首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study an attempt was made to prepare mucoadhesive microcapsules of gliclazide using various mucoadhesive polymers designed for oral controlled release. Gliclazide microcapsules were prepared using sodium alginate and mucoadhesive polymer such as sodium carboxymethyl cellulose (sodium CMC), carbopol 934P or hydroxy propylmethyl cellulose (HPMC) by orifice-ionic gelation method. The microcapsules were evaluated for surface morphology and particle shape by scanning electron microscope. Microcapsules were also evaluated for their microencapsulation efficiency, in vitro wash-off mucoadhesion test, in vitro drug release and in vivo study. The microcapsules were discrete, spherical and free flowing. The microencapsulation efficiency was in the range of 65–80% and microcapsules exhibited good mucoadhesive property in the in vitro wash off test. The percentage of microcapsules adhering to tissue at pH 7.4 after 6 h varied from 12–32%, whereas the percentage of microcapsules adhering to tissue at pH 1.2 after 6 h varied from 35–68%. The drug release was also found to be slow and extended for more than 16 h. In vivo testing of the mucoadhesive microcapsules in diabetic albino rats demonstrated significant antidiabetic effect of gliclazide. The hypoglycemic effect obtained by mucoadhesive microcapsules was for more than 16 h whereas gliclazide produced an antidiabetic effect for only 10 h suggesting that mucoadhesive microcapsules are a valuable system for the long term delivery of gliclazide.  相似文献   

2.
The aim of this work was the formulation and characterization of alginate (ALG)–doxycycline (DOX) hydrogel microparticles (MPs) embedded into Pluronic F127 thermogel for DOX intradermal sustained delivery. ALG–DOX MPs were formed by adding a solution of the drug into a 1.5% polymer solution while stirring. The MPs were cross-linked by dispersion into a 1.2% CaCl2 solution. Free MPs were characterized in terms of size, drug content, and release behavior by HPLC and UV–vis. DOX and hydrogel MPs were embedded into PF127, PF127-HPMC, and PF127-Methocel thermogels. The thermogels were characterized in terms of gelling time, morphology, and release behavior. A target release period of 4–7 days was considered optimal. The hydrogel MPs were about 20 μm in size with 90% of the population <59 μm. Drug content was about 35% (w/w). DOX released rapidly from the MPs, 90% within 2 days. An expected faster release was observed for free DOX from the thermogels with 80–90% of drug released after 3.5–4 h even in the presence of 1% HPMC or Methocel. The release was sustained after embedding the MPs into PF127 and PF127-HPMC thermogels. In particular, the PF127-HPMC thermogel showed an almost linear release, reaching 80% after 3 days and 90% up to 6 days. Although a further characterization and formulation assessment is required to optimize MP characteristics, ALG/DOX-loaded hydrogel MPs, when embedded into a PF127-HPMC thermogel, show a potential for achieving a 7-day sustained release formulation for DOX intradermal delivery.  相似文献   

3.
An innovative and simple methodology has been developed and used for the evaluation of mucoadhesive properties of several polymers by means of sound speed measurements using high-resolution acoustic spectroscopy. In systems made of polymers in water, variations in hydration shell of polymeric chains determine changes of dispersions compressibility, and this phenomenon can be monitored by sound speed measurements. Four different polymers have been selected, namely PEG 6000, Carbopol 974, HPMC K4M, and Pectin 200/USP, all characterised by very different mucoadhesive properties. Samples made of each polymer alone (0.3–1.0% w/w) or in mixture with mucin (mucin fixed at 1.0% w/w) in water were investigated while using high-resolution ultrasonic spectrometer at two different frequencies (5.2 and 8.2 MHz). Polymer–mucin interaction was evaluated comparing experimental sound speed values of polymer–mucin samples with their theoretical values derived from the addition of sound speeds obtained while analysing each component alone. Results demonstrated the ability of the acoustic method to discriminate between mucoadhesive and no mucoadhesive polymer–mucin dispersions and allowed also the comparison between their mucoadhesive strengths. The study has therefore demonstrated the potential of using high-resolution ultrasonic spectroscopy to evaluate the polymers’ mucoadhesiveness, with the great advantage of testing small amount of samples even if opaque.  相似文献   

4.
The purpose of this research was to prepare and evaluate sustained release mucoadhesive tablets of Itraconazole. It is practically insoluble in aqueous fluids hence its solid dispersion with Eudragit E100 was prepared by spray drying. This was formulated in matrix of hydrophilic mucoadhesive polymers Carbopol 934P (CP) and Methocel K4M (HPMC). The formulation was optimized using a 32 factorial design. Amounts of CP and HPMC were taken as formulation variables for optimizing response variables i.e. mucoadhesion and dissolution parameters. The optimized mucoadhesive formulation was orally administered to albino rabbits, and blood samples collected were used to determine pharmacokinetic parameters. The solid dispersion markedly enhanced the dissolution rate of itraconazole. The bioadhesive strength of formulation was found to vary linearly with increasing amount of both polymers. Formulations exhibited drug release fitting Peppas model with value of n ranging from 0.61 to 1.18. Optimum combination of polymers was arrived at which provided adequate bioadhesive strength and fairly regulated release profile. The experimental and predicted results for optimum formulations were found to be in close agreement. The formulation showed C max 1898 ± 75.23 ng/ml, t max of the formulation was 2 h and AUC was observed to be 28604.9 ng h/ml  相似文献   

5.
Pal D  Nayak AK 《AAPS PharmSciTech》2011,12(4):1431-1441
The purpose of this work was to develop and optimize gliclazide-loaded alginate–methyl cellulose mucoadhesive microcapsules by ionotropic gelation using central composite design. The effect of formulation parameters like polymer blend ratio and cross-linker (CaCl2) concentration on properties of gliclazide-loaded alginate–methyl cellulose microcapsules like drug encapsulation efficiency and drug release were optimized. The optimized microcapsules were subjected to swelling, mucoadhesive, and in vivo studies. The observed responses coincided well with the predicted values from the optimization technique. The optimized microcapsules showed high drug encapsulation efficiency (83.57 ± 2.59% to 85.52 ± 3.07%) with low T 50% (time for 50% drug release, 5.68 ± 0.09 to 5.83 ± 0.11 h). The in vitro drug release pattern from optimized microcapsules was found to be controlled-release pattern (zero order) with case II transport release mechanism. Particle sizes of these optimized microcapsules were 0.767 ± 0.085 to 0.937 ± 0.086 mm. These microcapsules also exhibited good mucoadhesive properties. The in vivo studies on alloxan-induced diabetic rats indicated the significant hypoglycemic effect that was observed 12 h after oral administration of optimized mucoadhesive microcapsules. The developed and optimized alginate–methyl cellulose microcapsules are suitable for prolonged systemic absorption of gliclazide to maintain lower blood glucose level and improved patient compliance.  相似文献   

6.
This study aimed to design methyprednisolone (MP)-loaded poly(d,l lactide-co-glycolide) (PLGA) microspheres (MS) intended for intra-articular administration. MP was encapsulated in four different types of PLGA by using an S/O/W technique. The effects of β-irradiation at the dose of 25 kGy were evaluated on the chemical and physicochemical properties of MS and the drug release profiles. The S/O/W technique with hydroxypropylmethylcellulose (HPMC) as surfactant allowed obtaining MS in the tolerability size (7–50 μm) for intra-articular administration. The MP encapsulation efficiency ranged 56–60%. HPMC traces were evidenced in the loaded and placebo MS by attenuated total reflectance Fourier transform infrared spectroscopy. MS made of the capped PLGA DL5050 2M (MS 2M) and uncapped PLGA DL5050 3A (MS 3A) prolonged the release of MP over a 2- to 3-month period with a triphasic (burst release–dormant period–second release pulse) and biphasic release pattern, respectively. The β-irradiation did not significantly alter the morphology, chemical, and physicochemical properties of MS. The only variation was evidenced in the drug release for MS 2M in term of shorting of the dormant period. The minimal variations in the properties of irradiated PLGA MS, which are in disagreement with literature data, may be attributed to a radioprotecting effect exerted by HPMC.  相似文献   

7.
The purpose of the present work was the development and evaluation of stomach-specific controlled release mucoadhesive drug delivery system prepared by ionotropic gelation of gellan beads, containing acid-soluble drug amoxicillin trihydrate, using 32 factorial design with concentration of gellan gum and quantity of drug as variables. The study showed that beads prepared in alkaline cross-linking medium have higher entrapment efficiency than the acidic cross-linking medium. The entrapment efficiency was in the range of 32% to 46% w/w in acidic medium, which increased up to 60% to 90% w/w in alkaline medium. Batches with lowest, medium, and highest drug entrapment were subjected to chitosan coating to form a polyelectrolyte complex film. As polymer concentration increases, entrapment efficiency and particle size increases. Scanning electron microscopy revealed spherical but rough surface due to leaching of drug in acidic cross-linking solution, dense spherical structure in alkaline cross-linking solution, and rough surface of chitosan-coated beads with minor wrinkles. The in vitro drug release up to 7 h in a controlled manner following the Peppas model (r = 0.9998). In vitro and in vivo mucoadhesivity study showed that beads have good mucoadhesivity and more than 85% beads remained adhered to stomach mucosa of albino rat even after 7 h. In vitro growth inhibition study showed complete eradication of Helicobacter pylori. These results indicate that stomach-specific controlled release mucoadhesive system of amoxicillin gellan beads may be useful in H. pylori treatment.  相似文献   

8.
Raloxifene hydrochloride (R-HCl), a BCS class II drug, remains a mainstay in the prevention and pharmacologic therapy of osteoporosis. Its absolute bioavailability, however, is 2% due to poor solubility and extensive first pass metabolism. The present study describes two simultaneous approaches to improve its bioavailability, complexation of R-HCl with cyclodextrin(s), and formulation of mucoadhesive microspheres of the complex using different proportions of carbopol and HPMC. Microspheres were pale yellow in color, free-flowing, spherical, and porous in outline. The particle size ranged between 3 and 15 μm, and entrapment efficiency was found to be within 81.63% to 87.73%. A significant improvement in the solubility of R-HCl was observed, and it differed with the combination of excipients used. X-ray diffraction and differential scanning calorimetry studies revealed that enhancement in drug solubility was resulted due to a change in its crystallinity within the formulation. Microspheres possessed remarkable mucoadhesion and offered controlled drug release, lasting up to 24 h. They produced a sharp plasma concentration–time profile of R-HCl within 30 min post-administration to Wistar rats. [AUC]0–24 h was found to be 1,722.34 ng h/ml, and it differed significantly to that of pure drug powder (318.28 ng h/ml). More than fivefold increase in AUC and more than twofold increase in MRT were observed. FT-IR studies evidenced no interaction among drug and excipients. The results of this study showed that mucoadhesive microspheres could be a viable approach to improve the pharmacokinetic profile of R-HCl.  相似文献   

9.
Zolmitriptan is the drug of choice for migraine, but low oral bioavailability (<50%) and recurrence of migraine lead to frequent dosing and increase in associated side effects. Increase in the residence time of drug at the site of drug absorption along with direct nose to brain targeting of zolmitriptan can be a solution to the existing problems. Hence, in the present investigation, thermoreversible intranasal gel of zolmitriptan-loaded nanoethosomes was formulated by using mucoadhesive polymers to increase the residence of the drug into the nasal cavity. The preparation of ethosomes was optimized by using 32 factorial design for percent drug entrapment efficiency, vesicle size, zeta potential, and polydispersity index. Optimized formulation E6 showed the vesicle size (171.67?nm) and entrapment efficiency (66%) when compared with the other formulations. Thermoreversible gels prepared by using poloxamer 407 showed the phase transition temperature at 32–33?°C which was in line with the nasal physiological temperature. The optimized ethosomes were loaded into the thermoreversible mucoadhesive gel optimized by varying concentrations of poloxamer 407, carbopol 934, HPMC K100, and evaluated for gel strength, gelation temperature, mucoadhesive strength, in vitro drug release, and ex vivo drug permeation, where G3 and G6 were found to be optimized formulations. In vitro drug release was studied by different kinetic models suggested that G3 (n?=?0.582) and G6 (n?=?0.648) showed Korsemeyer–Peppas (KKP) model indicating non-Fickian release profiles. A permeation coefficient of 5.92 and 5.9?µg/cm2 for G3 and G6, respectively, revealed very little difference in release rate after 24?h between both the formulations. Non-toxic nature of the gels on columnar epithelial cells was confirmed by histopathological evaluation.  相似文献   

10.
Gel formulations of mebeverine hydrochloride (MbHCl) containing hydroxypropylmethylcellulose (HPMC), metolose (MTL), and poloxamer 407 (PLX) were prepared to be used in the treatment of different oral painful conditions. HPMC was used as a mucoadhesive gel base while MTL and PLX were used to prepare sol–gel thermosensitive gels. MTL and PLX formulations showed proper sol–gel transition temperature for intraoral application. Formulations were evaluated in terms of their viscosity, mechanical properties, mucoadhesivity, stability, and in vitro drug release. The formulation prepared with 2% of HPMC K100M provided the highest viscosity at room temperature. However, the viscosity of HPMC–PLX mixture showed a significant increase at body temperature. The greatest mucoadhesion was also noted in HPMC–PLX combinations. Texture profile analysis exhibited the differences of the adhesion, hardness, elasticity, cohesiveness, and compressibility of the formulations. The release profiles of MbHCl were obtained, and non-Fickian release was observed from all the formulations. The formulations were stored at different temperature and relative humidity. No significant changes were observed at the end of the 3 months. HPMC–PLX formulation of MbHCl was chosen for in vivo studies, and it remained longer than dye solution on the rabbit’s intraoral mucosal tissue. It was found worthy of further clinical evaluation.  相似文献   

11.
The aim of the present study was to develop and evaluate a buccal adhesive tablet containing ondansetron hydrochloride (OH). Special punches and dies were fabricated and used while preparing buccal adhesive tablets. The tablets were prepared using carbopol (CP 934), sodium alginate, sodium carboxymethylcellulose low viscosity (SCMC LV), and hydroxypropylmethylcellulose (HPMC 15cps) as mucoadhsive polymers to impart mucoadhesion and ethyl cellulose to act as an impermeable backing layer. The formulations were prepared by direct compression and characterized by different parameters such as weight uniformity, content uniformity, thickness, hardness, swelling index, in vitro drug release studies, mucoadhesive strength, and ex vivo permeation study. As compared with the optimized formulation composed of OH—5 mg, CP 934—30 mg, SCMC LV—165 mg, PEG 6000—40 mg, lactose—5 mg, magnesium stearate—1.5 mg, and aspartame—2 mg, which gave the maximum release (88.15%), non-bitter (OH) that form namely ondansetron base and complexed ondansetron was used in order to make the selected formulation acceptable to human. The result of the in vitro release studies and permeation studies through bovine buccal mucosa revealed that complexed ondansetron gave the maximum release and permeation. The stability of drug in the optimized adhesive tablet was tested for 6 h in natural human saliva; both the drug and device were found to be stable in natural human saliva. Thus, buccal adhesive tablet of ondansetron could be an alternative route to bypass the hepatic first-pass metabolism and to improve the bioavailability of (OH).  相似文献   

12.
This paper deals with the synthesis of thermo-responsive microspheres with proteic structure exhibiting a transition temperature close to the body temperature. Temperature-sensitive hydrogels have attracted extensive interest due to their potential and promising applications in drug delivery field since they can undergo a rapid and reversible phase transition from a swollen to a shrunken state depending on environmental temperature. The hydrogels were synthesized by free-radical polymerization of hydrolyzed methacrylated gelatin (HGel-MA) and N,N′-methylenebisacrylamide as pro-hydrophilic multifunctional macromer and crosslinker, respectively, and N-isopropylacrylamide as thermo-responsive monomer. Thermal analyses showed negative thermo-responsive behavior for all compositions and, by increasing the content of the hydrophilic moieties in the network, the transition temperature raised to 36.9°C, close to the physiological values. In order to test the materials as drug carriers, diclofenac sodium salt was chosen as model drug. Drug release profiles, in phosphate buffer solution (pH 7.0, 10−3 M) at 25 and 40°C, depend on the hydrogel’s crosslinking degree and hydrophilic/hydrophobic balance in the polymeric network. For all formulations, in the shrunken state, the drug release percent values ranged from 80% to 100% after 24 h, and after 3 h, more than 60% of therapeutics was delivered. On the contrary, the swelling of the loaded microparticles produces, even after 30 h, a drug release percent of about 75%. By using semi-empirical equations, the release mechanism was extensively studied and the diffusional contribute was evaluated. The physico-chemical characteristics of thermo-responsive materials confirm the applicability of the microspheres as drug delivery device.  相似文献   

13.
The purpose of this research was to prepare spray-dried mucoadhesive microspheres for nasal delivery. Microspheres composed of hydroxypropyl methylcellulose (H), chitosan (CS), carbopol 934P (CP) and various combinations of these mucoadhesive polymers, and maltodextrin (M), colloidal silicon dioxide (A), and propylene glycol (P) as filler and shaper, were prepared by spray-drying technique. Using propranolol HCl as a model drug, microspheres were prepared at loadings exceedings 80% and yields between 24% and 74%. Bulky, free flowing microspheres that had median particle size between 15 and 23 μm were obtained. Their zeta potential was according to the charge of polymer. Adhesion time of mucoadhesive microspheres on isolated pig intestine was ranked, CS>CP: H>CP>H, while the rank order of swelling was CP>CS>H. Increasing the amount of CP in CP∶H formulations increased the percentage of swelling. Infrared (IR) spectra showed no interaction between excipients used except CS with acetic acid. The release of drug from CP and CP∶H microspheres was slower than the release from H and CS microspheres, correlated to their viscosity and swelling. Long lag time from the CP microspheres could be shortened when combined with H. The permeation of drug through nasal cell monolayer corresponded to their release profiles. These microspheres affected the integrity of tight junctions, relative to their swelling and charge of polymer. Cell viability was not affected except from CS microspheres, but recovery could be obtained. In conclusion, spray-dried microspheres of H, CS, CP, and CP∶H could be prepared to deliver drug through nasal cell monolayer via the opening of tight junction without cell damaging. Published: February 10, 2006  相似文献   

14.
The objective of this study was to investigate the release behaviour of propranolol hydrochloride from psyllium matrices in the presence hydrophilic polymers. The dissolution test was carried out at pH 1.2 and pH 6.8. Binary mixtures of psyllium and hydroxypropyl methylcellulose (HPMC) used showed that an increase in the percentage of HPMC in the binary mixtures caused a significant decrease in the release rate of propranolol. Psyllium–alginate matrices produced lower drug release as compared to when the alginate was the matrix former alone. When sodium carboxy methyl cellulose (NaCMC) was incorporated into the psyllium, the results showed that matrices containing the ratio of psyllium–NaCMC in the 1:1 ratio are able to slow down the drug release significantly as compared to matrices made from only psyllium or NaCMC as retardant agent suggesting that there could be a synergistic effect between psyllium and NaCMC. The double-layered tablets showed that the psyllium and HPMC in the outer shell of an inner formulation of psyllium alone had the greatest effect of protecting the inner core and thus producing the lowest drug release (DE = 38%, MDT = 93 min). A significant decrease in the value of n in Q = kt n from 0.70 to 0.51 as the psyllium content was increased from 50 to 150 mg suggests that the presence of psyllium in HPMC matrices affected the release mechanism. Psyllium powder had the ability in the combination with other hydrophilic polymers to produce controlled release profiles. Care and consideration should as such be taken when formulating hydrophilic matrices in different combinations.  相似文献   

15.
This work combines several methods in an integrated strategy to develop a matrix for buccal administration. For this purpose, tablets containing selected mucoadhesive polymers loaded with a model drug (omeprazole), free or in a complexed form with cyclodextrins, and in the absence and presence of alkali agents were subjected to a battery of tests. Mucoadhesion studies, including simple factorial analysis, in vitro release studies with both model-dependent and model-independent analysis, and permeation studies were performed. Mucoadhesive profiles indicated that the presence of the drug decreases the mucoadhesion profile, probably due its hydrophobic character. In tablets loaded with the drug complexed with β-cyclodextrin or methyl-β-cyclodextrin, better results were obtained with the methylated derivative. This effect was attributed to the fact that in the case of β-cyclodextrin, more hydroxyl groups are available to interact with the mucoadhesive polymers, thus decreasing the mucoadhesion performance. The same result was observed in presence of the alkali agent (l-arginine), in this case due to the excessive hydrophilic character of l-arginine. Drug release from tablets was also evaluated, and results suggested that the dissolution profile with best characteristics was observed in the matrix loaded with omeprazole complexed with methyl-β-cyclodextrin in the presence of l-arginine. Several mathematical models were applied to the dissolution curves, indicating that the release of the drug, in free or in complexed state, from the mucoadhesive matrices followed a super case II transport, as established on the basis of the Korsmeyer–Peppas function. The feasibility of drug buccal administration was assessed by permeation experiments on porcine buccal mucosa. The amount of drug permeated from mucoadhesive tablets presented a maximum value for the system containing drug complexed with the methylated cyclodextrin derivative in presence of l-arginine. According to these results, the system containing the selected polymer mixture and the drug complexed with methyl-β-cyclodextrin in presence of l-arginine showed a great potential as a buccal drug delivery formulation, in which a good compromise among mucoadhesion, dissolution, and permeation properties was achieved.  相似文献   

16.
The objective of this work was to design a mucoadhesive tablet with a potential use in the treatment of oral candidosis. A 2-layered tablet containing nystain was formulated. Lactose CD (direct compression), carbomer (CB), and hydroxypropylmethylcellulose (HPMC) were used as excipients. Tablets were obtained through direct compression. Properties such as in vitro mucoadhesion, water uptake, front movements, and drug release were evaluated. The immediate release layer was made of lactose CD (100 mg) and nystatin (30 mg). The CB:HPMC 9∶1 mixture showed the best mucoadhesion properties and was selected as excipient for the mucoadhesive polymeric layer (200 mg). The incorporation of nystatin (33.3 mg) in this layer affected the water uptake, which, in turn, modified the erosion front behavior. Nystatin showed a first-order release. The polymeric layer presented an anomalous kinetic (n=0.82) when this layer layer was individually evaluated. The mucoadhesive tablet formulated in this work releases nystatin quickly from the lactose layer and then in a sustained way, during approximately 6 hours. from the polymeric layer. The mixture CB:HPMC 9∶1 showed good in vitro mucoadhesion. A swelling-diffusion process modulates the release of nystatin from this layer. A non-Fickian (anomalous) kinetic was observed.  相似文献   

17.
Bilayer nicotine mucoadhesive patches were prepared and evaluated to determine the feasibility of the formulation as a nicotine replacement product to aid in smoking cessation. Nicotine patches were prepared using xanthan gum or carbopol 934 as a mucoadhesive polymers and ethyl cellulose as a backing layer. The patches were evaluated for their thickness, weight and content uniformity, swelling behavior, drug–polymers interaction, adhesive properties, and drug release. The physicochemical interactions between nicotine and the polymers were investigated by Fourier transform infrared (FTIR) spectroscopy. Mucoadhesion was assessed using two-arm balance method, and the in vitro release was studied using the Franz cell. FTIR revealed that there was an acid base interaction between nicotine and carbopol as well as nicotine and xanthan. Interestingly, the mucoadhesion and in vitro release studies indicated that this interaction was strong between the drug and carbopol whereas it was weak between the drug and xanthan. Loading nicotine concentration to non-medicated patches showed a significant decrease in the mucoadhesion strength of carbopol patches and no significant effect on the mucoadhesion strength of xanthan patches. In vitro release studies of the xanthan patches showed a reasonable fast initial release profile followed by controlled drug release over a 10-h period.  相似文献   

18.
Sustained release mucoadhesive amoxicillin tablets with tolerance to acid degradation in the stomach were studied. The sustained-release tablets of amoxicillin were prepared from amoxicillin coated with ethyl cellulose (EC) and then formulated into tablets using chitosan (CS) or a mixture of CS and beta-cyclodextrin (CD) as the retard polymer. The effects of various (w/w) ratios of EC/amoxicillin, the particle sized of EC coated amoxicillin and the different (w/w) ratios of CS/CD for the retard polymer, on the amoxicillin release profile were investigated. The physicochemical properties of the EC coated amoxicillin particles and tablets were determined by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry. The result showed that the release profiles of amoxicillin were greatly improved upon coating with EC, while the inclusion of CD to the CS retardant additionally prolonged the release of the drug slightly. Overall, a sustained release of amoxicillin was achieved using amoxicillin coated with EC at a (w/w) ratio of 1:1 and a particle size of 75–100 μm. Therefore, the tablet formulation of amoxicillin may be an advantageous alternative as an orally administered sustained-release formulation for the treatment of peptic ulcers.  相似文献   

19.
Rectal etodolac–Poloxamer gel systems composed of Poloxamer and bioadhesive polymers were developed and evaluated. Hydroxypropylmethyl cellulose, poly)vinyl) pyrrolidone, methyl cellulose, hydroxyethylcellulose, and carbopol were examined as mucoadhesive polymers. The characteristics of the rectal gels differed according to the properties of mucoadhesive polymers. The physicochemical properties such as gelation temperature, gel strength, and bioadhesive force of various formulations were investigated. The analysis of release mechanism showed that the release of etodolac was proportional to the square root of time, indicating that etodolac might be released from the suppositories by Fickian diffusion. The anti-inflammatory effect of etodolac–Poloxamer gel system was also studied in rats. Moreover, liquid suppository of etodolac did not cause any morphological damage to the rectal tissues. These results suggested that in situ gelling liquid suppository with etodolac and mucoadhesive polymer was a physically safe, convenient, and effective rectal dosage form for etodolac.  相似文献   

20.
The purpose of this research was to design oral controlled release (CR) matrix tablets of zidovudine (AZT) using hydroxypropyl methylcellulose (HPMC), ethyl cellulose (EC) and carbopol-971P (CP) and to study the effect of various formulation factors on in vitro drug release. Release studies were carried out using USP type 1 apparatus in 900 ml of dissolution media. Release kinetics were analyzed using zero-order, Higuchi’s square root and Ritger–Peppas’ empirical equations. Release rate decreased with increase in polymer proportion and compression force. The release rate was lesser in formulations prepared using CP (20%) as compared to HPMC (20%) as compared to EC (20%). No significant difference was observed in the effect of pH of dissolution media on drug release from formulations prepared using HPMC or EC, but significant difference was observed in CP based formulations. Decrease in agitation speed from 100 to 50 rpm decreased release rate from HPMC and CP formulations but no significant difference was observed in EC formulations. Mechanism of release was found to be dependent predominantly on diffusion of drug through the matrix than polymer relaxation incase of HPMC and EC formulations, while polymer relaxation had a dominating influence on drug release than diffusion incase of CP formulations. Designed CR tablets with pH independent drug release characteristics and an initial release of 17–25% in first hour and extending the release up to 16–20 h, can overcome the disadvantages associated with conventional tablets of AZT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号