首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In recent years a growing number of inherited diseases have been recognized to originate from an impairment in one or more peroxisomal functions. Since it is well established that the first two steps in the biosynthesis of plasmalogens proceed in peroxisomes, we studied the biosynthesis of plasmalogens in cultured skin fibroblasts from patients with different peroxisomal and related disorders. When de novo plasmalogen biosynthesis was studied by growing the cells in the presence of [14C]hexadecanol, impaired plasmalogen biosynthesis was found in rhizomelic chondrodysplasia punctata, cerebrohepatorenal (Zellweger) syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease. In all these cases, alkyl-acyl phospholipids, the precursors of plasmalogens, did not accumulate and 1-O-[9,10-3H2]octadecylglycerol was converted into plasmalogens with equal efficiency as in controls. This indicated that impaired de novo plasmalogen biosynthesis as measured by [14C]hexadecanol incorporation was due to a deficient formation of the glycero-ether bond. Using this procedure, normal de novo plasmalogen biosynthesis was found in X-linked adrenoleukodystrophy, adrenomyeloneuropathy, X-linked chondrodysplasia punctata, adult Refsum disease, as well as in heterozygotes for Zellweger syndrome and infantile Refsum disease. The data have indicated that the average extent of the deficiency in glycero-ether bond formation is different in Zellweger syndrome, chondrodysplasia punctata, neonatal adrenoleukodystrophy, and infantile Refsum disease.  相似文献   

2.
To investigate the relative turnover of esterified polyunsaturated fatty acids in diacylglycerophospholipids and plasmalogens in isolated cardiac myocytes, we characterized the phospholipid composition and distribution of radiolabel in different phospholipid classes and in individual molecular species of diradyl choline (CGP) and ethanolamine (EGP) glycerophospholipids after incubation of isolated cardiac myocytes with [3H]arachidonate or [14C]linoleate. Plasmalogens in CGP (55%) and EGP (42%) quantitatively accounted for the total plasmalogen content (39%) of cardiac myocyte phospholipids. Plasmalogens comprised 86% and 51% of total arachidonylated CGP and EGP mass, respectively, and [3H]arachidonate was primarily incorporated into plasmalogens in both CGP (65%) and EGP (61%) classes. The specificity activity of [3H]arachidonylated diacyl-CGP was approximately 2- to 5-fold greater than that of [3H]arachidonylated choline plasmalogen, whereas comparable specific activities were found in the [3H]arachidonate-labeled ethanolamine plasmalogen and diacyl-EGP pools. Of the total linoleate-containing CGP and EGP mass, 54% and 57%, respectively, was esterified to plasmalogen molecular species. However, [14C]linoleate was almost exclusively incorporated into diacyl-CGP (96%) and diacyl-EGP (86%). The specific activities of [14C]linoleate-labeled diacyl-CGP and diacyl-EGP were 5- to 20-fold greater than that of the [14C]linoleate-labeled plasmalogen pools. The differential incorporation of polyunsaturated fatty acids in plasmalogens and diacylglycerophospholipids demonstrates that the metabolism of the sn-2 fatty acyl moiety in these phospholipid subclasses is differentially regulated, possibly fulfilling separate and distinct physiologic roles.  相似文献   

3.
By the use of the Langendorff technique, surviving isolated rat hearts were perfused with [1-14 C] palmitate, [1-14C] hexadecanol or [1-14C,1-3H] hexadecanol under normal or anoxic conditions. After perfusion for 30min with either precursor, when oxygenated or in an hypoxic condition, or when 1mM-KCN was included in the system, the heart tissues showed no significant chemical changes in their content of total lipids, total phospholipids or total ethanolamine-containing phospholipids. Changes were observed in the ratio of alkyl-to alk-1-enyl-glycerophosphorylethanolamine in the tissue perfused with N2+CO1 plus CN-. A slight increase from 4.0+/-0.3 to 4.9+/-0.2% in alkyl derivatives and a decrease from 11.2+/-0.4 to 9.4+/-0.3% in alk-1-enyl derivatives was observed. The incorporation of the [14C] palmitate and the [14C] hexadecanol into the recovered phospholipids and plasmalogens was severely decreased in the tissues perfused with CN-: in the hypoxic state only a mild inhibition was observed compared with the oxygenated systems. Considerable 3H from [1-14C, 1-3H] hexadecanol was retained (25-35%) in the alk-1-enylether chains of plasmalogens under both the oxygenated conditions and with CN-, suggesting that the same mechanism of incorporation is operational at high or low O2 concentrations. The results are consistent with an O2-dependent, CN-sensitive step in the biosynthesis of plasmalogens in the rat heart.  相似文献   

4.
Plasmalogens (1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine) are major phospholipids in many tissues and cells, particularly of neural origin. Using cultured C6 glioma cells and subcellular fractions isolated on Percoll gradients we investigated selectivity for esterification of several polyunsaturated fatty acids (PUFA) in the sn-2 position of plasmalogens compared to [1-14C]hexadecanol, representative of de novo synthesis of the ether-linked sn-1 position. In whole cells at a final concentration of 105 microM PUFA, 2-4 nmol plasmalogen/mg protein was labeled in 4 h and 10-14 nmol in 24 h, representing 8-15% and 35-50%, respectively, of initial plasmalogen mass. Incorporation of label from hexadecanol was lower than PUFA incorporation (20:5(n-3) greater than 20:4(n-6) greater than 18:3(n-3) much greater than 18:2(n-6)) suggesting deacylation-reacylation at the sn-2 position. Plasmalogens accounted for 50% of total cell ethanolamine phospholipids and 75% in plasma membrane. Using a novel, improved method for extraction of subcellular fractions containing Percoll, plasma membrane also was enriched in plasmalogen relative to microsomes (107.4 +/- 5.2 vs. 40.0 +/- 2.9 nmol/mg protein). Selectivity for esterification at the sn-2 position of plasmalogens with respect to chain length and unsaturation of the fatty acyl chain was similar in both subcellular fractions and reflected that of whole cells. Labeling of plasma membrane with PUFA and fatty alcohol lagged behind that of microsomes. Chase experiments in cells prelabeled with [1-14C]18:3(n-3) for 2 h showed no significant reduction of label in plasmalogen of any subcellular fraction although accumulation of label in the microsomal fraction was slowed initially. Reduction of plasmalogen label (40-50%) did occur in microsomes and plasma membrane when cells prelabeled for 24 h were switched to chase medium with or without chase fatty acid. Our data suggest that esterification of PUFA to plasmalogen may occur at the endoplasmic reticulum with subsequent translocation to plasma membrane resulting in accumulation of relatively stable pools of plasmalogen that are not readily accessible for deacylation-reacylation exchange with newly appearing PUFA. Alternatively, deacylation-reacylation may occur in a more stable phospholipid pool within the plasma membrane but would involve a slower process than at the endoplasmic reticulum.  相似文献   

5.
One of the consequences of hereditary peroxisomal dysfunction in the cerebro-hepato-renal (Zellweger) syndrome (CHRS) is a dramatic decrease in the biosynthesis and cellular content of ether lipids. In the present study effects of reduced cellular plasmalogen levels on membrane-membrane interactions were investigated. Cultured CHRS fibroblasts were incubated with unilamellar phospholipid vesicles consisting of 1-O-alkenyl-2-acyl- or 1,2-diacyl-sn-glycerophosphocholines and ethanolamines, carrying either the trans-parinaroyl or the 1,6-diphenyl-1,3,5-hexatriene propionyl group in position 2. Transfer of the fluorogenic phospholipids from vesicles to cells was followed by measuring the concomitant increase in fluorescence intensity. Transfer of phospholipids from cells to vesicles was monitored by incubating cells, prelabeled with [3H]oleic acid, in the presence of phospholipid vesicles. Fibroblasts from healthy donors or CHRS fibroblasts supplemented with the plasmalogen precursor 1-O-hexadecylglycerol served as controls. Plasmalogen-deficient cells exhibited a significantly increased tendency to take up exogenous choline or ethanolamine plasmalogens. Cellular plasmalogens were transferred from control cells to vesicles at a higher rate if the acceptor vesicles consisted of plasmalogens as compared to diacylglycerophosphocholine. Thus, it appears as if mechanisms existed which preserve cellular plasmalogen levels during interaction with exogenous phospholipid pools. Preliminary experimental evidence suggests that the observed exchange of phospholipids between cultured fibroblasts and vesicles occurs by a protein-catalyzed process.  相似文献   

6.
Intestinal preparations from rainbow trout fed a diet rich in wax esters incorporated [1(-14)C]hexadecanoic acid and [1(-14)C]hexadecanol into triacylglycerols at the same rate. The ratio of the number of H atoms from C1 of hexadecanol to the number of molecules of hexadecanol incorporated into triacylglycerols was 1.6 : 3.0. [U-14C]Glucose was incorporated much faster into the glycerol moiety of triacylglycerols than was [U-14C]aspartic acid. We conclude that the oxidation of absorbed fatty alcohol to fatty acid and its subsequent incorporation into triacylglycerols is closely linked with the reductive formation of triacylglycerol-glycerol from glucose. The ability of trout intestines to metabolise fatty alcohol to triacylglycerols was the same in fish fed wax esters as in those fed triacylglycerols.  相似文献   

7.
Cultured dissociated cells from rat embryo cerebral hemisphere incorporate [3H]-and [U-14C]ethanolamine into cellular lipids. Nearly all radioactivity in the lipid fractions is incorporated into 1,2-diacylethanolamine phosphoglycerides and 1-alkenyl,2-acylethanolamine phosphoglycerides (plasmalogen). Kinetic data suggest that the rate of labeling of both ethanolamine phospholipids from the phosphorylethanolamine is similar. A relative increase of the plasmalogen labeling is observed when free ethanolamine is continually present in the medium. The rate of incorporation of label from ethanolamine and phosphorylethanolamine into lipids was measured using a double label technique. Based upon these studies, an independent labeling pattern of the ethanolamine moiety of plasmalogens is suggested. A relative delay for the incorporation of label in plasmalogens could be explained by the presence of a variety of cell types which may differ in their capacity for phospholipid biosynthesis. The rate of incorporation of phosphorylethanolamine into the phosphatidylethanolamine was not affected by the presence of high concentrations of either choline or serine.  相似文献   

8.
The absence of peroxisomes in patients with the cerebrohepatorenal syndrome of Zellweger leads to several biochemical abnormalities, including deficient synthesis of plasmalogens as well as accumulation of very long-chain fatty acids and intermediates in bile acid biosynthesis. Accumulation of very long-chain fatty acids in serum and fibroblasts has hitherto been used most extensively for diagnosis. Due to the relatively small amounts of the very long-chain fatty acids also in the Zellweger patients, and the risk for interfering impurities, such analyses are difficult. Direct assay of plasmalogens is also relatively difficult and time-consuming. In this report, we describe a relatively simple method for diagnosis, based on gas-liquid chromatography of a lipid extract of erythrocytes after methyl transesterification. The alpha, beta-unsaturated ether in the plasmalogen is converted to the dimethylacetal of the corresponding aldehyde, and the relative amount of plasmalogen is thus reflected by the ratio between 18:0 dimethylacetal and methyl stearate as well as by the ratio between 16:0 dimethylacetal and methyl palmitate. The ratio 18:0 dimethylacetal/methyl stearate was found to be 0.28 +/- 0.03 (mean +/- SD) after analyses of erythrocytes from healthy or non-Zellweger infants, but less than 0.02 in erythrocytes from three infants with the Zellweger syndrome. Preliminary work with amniotic fluid suggests that this analysis may be suitable also for prenatal diagnosis of the Zellweger syndrome.  相似文献   

9.
The types of unsaturated fatty acids found in platelet phospholipids must be regulated by a series of controls which include specificity for activation and acylation as well as modification of circulating fatty acids by platelets prior to incubation into phospholipids. In this study we show that washed human platelets not only incorporate [1-14C]6,9,12-18:3, [1-14C]6,9,12,15-18:4, [1-14C]5,8,11-20:3, [1-14C]5,8,11,14-20:4, and [1-14C]5,8,11,14,17-20:5 into their phospholipids but also chain elongate each of these acids with subsequent acylation of the chain elongated products into phospholipids. Platelets incubated alone with 1-14C-labeled 5,8,11-20:3, 5,8,11,14-20:4, 5,8,11,14,17-20:5, 7,10,13,16,19-22:5, or 4,7,10,13,16,19-22:6 incorporated each of these acids into individual phosphoglycerides with phosphatidylinositol having the highest specific activity followed by phosphatidylcholine with phosphatidylserine approximately equal to phosphatidylethanolamine. The incorporation specificity of 4,7,10,13,16,19-22:6 was atypical since it was a relatively poor substrate for acylation into all phospholipids except phosphatidylethanolamine. The 20-carbon acids were better substrates for incorporation into phospholipids than were the 22-carbon compounds. Simultaneous incubation of 10 microM [1-14C]5,8,11,14-20:4 with increasing levels (5 to 15 microM) of each of the above five other 1-14C-labeled acids showed a concentration-dependent increase in the amount of the second fatty acid incorporated into platelet phospholipids. Dietary fat modification thus has the potential of increasing the plasma pool of 22-carbon acids for incorporation into platelets. In addition the activation of 20-carbon eicosanoid precursors by the high affinity platelet activating enzyme (Wilson, D. B., Prescott, S. M. and Majerus, P. W. (1982) J. Biol. Chem. 257, 3510-3515) will yield an acyl-CoA for both acylation and chain elongation followed by subsequent incorporation of 22-carbon acids into phosphoglycerides.  相似文献   

10.
The deacylation and reacylation process of phospholipids is the major pathway of turnover and repair in erythrocyte membranes. In this paper, we have investigated the role of carnitine palmitoyltransferase in erythrocyte membrane phospholipid fatty acid turnover. The role of acyl-L-carnitine as a reservoir of activated acyl groups, the buffer function of carnitine, and the importance of the acyl-CoA/free CoA ratio in the reacylation process of erythrocyte membrane phospholipids have also been addressed. In intact erythrocytes, the incorporation of [1-14C]palmitic acid into acyl-L-carnitine, phosphatidylcholine, and phosphatidylethanolamine was linear with time for at least 3 h. The greatest proportion of the radioactivity was found in acyl-L-carnitine. Competition experiments using [1-14C]palmitic and [9,10-3H]oleic acid demonstrated that [9,10-3H]oleic acid was incorporated preferentially into the phospholipids and less into acyl-L-carnitine. When an erythrocyte suspension was incubated with [1-14C]palmitoyl-L-carnitine, radiolabeled palmitate was recovered in the phospholipid fraction, and the carnitine palmitoyltransferase inhibitor, 2-tetradecylglycidic acid, completely abolished the incorporation. ATP depletion decreased incorporation of [1-14C]palmitic and/or [9,10-3H]oleic acid into acyl-L-carnitine, but the incorporation into phosphatidylcholine and phosphatidylethanolamine was unaffected. In contrast, ATP depletion enhanced the incorporation into phosphatidylcholine and phosphatidylethanolamine of the radiolabeled fatty acid from [1-14C]palmitoyl-L-carnitine. These data are suggestive of the existence of an acyl-L-carnitine pool, in equilibrium with the acyl-CoA pool, which serves as a reservoir of activated acyl groups. The carnitine palmitoyltransferase inhibition by 2-tetradecylglycidic acid or palmitoyl-D-carnitine caused a significant reduction of radiolabeled fatty acid incorporation into membrane phospholipids, only when intact erythrocytes were incubated with [9,10-3H]oleic acid. These latter data may be explained by the differences in rates and substrates specificities between acyl-CoA synthetase and the reacylating enzymes for palmitate and oleate, which support the importance of carnitine palmitoyltransferase in modulating the optimal acyl-CoA/free CoA ratio for the physiological expression of the membrane phospholipids fatty acid turnover.  相似文献   

11.
Hexadecanol was employed as a fatty acid analog in an attempt to elucidate the role of the carboxyl group in free fatty acid uptake. Large quantities of albumin-bound [1-(14)C]hexadecanol were taken up by Ehrlich ascites cells during in vitro incubation. More than 90% of the (14)C that was taken up remained as hexadecanol even after 1 hr of incubation at 37 degrees C. Addition of unlabeled hexadecanol did not appreciably alter the rate of [U-(14)C]glucose oxidation or incorporation into total lipids, suggesting that the slow rate of hexadecanol metabolism was not due to a toxic effect of this analog. However, more of the labeled glucose was incorporated into phospholipids and less into glycerides, indicating that hexadecanol did exert some metabolic effect on the cells. Uptake was temperature dependent but relatively unresponsive to the presence of glucose or fluoride and cyanide. Hexadecanol was incorporated into exchangeable and nonexchangeable cellular pools as determined by its availability for release to a medium containing albumin. These results indicate that a mammalian cell can rapidly take up large amounts of a long-chain hydrocarbon derivative that does not contain a carboxyl group. Furthermore, the data are compatible with the hypothesis that free fatty acids are taken up by a nonenzymatic process such as diffusion into the lipid phase of the cell membrane.  相似文献   

12.
The influence of plasmalogen deficiency on membrane lipid mobility was determined by measuring fluorescence anisotropy of trimethylammoniumdiphenylhexatriene (TMA-DPH) and diphenylhexatrienylpropanoylhydrazylstachyose (glyco-DPH) inserted in the plasma membranes of human skin fibroblasts deficient in plasmalogens. The cells used were from patients affected with cerebrohepatorenal (Zellweger) syndrome (CHRS) or rhizomelic chondrodysplasia punctata. Their plasmalogen content (0-5% of total phospholipid) is significantly reduced compared with that of control cells from healthy donors (13-15% of total phospholipid) or of CHRS fibroblasts supplemented with the plasmalogen precursor, hexadecylglycerol. Plasmalogen-deficient cells consistently showed lower fluorescence anisotropies of membrane-bound DPH fluorophores corresponding to higher membrane lipid mobilities as compared to controls. However, very similar lipid mobilities were found for sonicated aqueous dispersions of phospholipids extracted either from CHRS or control cells. Therefore, the differences observed with living cells are not due to differences in the overall physical properties of the membrane lipid constituents. Other phenomena such as lipid asymmetry and/or plasmalogen-protein interactions may be responsible for the effects observed in the biomembranes.  相似文献   

13.
Peroxisomes play an essential role in human cellular metabolism. Peroxisomal disorders, a group of genetic diseases caused by peroxisomal dysfunction, can be classified in three groups namely a group of disorders with a general peroxisomal dysfunction (Zellweger syndrome; infantile type of Refsum's disease; neonatal adrenoleukodystrophy, hyperpipecolic acidemia), a group with an impairment of some, but not all peroxisomal functions (rhizomelic chondrodysplasia punctata) and a group with impairment of only a single peroxisomal function (acatalasemia, X-linked adrenoleukodystrophy/adrenomyeloneuropathy; adult type of Refsum's disease; peroxisomal thiolase deficiency; peroxisomal acyl-CoA oxidase deficiency; hyperoxaluria type I). In this paper we report the typical findings in ophthalmological examinations of patients suspected of Zellweger syndrome contributing to the clinical diagnosis of this disorder. In biochemical studies using a rapid gaschromatographic detection method for plasmalogens we confirmed that plasmalogens are severely deficient in all tissues of Zellweger patients studied. Moreover, using a recently developed radiochemical method, de novo plasmalogen biosynthesis was found to be impaired in fibroblasts from patients with Zellweger syndrome, infantile Refsum's disease, neonatal adrenoleukodystrophy or rhizomelic chondrodysplasia punctata, this in contrast to X-linked chondrodysplasia in which a normal plasmalogen biosynthesis was found. From the literature it is known that peroxisomal beta-oxidation with both long-chain (C16:0) and very long-chain (C24:0; C26:0) fatty acids is deficient in Zellweger syndrome, infantile Refsum's disease and neonatal adrenoleukodystrophy. In contrast, in X-linked adrenoleukodystrophy only the peroxisomal beta-oxidation of the very long chain fatty acids is impaired. As a result very long-chain fatty acids accumulate in tissues, plasma, fibroblasts and amniotic fluid cells from patients with Zellweger syndrome, infantile Refsum's disease, neonatal and X-linked adrenoleukodystrophy, but not in rhizomelic chondrodysplasia punctata or X-linked chondrodysplasia. Finally we confirmed that the peroxisomal enzyme alanine glyoxylate aminotransferase is severely deficient in liver from a patient that died because of the neonatal type of hyperoxaluria type I, but not in liver from Zellweger patients.  相似文献   

14.
Abstract: [1-3H, 1-14C]Palmitaldehyde(3H:14C= 15) was injected intracerebrally to 18-day-old rats and incorporation of radioactivity into brain lipids was followed over a 24-h period. The substrate was metabolized primarily by oxidation to palmitic acid with loss of tritium and, to a lesser extent, by reduction to hexadecanol. The alkyl moieties of the ethanolamine phospholipids showed considerably lower 3H:14C ratios than the substrate, indicating a substantial participation in ether lipid synthesis by tritium-free alcohols derived from 14C-labeled fatty acids. Virtually no 3H radioactivity was found in alkenyl moieties, indicating stereospecificity of both reduction of aldehyde and dehydrogenation of alkyl to alkenyl glycerolipid. The data are consistent with the general concept that plasmalogen biosynthesis proceeds exclusively through fatty alcohols and alkyl glycerolipids and that fatty aldehydes cannot be utilized directly.  相似文献   

15.
The metabolism of docosahexaenoic acid (22:6(n-3)) and adrenic acid (22:4(n-6)) was studied in cultured fibroblasts from patients with the Zellweger syndrome, X-linked adrenoleukodystrophy (X-ALD) and normal controls. It was shown that [4,5- 3H]22:6(n-3) is retroconverted to labelled eicosapentaenoic acid (20:5(n-3)) in normal and X-ALD fibroblasts, while this conversion is deficient in Zellweger fibroblasts. [U- 14C]Eicosapentaenoic acid (20:5(n-3)) is elongated to docosapentaenoic acid (22:5(n-3)) in all three cell lines. With [U- 14C]20:5(n-3) as the substrate, shorter fatty acids were not detected. With [4,5- 3H]22:6(n-3) as the substrate, labelled fatty acids were esterified in the phospholipid- and triacylglycerol-fraction to approximately the same extent in all three cell lines. [2- 14C]Adrenic acid (22:4(n-6)) was desaturated to 22:5(n-6) and elongated to 24:4(n-6) in all three cell lines and to the largest extent in the Zellweger fibroblasts. This agrees with the view that the delta 4-desaturase is not a peroxisomal enzyme. The observation that the retroconversion of 22:6(n-3) to 20:5(n-3) is deficient in Zellweger fibroblasts strongly suggest that the beta-oxidation step in the retroconversion is a peroxisomal function. Peroxisomal very-long-chain (lignoceroyl) CoA ligase is probably not required for the activation of 22:6(n-3), since the retroconversion to 20:5(n-3) is normal in X-ALD fibroblasts.  相似文献   

16.
In cultured mouse mammary gland explants derived from 12-14 day pregnant mice, the effect of prolactin (PRL) on the rate of incorporation of several precursors into neutral lipids and phospholipids was determined. Employing [14C]-acetate as a substrate, PRL stimulates its incorporation into a) neutral lipids by 4-6 hours, b) phosphatidyl choline (PC) and phosphatidyl inositol-phosphatidyl serine (PI-PS) by 1-2 hours, and c) phosphatidyl ethanolamine (PE) by 2-4 hours. Using [3H]-glycerol as a substrate, the temporal response to PRL for its incorporation into the neutral lipids was the same as that for [14C]-acetate, however, PRL did not enhance the rate of [3H]-glycerol incorporation into the phospholipids at any time through 16 hours. PRL similarly had no effect on the rates of [3H]-choline, [3H]-serine, [3H]-ethanolamine, or [32P]O4 incorporation into the phospholipids at hormone exposure periods of 8 hours or more. And finally, PRL had no effect on the rates of [3H]-arachidonate or [14C]-linoleate incorporation into neutral lipids or phospholipids at culture periods up to 18 hours. These data suggest that the early effect of PRL on [14C]-acetate incorporation into the phospholipids is due to either the insertion of newly synthesized fatty acids and/or the extension of fatty acids contained in the phospholipids.  相似文献   

17.
1-O-[1'-14C]Hexadecyl ethanediol was administered intracerebrally to myelinating rat brain, and incorporation of radioactivity into brain lipids was followed over a 48-h period: (1) O-Hexadecyl ethanediol was metabolized primarily through oxidative ether bond cleavage, and much of the label was recovered in phospholipid acyl groups. (2) Substantial amounts of radioactivity were also found in choline and ethanolamine phospholipids having an O-hexadecyloxyethyl glycerol backbone. This means that alkyl ethanediol was used in glycerol ether biosynthesis as are long-chain primary alcohols. (3) Acidic hydrolysis of the ethanolamine glycerophosphatide fraction yielded also labeled hexadecanol which may indicate desaturation of 1-O-hexadecyloxyethyl 2-acyl glycerophosphoryl ethanolamine to the plasmalogen analogue. (4) Small amounts of the substrate were oxidized to O-hexadecyl glycolic acid and incorporated into the phospholipids. The substrate did not serve as precursor of O-hexadecyl ethanediol phosphorylcholine or phosphorylethanolamine in the brain.  相似文献   

18.
In the presence of ATP, Mg, and CoA-SH[1-14C]linoleic acid was incorporated into membrane phospholipids (P2 fraction and synaptosomes) prepared from rat brain cortex. The relative order for linoleate incorporation was: phosphatidylcholine >phosphatidylethanolamine>phosphatidylinositol>ethanolamine plasmalogen >phosphatidylserine. The incorporation of labeled linoleate into P2 fraction phospholipids was investigated in rats, aged 4, 16, and 90 days, after being subjected to ischemic and hypoxic conditions. With the exception of a small increase in the incorporation of the radioactivity into diacyl-GPC, little change in incorporation profile was observed with 4-day-old rats submitted to ischemic and hypoxic conditions. However, the incorporation of labeled linoleate into membrane phospholipids was decreased in 16-and 90-day-old rats after being subjected to ischemic and hypoxic conditions. Among the phospholipids, the decrease in incorporation of radioactivity was most prominent with ethanolamine plasmalogens and phosphatidylinositol although the radioactivity of phosphatidylcholine seemed to remain relatively constant. The decreased incorporation activity in these two age groups was noted along with concomitant increase in the FFA content, whereas an increase in FFA was not observed in the 4-day-old brain samples. Thus, the specific decrease in labeling of ethanolamine plasmalogens and phosphatidylinositol may be the result of increased enzymic degradation of these compounds after ischemic and hypoxic treatment. Furthermore, the decrease in incorporation of linoleate into membrane phospholipids may be due to an increase in the membrane, FFA pool which subsequently, gave a dilution of the labeled precursor.  相似文献   

19.
Previously, this laboratory reported the isolation of variants, RAW. 12 and RAW.108, from the macrophage-like cell line RAW 264.7 that are defective in plasmalogen biosynthesis [Zoeller, R.A. et al. 1992. J. Biol. Chem. 267: 8299-8306]. Fatty acid analysis showed significant changes in the mutants in the ethanolamine phospholipids (PE), the only phospholipid class in which the plasmalogen species, plasmenylethanolamine, contributes significantly. Within the PE fraction, docosapentaenoic (DPA; 22:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids were reduced by approximately 50% in the variants while the levels of arachidonic acid (AA; 20:4n-6) remained unaffected. The decrease in DHA was accompanied by a 50% decrease in labeling PE with [3H]DHA over a 90-min period. Restoration of plasmenylethanolamine by supplementing the growth medium with sn -1-hexadecylglycerol (HG) completely reversed these changes in RAW. 108. Pre-existing pools of plasmenylethanolamine were not required for restoration of normal [3H]DHA labeling; addition of HG only during the labeling period was sufficient. Due to the loss of Delta1'-desaturase in RAW.12, HG supplementation resulted in the accumulation of plasmenylethanolamine's immediate biosynthetic precursor, plasmanylethanolamine. Even though this latter phospholipid contained only the ether functionality (lacking the vinyl ether double bond) it was sufficient to restore wild type-like fatty acid composition and DHA labeling of the ethanolamine phospholipids, identifying the ether bond as a structural determinant for this specificity.In summary, we have used these mutants to establish that the plasmalogen status of a cell can influence the levels of certain polyunsaturated fatty acids. These results support the notion that certain polyunsaturated fatty acids, such as DHA, can be selectively targeted to plasmalogens and that this targeting occurs during de novo biosynthesis, or shortly thereafter, through modification of nascent plasmalogen pools.  相似文献   

20.
In cultured glioma cells, plasma membrane (PM) is enriched in phosphatidylserine (PtdSer) and plasmalogens (1-O-alk-1-enyl-2-acyl-sn-glycero-3-phosphoethanolamine). Serine can be a precursor of headgroups of both ptdSer and ethanolamine phosphoglycerides (PE) including plasmalogens and non-plasmalogen PE (NP-PE). Synthesis of phospholipids was investigated at the subcellular level using established fractionation procedures and incorporation of [3H(G)]L-serine and [1,2-14C]ethanolamine. Specific radioactivity of PtdSer from [3H]serine was 2-fold greater in PM than in microsomes, reaching maximum by 2–4 h. Labeled plasmalogen from [3H]serine appeared in PM by 4 h and increased to 48 h, whereas almost no plasmalogen accumulated in microsomes within 12 h. In contrast, labeled plasmalogen from [1,2-14C]ethanolamine appeared in both PM and microsomes at early incubation times and became enriched in PM beyond 12 h. Thus, in glioma cells: (1) greater and faster accumulation of labeled PtdSer in PM may reflect direct synthesis from serine within PM; (2) PM is a major source of PtdSer for decarboxylation and PE synthesis; (3) NP-PE in both PM and microsome provides headgroup for synthesis of plasmalogen; and, (4) plasmalogen synthesis may involve different intracellular pools depending on headgroup origin.Abbreviations NP-PE nonplasmenylethanolamine phosphoglycerides including both diacyl and alkylacyl species - PE total ethanolamine phosphoglycerides: plasmalogen-plasmenylethanolamine or alkenylacyl ethanolamine phosphoglyceride (1-O-alk-1-enyl-2-acyl-sn-glycero-3-phosphoethanolamine) - PL phospholipid - PM plasma membrane - PtdCho phosphatidylcholine - PtdSer phosphatidylserine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号