首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zellweger syndrome is the archetypical peroxisome biogenesis disorder and is characterized by defective import of proteins into the peroxisome, leading to peroxisomal metabolic dysfunction and widespread tissue pathology. In humans, mutations in the PEX13 gene, which encodes a peroxisomal membrane protein necessary for peroxisomal protein import, can lead to a Zellweger phenotype. To develop mouse models for this disorder, we have generated a targeted mouse with a loxP-modified Pex13 gene to enable conditional Cre recombinase-mediated inactivation of Pex13. In the studies reported here, we crossed these mice with transgenic mice that express Cre recombinase in all cells to generate progeny with ubiquitous disruption of Pex13. The mutant pups exhibited many of the clinical features of Zellweger syndrome patients, including intrauterine growth retardation, severe hypotonia, failure to feed, and neonatal death. These animals lacked morphologically intact peroxisomes and showed deficient import of matrix proteins containing either type 1 or type 2 targeting signals. Biochemical analyses of tissue and cultured skin fibroblasts from these animals indicated severe impairment of peroxisomal fatty acid oxidation and plasmalogen synthesis. The brains of these animals showed disordered lamination in the cerebral cortex, consistent with a neuronal migration defect. Thus, Pex13(-/-) mice reproduce many of the features of Zellweger syndrome and PEX13 deficiency in humans.  相似文献   

2.
In contrast to the molecular mechanisms underlying import of peroxisomal matrix proteins, those involving the transport of membrane proteins remain rather elusive. At present, two targeting routes for peroxisomal membrane proteins (PMPs) have been depicted: class I PMPs are targeted from the cytoplasm directly to the peroxisome membrane, and class II PMPs are sorted indirectly to peroxisomes via the endoplasmic reticulum (ER). In addition, three peroxins--Pex3p, Pex16p, and Pex19p - have been identified as essential factors for PMP assembly in several species including humans: Pex19p is a predominantly cytoplasmic protein that shows a broad PMP-binding specificity; Pex3p serves as the membrane-anchoring site for Pex19p; and Pex16p - a protein absent in most yeasts--is thought to provide the initial scaffold for recruiting the protein import machinery required for peroxisome membrane biogenesis. Remarkably, the function of Pex16p does not appear to be conserved between different species. In addition, significant disagreement exists about whether Pex19p has a chaperone-like role in the cytosol or at the peroxisome membrane and/or functions as a cycling import receptor for newly synthesized PMPs. Here we review the recent progress made in our understanding of the role of two key players in PMP biogenesis, Pex3p and Pex19p.  相似文献   

3.
We identified two proteins, Pex25 and Rho1, which are involved in reintroduction of peroxisomes in peroxisome-deficient yeast cells. These are, together with Pex3, the first proteins identified as essential for this process. Of the three members of the Hansenula polymorpha Pex11 protein family-Pex11, Pex25, and Pex11C-only Pex25 was required for reintroduction of peroxisomes into a peroxisome-deficient mutant strain. In peroxisome-deficient pex3 cells, Pex25 localized to structures adjacent to the ER, whereas in wild-type cells it localized to peroxisomes. Pex25 cells were not themselves peroxisome deficient but instead contained a slightly increased number of peroxisomes. Interestingly, pex11 pex25 double deletion cells, in which both peroxisome fission (due to the deletion of PEX11) and reintroduction (due to deletion of PEX25) was blocked, did display a peroxisome-deficient phenotype. Peroxisomes reappeared in pex11 pex25 cells upon synthesis of Pex25, but not of Pex11. Reintroduction in the presence of Pex25 required the function of the GTPase Rho1. These data therefore provide new and detailed insight into factors important for de novo peroxisome formation in yeast.  相似文献   

4.
Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders such as Zellweger syndrome. Two AAA peroxins, Pex1p and Pex6p, are encoded by PEX1 and PEX6, the causal genes for PBDs of complementation groups 1 and 4, respectively. PEX26 responsible for peroxisome biogenesis disorders of complementation group 8 codes for C-tail-anchored type-II membrane peroxin Pex26p, the recruiter of Pex1p-Pex6p complexes to peroxisomes. Pex1p is targeted to peroxisomes in a manner dependent on ATP hydrolysis, while Pex6p targeting requires ATP but not its hydrolysis. Pex1p and Pex6p are most likely regulated in their peroxisomal localization onto Pex26p via conformational changes by ATPase cycle. Pex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome targeting signal type-1 and shuttles between the cytosol and peroxisomes. AAA peroxins are involved in the export from peroxisomes of Pex5p. Pex5p is ubiquitinated at the conserved cysteine11 in a form associated with peroxisomes. Pex5p with a mutation of the cysteine11 to alanine, termed Pex5p-C11A, abrogates peroxisomal import of proteins harboring peroxisome targeting signals 1 and 2 in wild-type cells. Pex5p-C11A is imported into peroxisomes but not exported, hence suggesting an essential role of the cysteine residue in the export of Pex5p.  相似文献   

5.
Two interacting AAA ATPases, Pex1p and Pex6p, are indispensable for peroxisome biogenesis in different organisms. Mutations affecting corresponding genes are the most common cause of the peroxisome biogenesis disorders in humans. By UV mutagenesis of the Hansenula polymorpha pex6 mutant, deficient in peroxisome biogenesis, we isolated a conditional cold-sensitive strain with restored ability to grow in methanol medium at 37 degrees C but not at 28 degrees C. Sequencing of the pex6 allele revealed a point mutation in the first AAA module of the PEX6 gene that leads to substitution of a conserved amino acid residue (G737E). An additional intragenic mutation identified in the cold-sensitive pex6 allele leads to a conserved amino acid substitution in the second AAA domain (R1000G). Electron microscopic analysis revealed restored peroxisomes in methanol-induced cold-sensitive pex6 cells at both permissive and restrictive temperatures. If separated, the secondary mutation did not affect methylotrophic growth. Our data suggest that H. polymorpha Pex6p may have a complex function in peroxisome biogenesis in which identified amino acid residues are involved.  相似文献   

6.
The molecular machinery underlying peroxisomal membrane biogenesis is not well understood. The observation that cells deficient in the peroxins Pex3p, Pex16p, and Pex19p lack peroxisomal membrane structures suggests that these molecules are involved in the initial stages of peroxisomal membrane formation. Pex19p, a predominantly cytosolic protein that can be farnesylated, binds multiple peroxisomal integral membrane proteins, and it has been suggested that it functions as a soluble receptor for the targeting of peroxisomal membrane proteins (PMPs) to the peroxisome. An alternative view proposes that Pex19p functions as a chaperone at the peroxisomal membrane. Here, we show that the peroxisomal sorting determinants and the Pex19p-binding domains of a number of PMPs are distinct entities. In addition, we extend the list of peroxins with which human Pex19p interacts to include the PMP Pex16p and show that Pex19p's CaaX prenylation motif is an important determinant in the affinity of Pex19p for Pex10p, Pex11pbeta, Pex12p, and Pex13p.  相似文献   

7.
The Saccharomyces cerevisiae peroxisomal membrane protein Pex11p has previously been implicated in peroxisome proliferation based on morphological observations of PEX11 mutant cells. Pex11p-deficient cells fail to increase peroxisome number in response to growth on fatty acids and instead accumulate a few giant peroxisomes. We report that mutants deficient in genes required for medium-chain fatty acid (MCFA) beta-oxidation display the same phenotype as Pex11p-deficient cells. Upon closer inspection, we found that Pex11p is required for MCFA beta-oxidation. Disruption of the PEX11 gene results in impaired formation of MCFA-CoA esters as measured in intact cells, whereas their formation is normal in cell lysates. The sole S. cerevisiae MCFA-CoA synthetase (Faa2p) remains properly localized to the inner leaflet of the peroxisomal membrane in PEX11 mutant cells. Therefore, the in vivo latency of MCFA activation observed in Pex11p-deficient cells suggests that Pex11p provides Faa2p with substrate. When PEX11 mutant cells are shifted from glucose to oleate-containing medium, we observed an immediate deficiency in beta-oxidation of MCFAs whereas giant peroxisomes and a failure to increase peroxisome abundance only became apparent much later. Our observations suggest that the MCFA oxidation pathway regulates the level of a signaling molecule that modulates the number of peroxisomal structures in a cell.  相似文献   

8.
Eukaryotic cells compartmentalize biochemical reactions into membrane‐enclosed organelles that must be faithfully propagated from one cell generation to the next. Transport and retention processes balance the partitioning of organelles between mother and daughter cells. Here we report the identification of an ER‐peroxisome tether that links peroxisomes to the ER and ensures peroxisome population control in the yeast Saccharomyces cerevisiae. The tether consists of the peroxisome biogenic protein, Pex3p, and the peroxisome inheritance factor, Inp1p. Inp1p bridges the two compartments by acting as a molecular hinge between ER‐bound Pex3p and peroxisomal Pex3p. Asymmetric peroxisome division leads to the formation of Inp1p‐containing anchored peroxisomes and Inp1p‐deficient mobile peroxisomes that segregate to the bud. While peroxisomes in mother cells are not released from tethering, de novo formation of tethers in the bud assists in the directionality of peroxisome transfer. Peroxisomes are thus stably maintained over generations of cells through their continued interaction with tethers.  相似文献   

9.
Peroxisomes are ubiquitous organelles involved in diverse metabolic processes, most notably the metabolism of lipids and the detoxification of reactive oxygen species. Peroxisomes are highly dynamic and change in size and number in response to both intra- and extracellular cues. In the yeast Saccharomyces cerevisiae, peroxisome growth and division are controlled by both the differential import of soluble matrix proteins and a specialized divisional machinery that includes peroxisome-specific factors, such as members of the Pex11 protein family, and general organelle divisional factors, such as the dynamin-related protein Vps1p. Global yeast two-hybrid analyses have demonstrated interactions between the product of the S. cerevisiae gene of unknown function, YCL056c, and Pex proteins involved in peroxisome biogenesis. Here we show that the protein encoded by YCL056c, renamed Pex34p, is a peroxisomal integral membrane protein that acts independently and also in concert with the Pex11 protein family members Pex11p, Pex25p, and Pex27p to control the peroxisome populations of cells under conditions of both peroxisome proliferation and constitutive peroxisome division. Yeast two-hybrid analysis showed that Pex34p interacts physically with itself and with Pex11p, Pex25p, and Pex27p but not with Vps1p. Pex34p can act as a positive effector of peroxisome division as its overexpression leads to increased numbers of peroxisomes in wild type and pex34Δ cells. Pex34p requires the Pex11 family proteins to promote peroxisome division. Our discovery of Pex34p as a protein involved in the already complex control of peroxisome populations emphasizes the necessity of cells to strictly regulate their peroxisome populations to be able to respond appropriately to changing environmental conditions.  相似文献   

10.
Fujiki Y 《FEBS letters》2000,476(1-2):42-46
Peroxisome assembly in mammals requires more than 15 genes. Two isoforms of the peroxisome targeting signal type 1 (PTS1) receptor, Pex5pS and Pex5pL, are identified in mammals. Pex5pS and Pex5pL bind PTS1 proteins. Pex5pL, but not Pex5pS, directly interacts with the PTS2 receptor, Pex7p, carrying its cargo PTS2 protein in the cytosol. Pex5p carrying the cargos, PTS1 and PTS2, docks with the initial site Pex14p in a putative import machinery, subsequently translocating to other components such as Pex13p, Pex2p, Pex10p and Pex12p, whereby the matrix proteins are imported. The peroxins, Pex3p, Pex16p and Pex19p, function in the assembly of peroxisomal membrane vesicles that precedes the import of matrix proteins. Hence, peroxisomes may form de novo and do not have to arise from pre-existing, morphologically recognizable peroxisomes. Impaired peroxisome assembly causes peroxisome biogenesis disorders such as Zellweger syndrome.  相似文献   

11.
We have identified and characterized mutants of the yeast Yarrowia lipolytica that are deficient in protein secretion, in the ability to undergo dimorphic transition from the yeast to the mycelial form, and in peroxisome biogenesis. Mutations in the SEC238, SRP54, PEX1, PEX2, PEX6, and PEX9 genes affect protein secretion, prevent the exit of the precursor form of alkaline extracellular protease from the endoplasmic reticulum, and compromise peroxisome biogenesis. The mutants sec238A, srp54KO, pex2KO, pex6KO, and pex9KO are also deficient in the dimorphic transition from the yeast to the mycelial form and are affected in the export of only plasma membrane and cell wall-associated proteins specific for the mycelial form. Mutations in the SEC238, SRP54, PEX1, and PEX6 genes prevent or significantly delay the exit of two peroxisomal membrane proteins, Pex2p and Pex16p, from the endoplasmic reticulum en route to the peroxisomal membrane. Mutations in the PEX5, PEX16, and PEX17 genes, which have previously been shown to be essential for peroxisome biogenesis, affect the export of plasma membrane and cell wall-associated proteins specific for the mycelial form but do not impair exit from the endoplasmic reticulum of either Pex2p and Pex16p or of proteins destined for secretion. Biochemical analyses of these mutants provide evidence for the existence of four distinct secretory pathways that serve to deliver proteins for secretion, plasma membrane and cell wall synthesis during yeast and mycelial modes of growth, and peroxisome biogenesis. At least two of these secretory pathways, which are involved in the export of proteins to the external medium and in the delivery of proteins for assembly of the peroxisomal membrane, diverge at the level of the endoplasmic reticulum.  相似文献   

12.
Pex19p is a protein required for the early stages of peroxisome biogenesis, but its precise function and site of action are unknown. We tested the interaction between Pex19p and all known Pichia pastoris Pex proteins by the yeast two-hybrid assay. Pex19p interacted with six of seven known integral peroxisomal membrane proteins (iPMPs), and these interactions were confirmed by coimmunoprecipitation. The interactions were not reduced upon inhibition of new protein synthesis, suggesting that they occur with preexisting, and not newly synthesized, pools of iPMPs. By mapping the domains in six iPMPs that interact with Pex19p and the iPMP sequences responsible for targeting to the peroxisome membrane (mPTSs), we found the majority of these sites do not overlap. Coimmunoprecipitation of Pex19p from fractions that contain peroxisomes or cytosol revealed that the interactions between predominantly cytosolic Pex19p and the iPMPs occur in the organelle pellet that contains peroxisomes. These data, taken together, suggest that Pex19p may have a chaperone-like role at the peroxisome membrane and that it is not the receptor for targeting of iPMPs to the peroxisome.  相似文献   

13.
The assembly of proteins in the peroxisomal membrane is a multistep process requiring their recognition in the cytosol, targeting to and insertion into the peroxisomal membrane, and stabilization within the lipid bilayer. The peroxin Pex19p has been proposed to be either the receptor that recognizes and targets newly synthesized peroxisomal membrane proteins (PMP) to the peroxisome or a chaperone required for stabilization of PMPs at the peroxisomal membrane. Differentiating between these two roles for Pex19p could be achieved by determining whether the peroxisomal targeting signal (PTS) and the region of Pex19p binding of a PMP are the same or different. We addressed the role for Pex19p in the assembly of two PMPs, Pex30p and Pex32p, of the yeast Saccharomyces cerevisiae. Pex30p and Pex32p control peroxisome size and number but are dispensable for peroxisome formation. Systematic truncations from the carboxyl terminus, together with in-frame deletions of specific regions, have identified PTSs essential for targeting Pex30p and Pex32p to peroxisomes. Both Pex30p and Pex32p interact with Pex19p in regions that do not overlap with their PTSs. However, Pex19p is required for localizing Pex30p and Pex32p to peroxisomes, because mutations that disrupt the interaction of Pex19p with Pex30p and Pex32p lead to their mislocalization to a compartment other than peroxisomes. Mutants of Pex30p and Pex32p that localize to peroxisomes but produce cells exhibiting the peroxisomal phenotypes of cells lacking these proteins demonstrate that the regions in these proteins that control peroxisomal targeting and cell biological activity are separable. Together, our data show that the interaction of Pex19p with Pex30p and Pex32p is required for their roles in peroxisome biogenesis and are consistent with a chaperone role for Pex19p in stabilizing or maintaining membrane proteins in peroxisomes.  相似文献   

14.
We showed before that the two oppositely directed processes of peroxisome biogenesis and selective peroxisome degradation (macropexophagy) converge at the peroxisomal membrane protein Pex14p. Here we show that this protein is not required for peroxisome degradation during nitrogen starvation-induced general autophagy, thereby limiting its function to the selective degradation process. Pex14p is present in two forms, namely an unmodified (Pex14p) and a phosphorylated form (Pex14p(Pi)) that are differently induced during peroxisome proliferation. The data suggest that Pex14p is required for peroxisome biogenesis during organelle proliferation and Pex14p(Pi) in macropexophagy. Finally, we show that macropexophagy is not coupled to normal peroxisome assembly, because Pex14p is required in only catalytic amounts to allow initiation of the selective peroxisome degradation process.  相似文献   

15.
Saccharomyces cerevisiae Pex3p has been shown to act at the ER during de novo peroxisome formation. However, its steady state is at the peroxisomal membrane, where its role is debated. Here we show that Pex3p has a dual function: one in peroxisome formation and one in peroxisome segregation. We show that the peroxisome retention factor Inp1p interacts physically with Pex3p in vitro and in vivo, and split-GFP analysis shows that the site of interaction is the peroxisomal membrane. Furthermore, we have generated PEX3 alleles that support peroxisome formation but fail to support recruitment of Inp1p to peroxisomes, and as a consequence are affected in peroxisome segregation. We conclude that Pex3p functions as an anchor for Inp1p at the peroxisomal membrane, and that this function is independent of its role at the ER in peroxisome biogenesis.  相似文献   

16.
Peroxisomes are independent organelles found in virtually all eukaryotic cells. Genetic studies have identified more than 20 PEX genes that are required for peroxisome biogenesis. The role of most PEX gene products, peroxins, remains to be determined, but a variety of studies have established that Pex5p binds the type 1 peroxisomal targeting signal and is the import receptor for most newly synthesized peroxisomal matrix proteins. The steady-state abundance of Pex5p is unaffected in most pex mutants of the yeast Pichia pastoris but is severely reduced in pex4 and pex22 mutants and moderately reduced in pex1 and pex6 mutants. We used these subphenotypes to determine the epistatic relationships among several groups of pex mutants. Our results demonstrate that Pex4p acts after the peroxisome membrane synthesis factor Pex3p, the Pex5p docking factors Pex13p and Pex14p, the matrix protein import factors Pex8p, Pex10p, and Pex12p, and two other peroxins, Pex2p and Pex17p. Pex22p and the interacting AAA ATPases Pex1p and Pex6p were also found to act after Pex10p. Furthermore, Pex1p and Pex6p were found to act upstream of Pex4p and Pex22p. These results suggest that Pex1p, Pex4p, Pex6p, and Pex22p act late in peroxisomal matrix protein import, after matrix protein translocation. This hypothesis is supported by the phenotypes of the corresponding mutant strains. As has been shown previously for P. pastoris pex1, pex6, and pex22 mutant cells, we show here that pex4Delta mutant cells contain peroxisomal membrane protein-containing peroxisomes that import residual amounts of peroxisomal matrix proteins.  相似文献   

17.
Peroxisome deficiency in liver causes hepatosteatosis both in patients and in mice. Here, we studied the mechanisms that contribute to this lipid accumulation and to activation of peroxisome proliferator activated receptor α (PPARα) by using liver-specific Pex5−/− mice (L-Pex5−/− mice). Surprisingly, steatosis was accompanied both by increased mitochondrial β-oxidation capacity, confirming previous observations, and by impaired de novo lipid synthesis mediated by reduced expression of sterol regulatory element binding protein 1c and its targets. As a consequence, when challenged with a high fat diet, L-Pex5−/− mice were protected from adiposity. Hepatic fatty acid uptake was strongly increased whereas the expression of apolipoproteins and the lipoprotein assembly factor microsomal triglyceride transfer protein were markedly reduced resulting in reduced secretion of very low density lipoproteins. Most of these changes seemed to be orchestrated by the endogenous activation of PPARα, challenging the assumption that PPARα activation in hepatocytes requires fatty acid synthase dependent de novo fatty acid synthesis. Expression of cholesterol synthesizing enzymes and cholesterol levels were not affected in peroxisome deficient liver. In conclusion, increased fatty acid uptake driven by endogenous PPARα activation and reduced fatty acid secretion cause hepatosteatosis in peroxisome deficient livers.  相似文献   

18.
Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome (ZS). Gene defects of peroxins required for both membrane assembly and matrix protein import are identified: ten mammalian pathogenic peroxins for ten complementation groups of PBDs, are required for matrix protein import; three, Pex3p, Pex16p and Pex19p, are shown to be essential for peroxisome membrane assembly and responsible for the most severe ZS in PBDs of three complementation groups 12, 9, and 14, respectively. Patients with severe ZS with defects of PEX3, PEX16, and PEX19 tend to carry severe mutation such as nonsense mutations, frameshifts and deletions. With respect to the function of these three peroxins in membrane biogenesis, two distinct pathways have been proposed for the import of peroxisomal membrane proteins in mammalian cells: a Pex19p- and Pex3p-dependent class I pathway and a Pex19p- and Pex16p-dependent class II pathway. In class II pathway, Pex19p also forms a soluble complex with newly synthesized Pex3p as the chaperone for Pex3p in the cytosol and directly translocates it to peroxisomes. Pex16p functions as the peroxisomal membrane receptor that is specific to the Pex3p-Pex19p complexes. A model for the import of peroxisomal membrane proteins is suggested, providing new insights into the molecular mechanisms underlying the biogenesis of peroxisomes and its regulation involving Pex3p, Pex19p, and Pex16p. Another model suggests that in Saccharomyces cerevisiae peroxisomes likely emerge from the endoplasmic reticulum. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of peroxisomes in Health and Disease.  相似文献   

19.
Zellweger spectrum disorders (ZSDs) are autosomal recessive diseases caused by defective peroxisome assembly. They constitute a clinical continuum from severe early lethal to relatively milder presentations in adulthood. Liver disease is a prevalent symptom in ZSD patients. The underlying pathogenesis for the liver disease, however, is not fully understood. We report a hypomorphic ZSD mouse model, which is homozygous for Pex1-c.2531G>A (p.G844D), the equivalent of the most common pathogenic variant found in ZSD, and which predominantly presents with liver disease. After introducing the Pex1-G844D allele by knock-in, we characterized homozygous Pex1-G844D mice for survival, biochemical parameters, including peroxisomal and mitochondrial functions, organ histology, and developmental parameters. The first 20 post-natal days (P20) were critical for survival of homozygous Pex1-G844D mice (~20% survival rate). Lethality was likely due to a combination of cholestatic liver problems, liver dysfunction and caloric deficit, probably as a consequence of defective bile acid biosynthesis. Survival beyond P20 was nearly 100%, but surviving mice showed a marked delay in growth. Surviving mice showed similar hepatic problems as described for mild ZSD patients, including hepatomegaly, bile duct proliferation, liver fibrosis and mitochondrial alterations. Biochemical analyses of various tissues showed the absence of functional peroxisomes accompanied with aberrant levels of peroxisomal metabolites predominantly in the liver, while other tissues were relatively spared.ur findings show that homozygous Pex1-G844D mice have a predominant liver disease phenotype, mimicking the hepatic pathology of ZSD patients, and thus constitute a good model to study pathogenesis and treatment of liver disease in ZSD patients.  相似文献   

20.
《Autophagy》2013,9(3):183-188
We showed before that the two oppositely directed processes of peroxisome biogenesis and selective peroxisome degradation (macropexophagy) converge at the peroxisomal membrane protein Pex14p. Here we show that this protein is not required for peroxisomal degradation during nitrogen starvation-induced general autophagy, thereby limiting its function to the selective degradation process. Pex14p is present in two forms, namely an unmodified (Pex14p) and a phosphorylated form (Pex14pPi) that are differently induced during peroxisome proliferation. The data suggest that Pex14p is required for peroxisome biogenesis during organelle proliferation and Pex14pPi in macropexophagy. Finally, we show that macropexophagy is not coupled to normal peroxisome assembly and is required in only catalytic amounts to allow initiation of the selective peroxisome degradation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号