首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
DNA polymerase III has been recognized as the required replication enzyme in Escherichia coli. The synthesis subunit of DNA polymerase III holoenzyme (alpha subunit) is encoded by the dnaE gene. We have reported that E. coli cells can survive and grow in the absence of a functional dnaE gene product if DNA polymerase I and the pcbA1 mutation are present. Existing mutations in the dnaE gene have been conditionally defective thermolabile mutations. We report here construction of nonsense mutations in the dnaE gene by use of a temperature-sensitive suppressor mutation to permit survival at the permissive temperature (32 degrees C). Introduction of the pcbA1 mutation eliminated the temperature-sensitive phenotype. We confirmed by immunoblotting the lack of detectable alpha subunit at 43 degrees C.  相似文献   

2.
Amber and temperature-sensitive mutations have been isolated in the cys B gene of Escherichia coli. Their existence suggests that the gene codes for a protein.  相似文献   

3.
S E Goelz  J E Cronan 《Biochemistry》1982,21(1):189-195
Previous genetic and biochemical experiments have suggested that the adenylate kinase of Escherichia coli may be directly involved in phospholipid synthesis through formation of a complex with sn-glycerol-3-phosphate acyltransferase, the membrane-bound enzyme that catalyzes the first step in phospholipid synthesis. In this paper we report direct experiments to test this hypothesis. A mutation within the adenylate kinase structural gene is described that results in a temperature-sensitive phospholipid synthesis (assayed in vivo) and a temperature-sensitive acyltransferase. The adenylate kinase activity of this strain is only minimally altered either in vitro or [as assayed by adenosine 5'-triphosphate (ATP) levels] in vivo. This result demonstrates that the inhibition of phospholipid synthesis is not the result of reduced ATP levels. We report the purification of E. coli adenylate kinase to homogeneity; and find that the addition of homogeneous wild-type adenylate kinase to membranes containing a mutationally altered temperature-sensitive acyltransferase results in thermal stabilization of the acyltransferase activity. Ovalbumin has no such protective effect. Purified E. coli inner membranes contain several proteins that are precipitated by addition of anti adenylate kinase antibody to detergent-solubilized membranes.  相似文献   

4.
Cells containing nonsense mutations in essential genes have been isolated in a strain of Escherichia coli that carried the su4(ts) gene which specifies a temperature-sensitive tyrosine transfer ribonucleic acid. Such cells are unable to form colonies at temperatures which inactivate this suppressor transfer ribonucleic acid. A screening procedure for the identification of mutants that carry temperature-sensitive nonsense mutations in essential genes is described, and certain properties of two such mutants are reported.  相似文献   

5.
We have cloned and sequenced a new gene from Escherichia coli which encodes a 64-kDa protein. The inferred amino acid sequence of the protein shows remarkable similarity to eIF4A, a murine translation initiation factor that has an ATP-dependent RNA helicase activity and is a founding member of the D-E-A-D family of proteins (characterized by a conserved Asp-Glu-Ala-Asp motif). Our new gene, called deaD, was cloned as a gene dosage-dependent suppressor of temperature-sensitive mutations in rpsB, the gene encoding ribosomal protein S2. We suggest that the DeaD protein plays a hitherto unknown role in translation in E. coli.  相似文献   

6.
Ludox density gradients were used to enrich for Escherichia coli mutants with conditional growth defects and alterations in membrane composition. A temperature-sensitive mutant named Lud135 was isolated with mutations in two related, nonessential genes: yghB and yqjA. yghB harbors a single missense mutation (G203D) and yqjA contains a nonsense mutation (W92TGA) in Lud135. Both mutations are required for the temperature-sensitive phenotype: targeted deletion of both genes in a wild-type background results in a strain with a similar phenotype and expression of either gene from a plasmid restores growth at elevated temperatures. The mutant has altered membrane phospholipid levels, with elevated levels of acidic phospholipids, when grown under permissive conditions. Growth of Lud135 under nonpermissive conditions is restored by the presence of millimolar concentrations of divalent cations Ca(2+), Ba(2+), Sr(2+), or Mg(2+) or 300 to 500 mM NaCl but not 400 mM sucrose. Microscopic analysis of Lud135 demonstrates a dramatic defect at a late stage of cell division when cells are grown under permissive conditions. yghB and yqjA belong to the conserved and widely distributed dedA gene family, for which no function has been reported. The two open reading frames encode predicted polytopic inner membrane proteins with 61% amino acid identity. It is likely that YghB and YqjA play redundant but critical roles in membrane biology that are essential for completion of cell division in E. coli.  相似文献   

7.
Escherichia coli K-12 strain 285c contains a mutation in rpoD, the gene encoding the sigma subunit of RNA polymerase. The 70-kilodalton sigma polypeptide encoded by this allele is unstable, and this instability leads to temperature-sensitive growth. We describe the isolation and characterization of four temperature-resistant pseudorevertants of 285c that can grow at high temperature. Each of these revertants increased the stability of the sigma 70 mutant protein. The map position of the suppressor mutations was close to that of the rpoH (htpR) gene. A multicopy plasmid containing the intact rpoH gene restored the temperature-sensitive phenotype. Marker rescue experiments established the positions of three of the alleles within the rpoH gene. One mutation has been sequenced and causes a leucine-to-tryptophan change 7 amino acids from the carboxyl terminus of the rpoH gene product.  相似文献   

8.
Human LAR is a transmembrane receptor-like protein whose cytoplasmic region contains two tandemly duplicated domains homologous to protein tyrosine phosphatases (PTPases). Whereas the membrane-proximal domain I has enzymatic activity, the membrane-distal domain II has no apparent catalytic activity but seems to have a regulatory function. In order to study structure-function relationships of the LAR PTPase, LAR domain I was expressed in Escherichia coli, and mutants that have reduced catalytic activity or reduced thermostability were isolated and characterized. We isolated 18 unique hydroxylamine-induced missense mutations in the LAR domain I segment, of which three were temperature-sensitive. Five additional temperature-sensitive mutations were isolated using N-methyl-N'-nitro-N-nitrosoguanidine. All eight temperature-sensitive mutations are confined within a short segment of the LAR domain I sequence between amino acid positions 1329 and 1407. To examine whether this region is particularly prone to temperature-sensitive mutations, tyrosine at amino acid position 1379 was changed to a phenylalanine by oligonucleotide-directed mutagenesis. This mutant, Y1379-F, was indeed temperature-sensitive. We also isolated a revertant of a temperature-sensitive mutant. The revertant contained a second-site mutation (C1446-Y) that suppresses several temperature-sensitive mutations and also enhances the folding of LAR protein produced in E. coli.  相似文献   

9.
6-Aminonicotinamide-resistant mutants of Salmonella typhimurium   总被引:8,自引:4,他引:4  
Resistance to the nicotinamide analog 6-aminonicotinamide has been used to identify the following three new classes of mutants in pyridine nucleotide metabolism. (i) pncX mutants have Tn10 insertion mutations near the pncA locus which reduce but do not eliminate the pncA product, nicotinamide deamidase. (ii) nadB (6-aminonicotinamide-resistant) mutants have dominant alleles of the nadB gene, which we propose are altered in feedback inhibition of the nadB enzyme, L-aspartate oxidase. Many of these mutants also exhibit a temperature-sensitive nicotinamide requirement phenotype. (iii) nadD mutants have mutations that affect a new gene involved in pyridine nucleotide metabolism. Since a high proportion of nadD mutations are temperature-sensitive lethal mutations, this appears to be an essential gene for NAD and NADP biosynthesis. In vivo labeling experiments indicate that in all the above cases, resistance is gained by increasing the ratio of NAD to 6-aminonicotinamide adenine dinucleotide. 6-Aminonicotinamide adenine dinucleotide turns over significantly more slowly in vivo than does normal NAD.  相似文献   

10.
Ten mutants of Aspergillus nidulans lacking nicotinamide adenine dinucleotide-specific glutamate dehydrogenase (NAD-GDH) have been isolated, and their mutations (gdhB1 through gdhB10) have been shown to lie in the gdhB gene. In addition, a temperature-sensitive gdhB mutant (gdhB11) has been isolated. A revertant (designated R-5) of the mutant gdhB1 bears an additional lesion in the gdhB gene and has altered NAD-GDH activity with altered Km values for ammonia or ammonium ions and for alpha-ketoglutarate. These results suggest that gdhB specifies a structural component for NAD-GDH. The growth characteristics of gdhB mutants indicate the routes by which amino acids are utilized as nitrogen and carbon energy sources. The properties are described of the double mutants bearing the mutations gdhB1 and gdhA1 or tamA119, which have low NADP-GDH activity.  相似文献   

11.
S D Yancey  S R Kushner 《Biochimie》1990,72(11):835-843
Polynucleotide phosphorylase (PNPase) has been studied in detail since its discovery in 1955 [1]. In an attempt to determine what role, if any, it has in mRNA decay in Escherichia coli, we have isolated and characterized a temperature-sensitive mutation, pnp-200, in the pnp gene. In vitro phosphorolysis, polymerization and exchange activities of the partially purified Pnp-200 enzyme are all reduced to 30-40% of wild-type activity at 50 degrees C compared to 32 degrees C. The pnp-200 mutation alone does not affect cell growth or mRNA stability. A triple mutant strain containing pnp-200 in combination with other temperature-sensitive mutations in genes known to affect mRNA metabolism (rnb-500 and ams-1) is conditionally lethal and shows increased mRNA stability after shift to the non-permissive temperature.  相似文献   

12.
The DNA sequence of the dnaK gene of Escherichia coli was analyzed. The nucleotide sequence of the wild-type dnaK gene of E. coli B differed from that of E. coli K-12 in 15 bp, none of which altered the amino acid sequence. Two temperature-sensitive dnaK mutations were examined by cloning and sequence analyses. Results showed that one dnaK mutation, dnaK7(Ts), was a one-base substitution of T for C at nucleotide position 448 in the open reading frame yielding an amber nonsense codon. The other mutation, dnaK756(Ts), consisted of base substitutions (A for G) at three nucleotide positions, 95, 1364, and 1403, in the open reading frame resulting in an aspartic acid codon in place of a glycine codon.  相似文献   

13.
A protocol has been devised to permit mutational analysis of the Rieske iron-sulfur protein of the mitochondrial cytochrome bc1 complex of Saccharomyces cerevisiae. The gene for this iron-sulfur protein (RIP1) has recently been cloned and sequenced (Beckmann, J. D., Ljungdahl, P. O., Lopez, J. L., and Trumpower, B. L. (1987) J. Biol. Chem. 262, 8901-8909). We have constructed a stable yeast deletion strain, JPJ1, in which the chromosomal copy of RIP1 was displaced by the yeast LEU2 gene by homologous recombination. A linear DNA fragment containing the LEU2 gene was inserted at the breakpoints of an 800-base pair deletion of the iron-sulfur protein gene and used to transform a leu- yeast strain. Leu+ transformants were obtained which were unable to grow on nonfermentable carbon sources. Southern analysis of the transformant, JPJ1, confirmed that the chromosomal copy of the RIP1 gene was deleted and replaced by the LEU2 gene. The genotype of JPJ1 was confirmed by genetic crosses. JPJ1 cannot grow on nonfermentable carbon sources but can be complemented to respiratory competence and transformed by yeast vectors containing the wild type RIP1 gene. The ability to complement strain JPJ1 with episomally encoded iron-sulfur protein provided the basis of a selection protocol by which mutagenized plasmids containing the RIP1 gene were assayed for mutations affecting respiratory growth. Five mutants of RIP1 were identified by their ability to complement JPJ1 to temperature-sensitive respiratory growth. DNA sequence analysis demonstrated that temperature-sensitive respiratory growth resulted from single point mutations within the protein coding region of RIP1. These mutations altered a single amino acid residue in each case. Mutations were dispersed throughout the terminal two-thirds of the protein. Each mutation was recessive and did not affect fermentative growth on dextrose. However, each mutation exerted unique temperature-sensitive growth characteristics on media containing the nonfermentable carbon source glycerol.  相似文献   

14.
Escherichia coli strain PC-7 carries two independent temperature-sensitive mutations, one affecting the restriction and modification (R-M) phenotype and the other the DnaC(D) phenotype. The results of complementation and P1 transduction analysis of the mutation affecting the R-M phenotype implicate a fourth gene, designated hsdX, located close to the hsd three-gene complex. The properties of merodiploids constructed between appropriate recipients and F' elements with different mutations in hsdS, hsdR and hsdM genes might indicate that in strain PC-7 the temperature-sensitive products, determined by hsdR and hsdSK cistrons, are synthesized. The role of the temperature-sensitive dnaC(D) gene product in the formation of the restriction endonuclease was studied and no direct relation was found between the DnaC(D) and R-M phenotypes.  相似文献   

15.
K Nishi  M Müller    J Schnier 《Journal of bacteriology》1987,169(10):4854-4856
Temperature-resistant pseudorevertants of the temperature-sensitive Escherichia coli mutant KNS19, harboring a mutation in rplX, the gene for ribosomal protein L24, were isolated, cloned, and sequenced. The codon GAC for the amino acid Asp in the temperature-sensitive mutant corresponding to position 84 in the protein chain mutated either back to the wild type (Gly) or to codons for the amino acids Tyr and Glu. Furthermore, rplX genes from two other mutants with an altered protein L24 were cloned and sequenced. The mutations were localized at position 56 (Gly to Asp) and at position 62 (Glu to Lys) in the rplX gene. The latter two mutants lacked a conditional lethal phenotype. The results suggest that the amino acid Gly at positions 56 and 84 in the protein might be involved in loop formations.  相似文献   

16.
We report the isolation of two mutations in the gyrB gene of Escherichia coli K12 obtained from an initial selection for resistance to coumermycin A1 and a subsequent screening for bacteria that fail to support site-specific recombination of phage lambda, i.e., Him-. These two mutations have a temperature-sensitive Him- phenotype, supporting site-specific recombination efficiently at low temperature, but inefficiently at high temperatures. Like other Him mutants, the gyrB-him mutants fail to plate phage Mu; again this defect is observed only at high temperatures. Additional thermally sensitive characteristics have also been observed; growth of lambda as well as maintenance of the plasmids pBR322 and F' gal are reduced at high temperature. Restriction of foreign DNA imposed by a P1 prophage is also reduced in these mutants. The temperature-sensitive phenotypic characteristics imposed by both the gyrB-him-230(Ts) and gyrB-him-231(Ts) mutations correlate with in vitro studies that show decreased gyrase activity, especially at higher temperatures, and in vivo studies showing reduced supercoiling of lambda DNA in the mutants at high temperature.  相似文献   

17.
The translocation stage of protein synthesis is a highly conserved process in all cells. Although the components necessary for translocation have been delineated, the mechanism of this activity has not been well defined. Ribosome movement on template mRNA must allow for displacement of tRNA-mRNA complexes from the ribosomal A to P sites and P to E sites, while ensuring rigid maintenance of the correct reading frame. In Escherichia coli, translocation of the ribosome is promoted by elongation factor G (EF-G). To examine the role of EF-G and rRNA in translocation we have characterized mutations in rRNA genes that can suppress a temperature-sensitive (ts) allele of fusA, the gene in E. coli that encodes EF-G. This analysis was performed using the ts E. coli strain PEM100, which contains a point mutation within fusA. The ts phenotype of PEM100 can be suppressed by either of two mutations in the decoding region of the 16S rRNA when present in combination with a mutation at position 2058 in the peptidyltransferase domain of the 23S rRNA. Communication between these ribosomal domains is essential for coordinating the events of the elongation cycle. We propose a model in which EF-G promotes translocation by modulating this communication, thereby increasing the efficiency of this fundamental process.  相似文献   

18.
Twenty-four genes from Salmonella typhimurium that affect DNA replication were isolated from a lambda-Salmonella genomic library by lysogenic complementation of temperature-sensitive mutants of Salmonella or E. coli, using a new plaque complementation assay. The complementing lambda clones, which make red plaques in this assay, and noncomplementing mutant derivatives, which make uncolored plaques, were used to further characterize the temperature-sensitive Salmonella mutants and to establish the functional similarity of E. coli and Salmonella DNA replication genes. For 17 of 18 E. coli mutants representing distinct loci, a Salmonella gene that complemented the mutant was found. This result indicates that single Salmonella replication proteins are able to function in otherwise all E. coli replication complexes and suggests that the detailed properties of Salmonella and E. coli replication proteins are very similar. The other seven Salmonella genes that were cloned were unrelated functionally to any E. coli genes examined. --As an aid to the derivation of chromosomal mutations affecting some of the cloned genes, a general method was developed for placing a transposon in the Salmonella chromosome in a segment corresponding to cloned DNA. Chromosomal mutations were derived in Salmonella affecting a gene (dnaA) that was cloned by complementation of an E. coli mutant by using the transposon-encoded drug resistance as a selectable marker in local mutagenesis.  相似文献   

19.
Using a papillation method, a large number of Escherichia coli K-12 mutator mutations have been isolated. Only one of these (out of 1,250) mutator mutations has proved to be conditionally lethal at high temperatures. In vivo complementation tests indicated that this mutation, dnaE9, lies in dnaE, the structural gene for DNA polymerase III. The dnaE9 polymerase was not thermolabile in vitro; however, it showed a slow decline in specific activity in vivo at the nonpermissive temperature. Cultures of this mutant exhibited a comparably slow shutoff of DNA synthesis on shift to a nonpermissive temperature. dnaE9 showed temperature-sensitive mutator activity, which is not dependent on recA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号