首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ju T  Zheng Q  Cummings RD 《Glycobiology》2006,16(10):947-958
The common O-glycan core structure in animal glycoproteins is the core 1 disaccharide Galbeta1-3GalNAcalpha1-Ser/Thr, which is generated by the addition of Gal to GalNAcalpha1-Ser/Thr by core 1 UDP-alpha-galactose (UDP-Gal):GalNAcalpha1-Ser/Thr beta1,3-galactosyltransferase (core 1 beta3-Gal-T or T-synthase, EC2.4.1.122). Although O-glycans play important roles in vertebrates, much remains to be learned from model organisms such as the free-living nematode Caenorhabditis elegans, which offer many advantages in exploring O-glycan structure/function. Here, we report the cloning and enzymatic characterization of T-synthase from C. elegans (Ce-T-synthase). A putative C. elegans gene for T-synthase, C38H2.2, was identified in GenBank by a BlastP search using the human T-synthase protein sequence. The full-length cDNA for Ce-T-synthase, which was generated by polymerase chain reaction using a C. elegans cDNA library as the template, contains 1170 bp including the stop TAA. The cDNA encodes a protein of 389 amino acids with typical type II membrane topology and a remarkable 42.7% identity to the human T-synthase. Ce-T-synthase has seven Cys residues in the lumenal domain including six conserved Cys residues in all orthologs. The Ce-T-synthase has four potential N-glycosylation sequons, whereas the mammalian orthologs lack N-glycosylation sequons. Only one gene for Ce-T-synthase was identified in the genome-wide search, and it contains eight exons. Promoter analysis of the Ce-T-synthase using green fluorescent protein (GFP) constructs shows that the gene is expressed at all developmental stages and appears to be in all cells. Unexpectedly, only minimal activity was recovered in the recombinant, soluble Ce-T-synthase secreted from a wide variety of mammalian cell lines, whereas robust enzyme activity was recovered in the soluble Ce-T-synthase expressed in Hi-5 insect cells. Vertebrate T-synthase requires the molecular chaperone Cosmc, but our results show that Ce-T-synthase does not require Cosmc and might require invertebrate-specific factors for the formation of the optimally active enzyme. These results show that the Ce-T-synthase is a functional ortholog to the human T-synthase in generating core 1 O-glycans and open new avenues to explore O-glycan function in this model organism.  相似文献   

2.
从核心1结构(Galβ1,3GalNAcα1-O-Ser/Thr, core 1 structure, T antigen)中衍生出来的黏蛋白型O-聚糖在很多生理过程中发挥重要的生物学功能。T-合酶 (core 1 β3-galactosyltransferase, T-synthase) 是合成核心1结构的唯一糖基转移酶,它主要的功能是将半乳糖(Galactose) 添加到GalNAcα1-Ser/Thr (Tn抗原) 糖链上。但是在人体和其他脊椎动物中有活性的T-合酶的形成需要一个重要的伴侣分子Cosmc;Cosmc功能丧失将直接导致T-合酶失活,其结果是机体细胞只能合成Tn抗原以及唾液酰化Tn (sialylTn, STn, Neu5Acα2,6GalNAcα1-O-Ser/Thr)。综述目前对T-合酶和Cosmc的研究以及他们在人类疾病(如异常O-聚糖表达相关的Tn综合征、IgA肾病和肿瘤)发生发展中的作用。  相似文献   

3.
T antigen (Galbeta1-3GalNAcalpha1-Ser/Thr), the well-known tumor-associated antigen, is a core 1 mucin-type O-glycan structure that is synthesized by core 1 beta1,3-galactosyltransferase (C1beta3GalT), which transfers Gal from UDP-Gal to Tn antigen (GalNAcalpha1-Ser/Thr). Three putative C1beta3GalTs have been identified in Drosophila. However, although all three are expressed in embryos, their roles during embryogenesis have not yet been clarified. In this study, we used P-element inserted mutants to show that CG9520, one of the three putative C1beta3GalTs, synthesizes T antigen expressed on the central nervous system (CNS) during embryogenesis. We also found that T antigen was expressed on a subset of the embryonic hemocytes. CG9520 mutant embryos showed the loss of T antigens on the CNS and on a subset of hemocytes. Then, the loss of T antigens was rescued by precise excision of the P-element inserted into the CG9520 gene. Our data demonstrate that T antigens expressed on the CNS and on a subset of hemocytes are synthesized by CG9520 in the Drosophila embryo. In addition, we found that the number of circulating hemocytes was reduced in third instar larvae of CG9520 mutant. We, therefore, named the CG9520 gene Drosophila core 1 beta1,3-galactosyltransferase 1 because it is responsible for the synthesis and function of T antigen in vivo.  相似文献   

4.
5.
6.
Ju T  Xia B  Aryal RP  Wang W  Wang Y  Ding X  Mi R  He M  Cummings RD 《Glycobiology》2011,21(3):352-362
Loss of T-synthase (uridine diphosphate galactose:N-acetylgalactosaminyl-α1-Ser/Thr β3galactosyltransferase), a key enzyme required for the formation of mucin-type core 1 O-glycans, is observed in several human diseases, including cancer, Tn syndrome and IgA nephropathy, but current methods to assay the enzyme use radioactive substrates and complicated isolation of the product. Here we report the development of a novel fluorescent assay to measure its activity in a variety of tumor cell lines. Deficiencies in T-synthase activity correlate with mutations in the gene encoding the molecular chaperone Cosmc that is required for folding the T-synthase. This new high-throughput assay allows for facile screening of tumor specimens and other biological material for T-synthase activity and could be used diagnostically.  相似文献   

7.
Artocarpus lakoocha agglutinin (ALA), isolated from the seeds of A. lakoocha fruit, is a galactose-binding lectin and a potent mitogen of T and B cells. Knowledge obtained from previous studies on the affinity of ALA was limited to molecular and submolecular levels of Galbeta1-->3GalNAc (T) and its derivatives. In the present study, the carbohydrate specificity of ALA was characterized at the macromolecular level according to the mammalian Gal/GalNAc structural units and corresponding glycoconjugates by an enzyme-linked lectinosorbent (ELLSA) and inhibition assays. The results indicate that ALA binds specifically to tumor-associated carbohydrate antigens GalNAcalpha1-->Ser/Thr (Tn) and Galbeta1-->3 GalNAcalpha1-->Ser/Thr (Talpha). It barely cross-reacts with other common glycotopes on glycoproteins, including ABH blood group antigens, Galbeta1-->3/4GlcNAc (I/II) determinants, T/Tn covered by sialic acids, and N-linked plasma glycoproteins. Dense clustering structure of Tn/Talpha-containing glycoproteins tested resulted in 2.4 x 10(5)-6.7 x 10(5)-fold higher affinities to ALA than the respective GalNAc and Gal monomer. According to our results, the overall affinity of ALA for glycans can be ranked respectively: polyvalent Tn/Talpha glycotopes > monomeric Talpha and simple clustered Tn > monomeric Tn > GalNAc > Gal; while other glycotopes: Galalpha1-->3/4Gal (B/E), Galbeta1-->3/4GlcNAc (I/II), GalNAcalpha1-->3Gal/GalNAc (A/F), and GalNAcbeta1-->3/4Gal (P/S) were inactive. The strong specificity of ALA for Tn/Talpha cluster suggests the importance of glycotope polyvalency during carbohydrate-receptor interactions and emphasizes its value as an anti-Tn/T lectin for analysis of glycoconjugate mixtures or transformed carbohydrates.  相似文献   

8.
Bifidobacteria inhabit the lower intestine of mammals including humans where the mucin gel layer forms a space for commensal bacteria. We previously identified that infant-associated bifidobacteria possess an extracellular membrane-bound endo-α-N-acetylgalactosaminidase (EngBF) that may be involved in degradation and assimilation of mucin-type oligosaccharides. However, EngBF is highly specific for core-1-type O-glycan (Galβ1-3GalNAcα1-Ser/Thr), also called T antigen, which is mainly attached onto gastroduodenal mucins. By contrast, core-3-type O-glycans (GlcNAcβ1-3GalNAcα1-Ser/Thr) are predominantly found on the mucins in the intestines. Here, we identified a novel α-N-acetylgalactosaminidase (NagBb) from Bifidobacterium bifidum JCM 1254 that hydrolyzes the Tn antigen (GalNAcα1-Ser/Thr). Sialyl and galactosyl core-3 (Galβ1-3/4GlcNAcβ1-3(Neu5Acα2-6)GalNAcα1-Ser/Thr), a major tetrasaccharide structure on MUC2 mucin primarily secreted from goblet cells in human sigmoid colon, can be serially hydrolyzed into Tn antigen by previously identified bifidobacterial extracellular glycosidases such as α-sialidase (SiaBb2), lacto-N-biosidase (LnbB), β-galactosidase (BbgIII), and β-N-acetylhexosaminidases (BbhI and BbhII). Because NagBb is an intracellular enzyme without an N-terminal secretion signal sequence, it is likely involved in intracellular degradation and assimilation of Tn antigen-containing polypeptides, which might be incorporated through unknown transporters. Thus, bifidobacteria possess two distinct pathways for assimilation of O-glycans on gastroduodenal and intestinal mucins. NagBb homologs are conserved in infant-associated bifidobacteria, suggesting a significant role for their adaptation within the infant gut, and they were found to form a new glycoside hydrolase family 129.  相似文献   

9.
Wu AM  Wu JH  Yang Z  Singh T  Goldstein IJ  Sharon N 《Biochimie》2008,90(11-12):1769-1780
Previous reports on the carbohydrate specificities of Amaranthus caudatus lectin (ACL) and peanut agglutinin (PNA, Arachis hypogea) indicated that they share the same specificity for the Thomsen-Friedenreich (T(alpha), Galbeta1-3GalNAcalpha1-Ser/Thr) glycotope, but differ in monosaccharide binding--GalNAc>Gal (inactive) for ACL; Gal>GalNAc (weak) with respect to PNA. However, knowledge of the recognition factors of these lectins was based on studies with a small number monosaccharides and T-related oligosaccharides. In this study, a wider range of interacting factors of ACL and PNA toward known mammalian structural units, natural polyvalent glycotopes and glycans were examined by enzyme-linked lectinosorbent and inhibition assays. The results indicate that the main recognition factors of ACL, GalNAc was the only monosaccharide recognized by ACL as such, its polyvalent forms (poly GalNAcalpha1-Ser/Thr, Tn in asialo OSM) were not recognized much better. Human blood group precursor disaccharides Galbeta1-3/4GlcNAcbeta (I(beta)/II(beta)) were weak ligands, while their clusters (multiantennary II(beta)) and polyvalent forms were active. The major recognition factors of PNA were a combination of alpha or beta anomers of T disaccharide and their polyvalent complexes. Although I(beta)/II(beta) were weak haptens, their polyvalent forms played a significant role in binding. From the 50% molar inhibition profile, the shape of the ACL combining site appears to be a cavity type and most complementary to a disaccharide of Galbeta1-3GalNAc (T), while the PNA binding domain is proposed to be Galbeta1-3GalNAcalpha or beta1--as the major combining site with an adjoining subsite (partial cavity type) for a disaccharide, and most complementary to the linear tetrasaccharide, Galbeta1-3GalNAcbeta1-4Galbeta1-4Glc (T(beta)1-4L, asialo GM(1) sequence). These results should help us understand the differential contributions of polyvalent ligands, glycotopes and subtopes for the interaction with these lectins to binding, and make them useful tools to study glycosciences, glycomarkers and their biological functions.  相似文献   

10.
A galactose specific lectin was isolated from the seeds of Ficus bengalensis (Moraceae) fruits and designated as F. bengalensis agglutinin (FBA). The lectin was purified by affinity repulsion chromatography on fetuin-agarose and was a monomer of molecular mass 33kDa. Like other Moraceae family lectins, carbohydrate-binding activity of FBA was independent of any divalent cation. FBA did not bind with simple saccharides, however sugar ligands with aromatic aglycons showed pronounced binding. The combining site of FBA recognized preferably Galbeta1,4GlcNAcbeta1-(II) followed by Galbeta1,3GalNAcalpha1-(Talpha) containing glycotopes. Interaction with saccharides revealed that the combining site of FBA could well accommodate a tetrasaccharide, asialo GM1 glycan (Galbeta1,3GalNAcbeta1,4Galbeta1,4Glcbeta1-), whereas polyvalent Tn (GalNAcalpha1-Ser/Thr), one of the well-recognized ligands of Moraceae family lectin, did not interact well with FBA.  相似文献   

11.
12.
13.
Wu AM  Wu JH  Liu JH  Singh T 《Life sciences》2004,74(14):1763-1779
Bauhinia purpurea agglutinin (BPA) is a Galbeta1-3GalNAc (T) specific leguminous lectin that has been widely used in multifarious cytochemical and immunological studies of cells and tissues under pathological or malignant conditions. Despite these diverse applications, knowledge of its carbohydrate specificity was mainly limited to molecular or submolecular T disaccharides. Thus, the requirement of high density polyvalent or multi-antennary carbohydrate structural units for BPA binding and an updated affinity profile were further evaluated by enzyme-linked lectinosorbent (ELLSA) and inhibition assays. Among the glycoproteins (gps) tested and expressed as 50% nanogram inhibition, the high density polyvalent GalNAcalpha1-Ser/Thr (Tn) and Galbeta1-3/4GlcNAc (I/II) glycotopes present on macromolecules generated a great enhancement of binding affinity for BPA as compared to their monomers. The most potent inhibitors were a Tn-containing gp (asialo OSM) and a I/II containing gp (human blood group precursor gp), which were up to 1.7 x 10(4) and 2.3 x 10(3) times more potent than monovalent Gal and GalNAc, respectively. However, multi-antennary glycopeptides, such as tri-antennary Galbeta1-4GlcNAc, which was slightly more active than II or Gal, gave only a minor contribution. Regarding the carbohydrate structural units studied by the inhibition assay, blood group GalNAcbeta1-3/4Gal (P/S) active glycotopes were active ligands. The overall binding profile of BPA was: high density polyvalent T/Tn and II clusters > Tn-glycopeptides (M.W. <3.0 x 10(3))/Talpha monomer > monovalent P/S > Tn monomer and GalNAc > tri-antennary II > Gal > Man and Glc (inactive). These findings give evidence for the binding of this lectin to dense cell surface T, Tn and I/II glycoconjugates and should facilitate future usage of this lectin in biotechnological and medical applications.  相似文献   

14.
A new calcium dependent GalNAc/Gal specific lectin was isolated from the serum of Indian catfish, Clarias batrachus and designated as C. batrachus lectin (CBL). It is a disulfide-linked homodecameric lectin of 74.65kDa subunits and the oligomeric form is essential for its activity. Binding specificity of CBL was investigated by enzyme-linked lectin-sorbent assay using a series of simple sugars, polysaccharides, and glycoproteins. GalNAc was more potent inhibitor than Gal; and alpha glycosides of both were more inhibitory than their beta counterparts. CBL showed maximum affinity for human tumor-associated Tn-antigens (GalNAcalpha1-Ser/Thr) at the molecular level and was 3.5 times higher than GalNAc. CBL interacted strongly with polyvalent Tn and Talpha (Galbeta1,3GalNAcalpha1-) as well as multivalent-II (Galbeta1,4GlcNAcbeta1-) antigens containing glycoproteins and intensity of inhibition was 10(3)-10(5) times more than monovalent ones. The overall specificity of CBL lies in the order of polyvalent Tn, Talpha and II>monovalent TnMe-alphaGalNAc>monovalent Talpha> Me-betaGalNAc>Me-alphaGal>monovalent T>GalNAc>monovalent F>monovalent II>Me-betaGal>Gal.  相似文献   

15.
Wu JH  Singh T  Herp A  Wu AM 《Biochimie》2006,88(2):201-217
Ricin (RCA60) is a potent cytotoxic protein with lectin domains, contained in the seeds of the castor bean Ricinus communis. It is a potential biohazard. To corroborate the biological properties of ricin, it is essential to understand the recognition factors involved in the ricin-glycotope interaction. In previous reports, knowledge of the binding properties of ricin was limited to oligosugars and glycopeptides with different specificities. Here, recognition factors of the lectin domains in ricin were examined by enzyme-linked lectinosorbent (ELLSA) and inhibition assays, using mammalian Gal/GalNAc structural units and corresponding polyvalent forms. Except for blood group GalNAcalpha1-3Gal (A) active and Forssman (GalNAcalpha1-3GalNAc, F) disaccharides, ricin has a broad range of affinity for mammalian disaccharide structural units-Galbeta1-4Glcbeta1-(Lbeta), Galbeta1-4GlcNAc (II), Galbeta1-3GlcNAc (I), Galbeta1-3GalNAcalpha1-(Talpha), Galbeta1-3GalNAcbeta1-(Tbeta), Galalpha1-3Gal (B), Galalpha1-4Gal (E), GalNAcbeta1-3Gal (P), GalNAcalpha1-Ser/Thr (Tn) and GalNAcbeta1-4Gal (S). Among the polyvalent glycotopes tested, ricin reacted best with type II-containing glycoproteins (gps). It also reacted well with several T (Thomsen-Friedenreich), tumor-associated Tn and blood group Sd. (a+)-containing gps. Except for bird nest and Tamm-Horsfall gps (THGP), this lectin reacted weakly or not at all with ABH-blood type and sialylated gps. From the present and previous results, it can be concluded that: (i) the combining sites of these lectin domains should be a shallow-groove type, recognizing Galbeta1-4Glcbeta1- and Galbeta1-3(4)GlcNAcbeta- as the major binding site; (ii) its size may be as large as a tetrasaccharide and most complementary to lacto-N-tetraose (Galbeta1-3GlcNAc beta1-3Galbeta1-4Glc) and lacto-N-neotetraose (Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc); (iii) the polyvalency of glycotopes, in general, enhances binding; (iv) a hydrophobic interaction in the vicinity of the binding site for sugar accommodation, increases the affinity for Galbeta-. This study should assist in understanding the glyco-recognition factors involved in carbohydrate-toxin interactions in biological processes. The effect of the polyvalent P/S glycotopes on ricin binding should be examined. However, this is hampered by the lack of availability of suitable reagents.  相似文献   

16.
Wu AM  Wu JH  Liu JH  Singh T  André S  Kaltner H  Gabius HJ 《Biochimie》2004,86(4-5):317-326
In our recent publication, we defined core aspects of the carbohydrate specificity of domain-I of recombinant tandem-repeat-type galectin-4 from rat gastrointestinal tract (G4-N), especially its potent interaction with the linear tetrasaccharide Galbeta1-3GlcNAcbeta1-3Galbeta1-4Glc (Ibeta1-3L). The assumed role of galectin-4 as a microvillar raft stabilizer/organizer and as a malignancy-associated factor in hepatocellular and gastrointestinal carcinomas called for further refinement of its binding specificity. Thus, the effects of polyvalency of glycotopes and natural modifications of human blood group ABH/Lewis sugars at the terminal Galbeta1-core saccharides were thoroughly examined by the enzyme-linked lectinosorbent and lectin-glycan inhibition assays. The results indicate that (a) a high-density of polyvalent Galbeta1-3/4GlcNAc (I/II), Galbeta1-3GalNAc (T) and/or GalNAcalpha1-Ser/Thr (Tn) strongly favors G4-N/glycoform binding. These glycans were up to 2.3 x 10(6), 1.4 x 10(6), 8.8 x 10(5), and 1.4 x 10(5) more active than Gal, GalNAc, monomeric I/II and T, respectively; (b) while lFuc is a poor inhibitor, its presence as alpha1-2 linked to terminal Galbeta1-containing oligosaccharides, such as H active Ibeta1-3L, markedly enhances the reactivities of these ligands; (c) when blood group A (GalNAcalpha1-) or B (Galalpha1-) determinants are attached to terminal Galbeta1-3/4GlcNAc (or Glc) oligosaccharides, the reactivities are also increased; (d) with lFucalpha1-3/4 linked to sub-terminal GlcNAc, the reactivities of these haptens are reduced; and (e) short chain Le(a)/Le(x)/Le(y) and the short chains of sialyl Le(a)/Le(x) are poor inhibitors. These distinct binding features of G4-N establish the important concept of affinity enhancement by high density polyvalencies of glycotopes (vs. multi-antennary I/II) and by introduction of an ABH key sugar to Galbeta1-terminated core glycotopes. The polyvalent ligand binding properties of G4-N may help our understanding of its crucial role for cell membrane raft stability and provide salient information for the optimal design of blocking substances such as anti-tumoral glycodendrimers.  相似文献   

17.
Wu AM  Wu JH  Chen Y  Tsai M  Herp A 《FEBS letters》1999,463(3):225-230
The binding properties of Caragana arborescens agglutinin (CAA, pea tree agglutinin) were studied by enzyme linked lectinosorbent assay (ELLSA) and by inhibition of CAA-glycan interaction. Among glycoproteins (gps) tested, CAA reacted strongly with asialo bird nest gp, asialo rat sublingual gp, human Tamm-Horsfall Sd(a(+)) urinary gp (THGP) and asialo THGP that are rich in GalNAcalpha1-->, GalNAcbeta1--> and/or Galbeta1-->4GlcNAc residues. CAA also bound tightly with multi-valent Galbeta1-->4GlcNAc (mII) containing glycoproteins (human blood group precursor gps, asialo fetuin) and asialo ovine salivary glycoprotein (Tn, GalNAcalpha1-->Ser/Thr), but CAA reacted poorly or not at all with sialylated glycoproteins tested. Of the sugars tested for inhibition of binding, Forssman pentasaccharide (F(p), GalNAcalpha1-->3GalNAcbeta1-->3Galalpha1-->4Galbeta 1-->4Glc) was the best. It was about 2.3, 9.5 and 52.6 times more active than Galbeta1-->4GlcNAc, GalNAc and Gal, respectively, and about 1.9 times more active than tri-antennary Galbeta1-->4GlcNAc (Tri-II). These results suggest that this agglutinin is mainly specific for F(p), mII and Tn clusters. This property can be used to detect human abnormal glycotopes related to F(p) and unmasked mII/Tn clusters and to study cell growth and differentiation given the lack of toxicity of this lectin toward mouse fibroblast cells.  相似文献   

18.
Wu AM  Singh T  Wu JH  Lensch M  André S  Gabius HJ 《Glycobiology》2006,16(6):524-537
Cell-surface glycans are functional docking sites for tissue lectins such as the members of the galectin family. This interaction triggers a wide variety of responses; hence, there is a keen interest in defining its structural features. Toward this aim, we have used enzyme-linked lectinosorbent (ELLSA) and inhibition assays with the prototype rat galectin-5 and panels of free saccharides and glycoconjugates. Among 45 natural glycans tested for lectin binding, galectin-5 reacted best with glycoproteins (gps) presenting a high density of Galbeta1-3/4GlcNAc (I/II) and multiantennary N-glycans with II termini. Their reactivities, on a nanogram basis, were up to 4.3 x 10(2), 3.2 x 10(2), 2.5 x 10(2), and 1.7 x 10(4) times higher than monomeric Galbeta1-3/4GlcNAc (I/II), triantennary-II (Tri-II), and Gal, respectively. Galectin-5 also bound well to several blood group type B (Galalpha1-3Gal)- and A (GalNAcalpha1-3Gal)-containing gps. It reacted weakly or not at all with tumor-associated Tn (GalNAcalpha1-Ser/Thr) and sialylated gps. Among the mono-, di-, and oligosaccharides and mammalian glycoconjugates tested, blood group B-active II (Galalpha1-3Gal beta1-4GlcNAc), B-active IIbeta1-3L (Galalpha1-3Galbeta1-4GlcNAc beta1-3Galbeta1-4Glc), and Tri-II were the best. It is concluded that (1) Galbeta1-3/4GlcNAc and other Galbeta1-related oligosaccharides with alpha1-3 extensions are essential for binding, their polyvalent form in cellular glycoconjugates being a key recognition force for galectin-5; (2) the combining site of galectin-5 appears to be of a shallow-groove type sufficiently large to accommodate a substituted beta-galactoside, especially with alpha-anomeric extension at the non-reducing end (e.g., human blood group B-active II and B-active IIbeta1-3L); (3) the preference within beta-anomeric positioning is Galbeta1-4 > or = Galbeta1-3 > Galbeta1-6; and (4) hydrophobic interactions in the vicinity of the core galactose unit can enhance binding. These results are important for the systematic comparison of ligand selection in this family of adhesion/growth-regulatory effectors with potential for medical applications.  相似文献   

19.
The O-linked oligosaccharides (O-glycans) in mammalian glycoproteins are classified according to their core structures. Among the most common is the core 1 disaccharide structure consisting of Galbeta1-->3GalNAcalpha1-->Ser/Thr, which is also the precursor for many extended O-glycan structures. The key enzyme for biosynthesis of core 1 O-glycan from the precursor GalNAc-alpha-Ser/Thr is UDP-Gal:GalNAc-alpha-Ser/Thr beta3-galactosyltransferase (core1 beta3-Gal-T). Core 1 beta3-Gal-T activity, which requires Mn2+, was solubilized from rat liver membranes and purified 71,034-fold to apparent homogeneity (>90% purity) in 5.7% yield by ion exchange chromatography on SP-Sepharose, affinity chromatography on immobilized asialo-bovine submaxillary mucin, and gel filtration chromatography on Superose 12. The purified enzyme is free of contaminating glycosyltransferases. Two peaks of core 1 beta3-Gal-T activity were identified in the final step on Superose 12. One peak of activity contained protein bands on non-reducing SDS-PAGE of approximately 84- and approximately 86-kDa disulfide-linked dimers, whereas the second peak of activity contained monomers of approximately 43 kDa. Reducing SDS-PAGE of these proteins gave approximately 42- and approximately 43-kDa monomers. Both the 84/86-kDa dimers and the 42/43-kDa monomers have the same novel N-terminal sequence. The purified enzyme, which is remarkably stable, has an apparent Km for UDP-Gal of 630 microm and an apparent Vmax of 206 micromol/mg/h protein using GalNAcalpha1-O-phenyl as the acceptor. The reaction product was generated using asialo-bovine submaxillary mucin as an acceptor; treatment with O-glycosidase generated the expected disaccharide Galbeta1-->3GalNAc. These studies demonstrate that activity of the core 1 beta1,3-Gal-T from rat liver is contained within a single, novel, disulfide-bonded, dimeric enzyme.  相似文献   

20.
The cell membrane mucin MUC1 is over-expressed and aberrantly glycosylated in many cancers, and cancer-associated MUC1 glycoforms represent potential targets for immunodiagnostic and therapeutic measures. We have recently shown that MUC1 with GalNAcalpha1-O-Ser/Thr (Tn) and NeuAcalpha2-6GalNAcalpha1-O-Ser/Thr (STn) O-glycosylation is a cancer-specific glycoform, and that Tn/STn-MUC1 glycopeptide-based vaccines can override tolerance in human MUC1 transgenic mice and induce humoral immunity with high specificity for MUC1 cancer-specific glycoforms (Sorensen AL, Reis CA, Tarp MA, Mandel U, Ramachandran K, Sankaranarayanan V, Schwientek T, Graham R, Taylor-Papadimitriou J, Hollingsworth MA, et al. 2006. Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology. 16:96-107). In order to further characterize the immune response to Tn/STn-MUC1 glycoforms, we generated monoclonal antibodies with specificity similar to the polyclonal antibody response found in transgenic mice. In the present study, we define the immunodominant epitope on Tn/STn-MUC1 glycopeptides to the region including the amino acids GSTA of the MUC1 20-amino acid tandem repeat (HGVTSAPDTRPAPGSTAPPA). Most other MUC1 antibodies are directed to the PDTR region, although patients with antibodies to the GSTA region have been identified. A panel of other MUC1 glycoform-specific monoclonal antibodies was included for comparison. The study demonstrates that the GSTA region of the MUC1 tandem repeat contains a highly immunodominant epitope when presented with immature short O-glycans. The cancer-specific expression of this glycopeptide epitope makes it a prime candidate for immunodiagnostic and therapeutic measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号