target for new therapeutic approaches. Several techniques are being studied to enable noninvasive determination of αvβ3 expression. We developed [18F]Galacto-RGD, a 18F-labeled glycosylated αvβ3 antagonist, allowing monitoring of αvβ3 expression with positron emission tomography (PET).ConclusionsMolecular imaging with [18F]Galacto-RGD and PET can provide important information for planning and monitoring anti-angiogenic therapies targeting the αvβ3 integrins and can reveal the involvement and role of this integrin in metastatic and angiogenic processes in various diseases.  相似文献   

15.
Transforming growth factor β (TGF-β) promotes tissue fibrosis via the receptor-specific Smad pathway and non-canonical pathways. We recently reported that TGF-β1-stimulated collagen expression by cultured kidney cells requires integrin-dependent activation of focal adhesion kinase (FAK) and consequent ERK MAP kinase activity leading to Smad3 linker region phosphorylation. Here, we defined a role for αvβ3-integrin in this non-canonical pathway. A human kidney tubular cell line in which β1-integrin was knocked down (β1-k/d) demonstrated enhanced type I collagen mRNA expression and promoter activity. A second shRNA to either αv-integrin or β3-integrin, but not to another αv-binding partner, β6-integrin, abrogated the enhanced COL1A2 promoter activity in β1-k/d cells. Although αvβ3-integrin surface expression levels were not different, αvβ3-integrins colocalized with sites of focal adhesion significantly more in β1-k/d cells, and activated αvβ3-integrin was detected only in β1-k/d cells. Further, the collagen response was decreased by a function-blocking antibody or a peptide inhibitor of αvβ3-integrin. In cells lacking αvβ3-integrin, the responses were attenuated, whereas the response was enhanced in αvβ3-overexpressing cells. Rac1 and ERK, previously defined mediators for this non-canonical pathway, showed increased activities in β1-k/d cells. Finally, inhibition of αvβ3-integrin decreased Rac1 activity and COL1A2 promoter activity in β1-k/d cells. Together, our results indicate that decreasing β1 chain causes αvβ3-integrin to become functionally dominant and promotes renal cell fibrogenesis via Rac1-mediated ERK activity.  相似文献   

16.
The prototypic acute phase reactant C-reactive protein (CRP) is not only a marker but also a potential contributor to inflammatory diseases. CRP exists as the circulating native, pentameric CRP (pCRP) and the monomeric isoform (mCRP), formed as a result of a dissociation process of pCRP. mCRP is highly pro-inflammatory, but pCRP is not. The mechanism of pro-inflammatory action of mCRP is unclear. We studied the role of integrins in pro-inflammatory action of mCRP. Docking simulation of interaction between mCRP and integrin αvβ3 predicted that mCRP binds to αvβ3 well. We found that mCRP actually bound to integrins αvβ3 and α4β1 well. Antagonists to αvβ3 or α4β1 effectively suppressed the interaction, suggesting that the interaction is specific. Using an integrin β1 mutant (β1-3-1) that has a small fragment from the ligand binding site of β3, we showed that mCRP bound to the classical RGD-binding site in αvβ3. We studied the role of integrins in CRP signaling in monocytic U937 cells. Integrins αvβ3 and α4β1 specifically mediated binding of mCRP to U937 cells. mCRP induced AKT phosphorylation, but not ERK1/2 phosphorylation, in U937 cells. Notably, mCRP induced robust chemotaxis in U937 cells, and antagonists to integrins αvβ3 and α4β1 and an inhibitor to phosphatidylinositide 3-kinase, but not an MEK inhibitor, effectively suppressed mCRP-induced chemotaxis in U937 cells. These results suggest that the integrin and AKT/phosphatidylinositide 3-kinase pathways play a role in pro-inflammatory action of mCRP in U937 cells. In contrast, pCRP is predicted to have a limited access to αvβ3 due to steric hindrance in the simulation. Consistent with the prediction, pCRP was much less effective in integrin binding, chemotaxis, or AKT phosphorylation. These findings suggest that the ability of CRP isoforms to bind to the integrins is related to their pro-inflammatory action.  相似文献   

17.
Although type IV collagen is heavily glycosylated, the influence of this post-translational modification on integrin binding has not been investigated. In the present study, galactosylated and nongalactosylated triple-helical peptides have been constructed containing the α1(IV)382–393 and α1(IV)531–543 sequences, which are binding sites for the α2β1 and α3β1 integrins, respectively. All peptides had triple-helical stabilities of 37 °C or greater. The galactosylation of Hyl393 in α1(IV)382–393 and Hyl540 and Hyl543 in α1(IV)531–543 had a dose-dependent influence on melanoma cell adhesion that was much more pronounced in the case of α3β1 integrin binding. Molecular modeling indicated that galactosylation occurred on the periphery of α2β1 integrin interaction with α1(IV)382–393 but right in the middle of α3β1 integrin interaction with α1(IV)531–543. The possibility of extracellular deglycosylation of type IV collagen was investigated, but no β-galactosidase-like activity capable of collagen modification was found. Thus, glycosylation of collagen can modulate integrin binding, and levels of glycosylation could be altered by reduction in expression of glycosylation enzymes but most likely not by extracellular deglycosylation activity.  相似文献   

18.
A simultaneous action of several pro-fibrotic mediators appears relevant in the development of fibrosis. There are evidences that transforming growth factor-β (TGF-β)/Smad3 pathway forms with αvβ6 integrin, mammalian target of Rapamycin (mTOR) and peroxisome proliferator-activated receptor-γ (PPARγ) a complex signalling network with extensive crosstalk and strong effects on fibrosis development. The present study evaluated the expression of TGFβ, Smad3, αvβ6 integrin, mTOR and PPARγ in 2, 4, 6-trinitrobenzenesulphonic acid (TNBS)-induced colorectal fibrosis in Smad3 wild-type (WT) and null mice. Smad3 WT mice treated with TNBS developed a marked colorectal fibrosis and showed a concomitant up-regulation of TGFβ, Smad3, αvβ6 and mTOR and a reduction of PPARγ expression. On the other hand, Smad3 Null mice similarly treated with TNBS did not develop fibrosis and showed a very low or even absent expression of TGFβ, Smad3, αvβ6 and mTOR and a marked over-expression of PPARγ. At the same time the expression of α-smooth muscle actin (a marker of activated myofibroblasts), collagen I-III and connective tissue growth factor (a downstream effector of TGFβ/Smad3-induced extracellular matrix proteins) were up-regulated in Smad3 WT mice treated with TNBS compared to Null TNBS-treated mice. These preliminary results suggest a possible interaction between these pro-fibrotic molecules in the development of intestinal fibrosis.Key words: intestinal fibrosis, integrins, TGF-β, SMAD, mTOR, PPAR, IBD  相似文献   

19.
Increased epithelial cell expression of the cyclooxgenase-2 (COX-2) enzyme is a characteristic event of both inflammatory bowel disease and colon cancer. We here report the novel findings that collagen I-induced de novo synthesis of COX-2 in intestinal epithelial cells is inhibited by pertussis toxin (PTX) and by an inhibitory peptide selective for the heterotrimeric Gαi3-protein. These findings could be explained by a regulatory involvement of the G-protein-dependent integrin-associated protein CD47. In support of this notion, we observed a collagen I-induced association between CD47 and α2 integrins. This association was reduced by a blocking anti-CD47 antibody but not by PTX or a control anti-β2 antibody. Furthermore, a blocking antibody against CD47, dominant negative CD47 or specific siRNA knock down of CD47, significantly reduced collagen I-induced COX-2 expression. COX-2 has previously been shown to regulate intestinal epithelial cell adhesion and migration. Morphological analysis of intestinal cells adhering to collagen I revealed a co-localisation of CD47 and α2 integrins to non-apoptotic membrane blebs enriched in Rho A and F-actin. The blocking CD47 antibody, PTX and a selective COX-2 inhibitor, dramatically inhibited the formation of these blebs. In accordance, migration of these cells on a collagen I-coated surface or through a collagen I gel were significantly reduced by the CD47 blocking antibody, siRNA knock down of CD47 and the COX-2 inhibitor NS-398. In conclusion, we present novel data that identifies the G-protein-dependent CD47 protein as a key regulator of collagen I-induced COX-2 expression and a promoter of intestinal epithelial cell migration.  相似文献   

20.
Integrins are activated by signaling from inside the cell (inside-out signaling) through global conformational changes of integrins. We recently discovered that fractalkine activates integrins in the absence of CX3CR1 through the direct binding of fractalkine to a ligand-binding site in the integrin headpiece (site 2) that is distinct from the classical RGD-binding site (site 1). We propose that fractalkine binding to the newly identified site 2 induces activation of site 1 though conformational changes (in an allosteric mechanism). We reasoned that site 2-mediated activation of integrins is not limited to fractalkine. Human secreted phospholipase A2 type IIA (sPLA2-IIA), a proinflammatory protein, binds to integrins αvβ3 and α4β1 (site 1), and this interaction initiates a signaling pathway that leads to cell proliferation and inflammation. Human sPLA2-IIA does not bind to M-type receptor very well. Here we describe that sPLA2-IIA directly activated purified soluble integrin αvβ3 and transmembrane αvβ3 on the cell surface. This activation did not require catalytic activity or M-type receptor. Docking simulation predicted that sPLA2-IIA binds to site 2 in the closed-headpiece of αvβ3. A peptide from site 2 of integrin β1 specifically bound to sPLA2-IIA and suppressed sPLA2-IIA-induced integrin activation. This suggests that sPLA2-IIA activates αvβ3 through binding to site 2. sPLA2-IIA also activated integrins α4β1 and α5β1 in a site 2-mediated manner. We recently identified small compounds that bind to sPLA2-IIA and suppress integrin-sPLA2-IIA interaction (e.g. compound 21 (Cmpd21)). Cmpd21 effectively suppressed sPLA2-IIA-induced integrin activation. These results define a novel mechanism of proinflammatory action of sPLA2-IIA through integrin activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号