共查询到20条相似文献,搜索用时 0 毫秒
1.
Zarco N González-Ramírez R González RO Segovia J 《Apoptosis : an international journal on programmed cell death》2012,17(6):627-635
Growth Arrest Specific 1 (GAS1) is a protein expressed when cells are arrested and during development. When ectopically expressed, GAS1 induces cell arrest and apoptosis of different cell lines, and we have previously demonstrated that the apoptotic process
set off by GAS1 is caused by its capacity inhibiting the GDNF-mediated intracellular survival signaling. In the present work, we have dissected the molecular pathway leading to cell death. We employed the SH-SY5Y human neuroblastoma
cell line that expresses GAS1 when deprived of serum. We observed, as we have previously described, that the presence of GAS1 reduces RET phosphorylation
and inhibits the activation of AKT. We have now determined that the presence of GAS1 also triggers the dephosphorylation of
BAD, which, in turn, provokes the release of Cytochrome-c from the mitochondria to the cytosol activating caspase-9, prompting the activity of caspase-3 and resulting in apoptosis
of the cells. The apoptotic process is intrinsic, because there is no activation of caspase-8, thus this is consistent with
apoptosis induced by the lack of trophic support. Interestingly, in cells where GAS1 has been silenced there is a significant delay in the onset of apoptosis. 相似文献
2.
The extracellular signal-regulated kinase pathway is required for activation-induced cell death of T cells 总被引:8,自引:0,他引:8
van den Brink MR Kapeller R Pratt JC Chang JH Burakoff SJ 《The Journal of biological chemistry》1999,274(16):11178-11185
T cells can undergo activation-induced cell death (AICD) upon stimulation of the T cell receptor-CD3 complex. We found that the extracellular signal-regulated kinase (ERK) pathway is activated during AICD. Transient transfection of a dominant interfering mutant of mitogen-activated/extracellular signal-regulated receptor protein kinase kinase (MEK1) demonstrated that down-regulation of the ERK pathway inhibited FasL expression during AICD, whereas activation of the ERK pathway with a constitutively active MEK1 resulted in increased expression of FasL. We also found that pretreatment with the specific MEK1 inhibitor PD98059 prevented the induction of FasL expression during AICD and inhibited AICD. However, PD98059 had no effect on other apoptotic stimuli. We found only very weak ERK activity during Fas-mediated apoptosis (induced by Fas cross-linking). Furthermore, preincubation with the MEK1 inhibitor did not inhibit Fas-mediated apoptosis. Finally, we also demonstrated that pretreatment with the MEK1 inhibitor could delay and decrease the expression of the orphan nuclear steroid receptor Nur77, which has been shown to be essential for AICD. In conclusion, this study demonstrates that the ERK pathway is required for AICD of T cells and appears to regulate the induction of Nur77 and FasL expression during AICD. 相似文献
3.
Jeong Su Park Sue Young Oh Da Hyun Lee Yu Seol Lee Su Haeng Sung Hye Won Ji 《Free radical research》2016,50(12):1408-1421
Endoplasmic reticulum (ER) stress is triggered by various cellular stresses that disturb protein folding or calcium homeostasis in the ER. To cope with these stresses, ER stress activates the unfolded protein response (UPR) pathway, but unresolved ER stress induces reactive oxygen species (ROS) accumulation leading to apoptotic cell death. However, the mechanisms that underlie protection from ER stress-induced cell death are not clearly defined. The nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway plays a crucial role in the protection of cells against ROS-mediated oxidative damage. Keap1 acts as a negative regulator of Nrf2 activation. In this study, we investigated the role of the Nrf2-Keap1 pathway in protection from ER stress-induced cell death using tunicamycin (TM) as an ER stress inducer. We found that Nrf2 is an essential protein for the prevention from TM-induced apoptotic cell death and its activation is driven by autophagic Keap1 degradation. Furthermore, ablation of p62, an adapter protein in the autophagy process, attenuates the Keap1 degradation and Nrf2 activation that was induced by TM treatment, and thereby increases susceptibility to apoptotic cell death. Conversely, reinforcement of p62 alleviated TM-induced cell death in p62-deficient cells. Taken together, these results demonstrate that p62 plays an important role in protecting cells from TM-induced cell death through Nrf2 activation. 相似文献
4.
Cyclophosphamide enhances TNF-alpha-induced apoptotic cell death in murine vascular endothelial cell 总被引:4,自引:0,他引:4
Cyclophosphamide (CPA) is one of the therapeutic agents for systemic inflammatory disorders. In murine dermal endothelial cells (F-2), 4-hydroxycyclophosphamide (4-HC), which is active metabolite of CPA, enhanced TNF-alpha-induced DNA fragmentation. In addition, 4-HC was shown to elevate TNF-alpha-induced caspase-3 activation. Caspase-8 activation was identified by the treatment of TNF-alpha, whereas 4-HC was no effect. In contrast, only when treated with 4-HC, caspase-9 activation and the increase in the intracellular expression of Bax were detected. These results suggest that CPA may sensitize endothelial cells to TNF-alpha-induced apoptosis through a mitochondria-dependent pathway and clinically may contribute to the limitation of inflammatory process. 相似文献
5.
Autophagy is a process to degrade and recycle cytoplasmic contents. Autophagy is required for survival in response to starvation, but has also been associated with cell death. How autophagy functions during cell survival in some contexts and cell death in others is unknown. Drosophila larval salivary glands undergo programmed cell death requiring autophagy genes, and are cleared in the absence of known phagocytosis. Recently, we demonstrated that Draper (Drpr), the Drosophila homolog of C. elegans engulfment receptor CED-1, is required for autophagy induction during cell death, but not during cell survival. drpr mutants fail to clear salivary glands. drpr knockdown in salivary glands prevents the induction of autophagy, and Atg1 misexpression in drpr null mutants suppresses salivary gland persistence. Surprisingly, drpr knockdown cell-autonomously prevents autophagy induction in dying salivary gland cells, but not in larval fat body cells following starvation. This is the first engulfment factor shown to function in cellular self-clearance, and the first report of a cell-death-specific autophagy regulator.Key words: autophagy, Draper, programmed cell death, engulfment, developmentProgrammed cell death is required for animal development and tissue homeostasis. Improper cell death leads to pathologies including autoimmunity and cancer. Several morphological forms of cell death occur during animal development, including apoptosis and autophagic cell death. Autophagic cell death is characterized by the presence of autophagosomes in dying cells that are not known to be engulfed by phagocytes. Autophagic cell death is observed during several types of mammalian developmental cell death, including regression of the corpus luteum and involution of mammary and prostate glands.During macroautophagy (autophagy), cytoplasmic components are sequestered by autophagosomes and delivered to the lysosome for degradation. Autophagy is a cellular response to stress required for survival in response to starvation. Whereas autophagy has been associated with cell death, it is unknown how autophagy is distinguished during cell death and cell survival. Autophagy is induced in Drosophila in response to starvation in the fat body where it promotes cell survival, while autophagy is induced by the steroid hormone ecdysone in salivary glands where it promotes cell death. This allows studies of autophagy in different cell types and in response to different stimuli.Drosophila larval salivary glands die with autophagic cell death morphology and autophagy is required for their degradation. Expression of the caspase inhibitor p35 enhances salivary gland persistence in Atg mutants, suggesting that caspases and autophagy function in parallel during salivary gland degradation. Either activation of caspases or Atg1 misexpression is sufficient to induce ectopic salivary gland clearance. We queried genome-wide microarray data from purified dying salivary glands and noted the induction of engulfment genes, those required for a phagocyte to consume and degrade a dying cell. We also noted few detectable changes in engulfment genes in Drosophila larvae during starvation.We found that Drpr, the Drosophila orthologue of C. elegans engulfment receptor CED-1, is enriched in dying salivary glands, and drpr null mutants have persistent salivary glands. Interestingly, whereas knockdown of drpr in phagocytic blood cells fails to influence salivary gland clearance, expression of drpr-RNAi in salivary glands prevents gland clearance. Drosophila drpr is alternatively spliced to produce three isoforms. We found that drpr-I-specific knockdown prevents salivary gland degradation and Drpr-I expression in salivary glands of drpr null mutants rescues salivary gland persistence. Therefore, drpr is autonomously required for salivary gland clearance. However, how Drpr is induced or activated during hormone-regulated cell death remains to be determined.drpr knockdown fails to influence caspase activation, and caspase inhibitor p35 expression in drpr null mutants enhances salivary gland persistence, suggesting that Drpr functions downstream or parallel to caspases in dying salivary glands. Interestingly, we found that drpr knockdown in salivary glands prevents the formation of GFP-LC3 puncta. Further, Atg1 misexpression in salivary glands of drpr null mutants suppresses salivary gland persistence. drpr is therefore required for autophagy induction in salivary glands, and Atg1 functions downstream of Drpr in this tissue. We found that several other engulfment genes are required for salivary gland degradation. However, the Drpr signaling mechanism leading to autophagy induction in salivary glands remains to be elucidated.We tested whether drpr is a general regulator of autophagy. The Drosophila fat body is a nutrient storage and mobilization organ akin to the mammalian liver, and is a well-established model to study starvation-induced autophagy. We found that drpr-RNAi expression in fat body clone cells fails to prevent GFP-Atg8 puncta formation in response to starvation. Similarly, drpr null fat body clone cells form Cherry-Atg8 puncta after starvation. Strikingly, drpr-RNAi expression in salivary gland clone cells inhibits the formation of GFP-Atg8 puncta. Therefore, drpr is cell-autonomously required for autophagy induction in dying salivary gland cells, but not for autophagy induction in fat body cells after starvation. These findings suggest that distinct signaling mechanisms regulate autophagy in response to nutrient deprivation compared to steroid hormone induction. Little is known about what distinguishes autophagy function in cell survival versus death. It is possible that varying levels of autophagy are induced during specific cell contexts and that high levels of autophagy could overwhelm a cell—leading to cell death. Autophagic degradation of specific cargo, such as cell death inhibitors, could also contribute to cell death.Given recent interest in manipulation of autophagy for therapies, it is possible that factors such as Drpr could be used as biomarkers to distinguish autophagy leading to cell death versus cell survival. While it is generally accepted that augmentation of protein clearance by autophagy during neurodegeneration would be beneficial, the role of autophagy in tumor progression is less clear. For example, monoallelic loss of the human Atg6 homolog beclin 1 is prevalent in human cancers, suggesting that autophagy is a tumorsuppressive mechanism. Thus, autophagy enhancers have been proposed for cancer prevention. However, autophagy occurs in tumor cells as a survival mechanism, and autophagy inhibitors have been proposed for anti-cancer therapies. Understanding how autophagy is regulated in different contexts is critical for appropriate therapeutic strategies. 相似文献
6.
《Autophagy》2013,9(8):1192-1193
Autophagy is a process to degrade and recycle cytoplasmic contents. Autophagy is required for survival in response to starvation, but has also been associated with cell death. How autophagy functions during cell survival in some contexts and cell death in others is unknown. Drosophila larval salivary glands undergo programmed cell death requiring autophagy genes, and are cleared in the absence of known phagocytosis. Recently, we demonstrated that Draper (Drpr), the Drosophila homolog of C. elegans engulfment receptor CED-1, is required for autophagy inductionduring cell death, but not during cell survival. drpr mutants fail to clear salivary glands. drpr knockdown in salivary glands prevents the induction of autophagy, and Atg1 misexpression in drpr null mutants suppresses salivary gland persistence. Surprisingly, drpr knockdown cell-autonomously prevents autophagy induction in dying salivary gland cells, but not in larval fat body cells following starvation. This is the first engulfment factor shown to function in cellular self-clearance, and the first report of a cell-death-specific autophagy regulator. 相似文献
7.
Homocysteine-thiolactone induces caspase-independent vascular endothelial cell death with apoptotic features 总被引:6,自引:0,他引:6
Mercié P Garnier O Lascoste L Renard M Closse C Durrieu F Marit G Boisseau RM Belloc F 《Apoptosis : an international journal on programmed cell death》2000,5(5):403-411
Objective. Cell death is generally classified into two large categories: apoptosis, which represents active, physiological programmed cell death, and necrosis, which represents passive cell death without underlying regulatory mechanisms. Apoptosis plays an important role in tissue homeostasis and its role in endothelium integrity can be influenced by the functional status of endothelial cells. Homocysteine, a sulfated amino-acid product of methionine demethylation, is an independent risk factor for vascular disease (arterial and venous thombosis). Our goal was to investigate the thiol-derivatives effect on the endothelial cell apoptosis. Methods. Three parameters were measured: mitochondrial membrane potential using DiOC6(3) as the probe, DEVDase activation, and phosphatidylserine exposure on the cell surface with fluorosceinated annexin V labeling which allows apoptosis to be distinguished from necrosis. Results. Homocysteine-thiolactone induced endothelial cell apoptosis in a concentration-dependent manner (range: 50–200 M), independently of the caspase pathway. Only homocysteine-thiolactone, among the thiol derivatives tested, induced apoptosis. Apoptosis was not influenced by the serum concentration in culture medium, suggesting that the observed apoptotic process could occur in vivo. None of the inhibitors used (e.g., leupeptin, fumosinin Bl, catalase, or z-VAD-fmk) was able to prevent homocysteine-induced apoptosis of vascular endothelial cells. Conclusion. The apoptosis of vascular endothelial cells induced by high concentration of homocysteine-thiolactone might be one step atherosclerotic cardiovascular disease, and contribute to its complication. 相似文献
8.
Xiaofei Wang Koh Ono Sung Ouk Kim Vladimir Kravchenko Sheng-Cai Lin Jiahuai Han 《EMBO reports》2001,2(7):628-633
We used retrovirus insertion-mediated random mutagenesis and tumor necrosis factor (TNF) selection to generate TNF-resistant lines from L929 cells. The metaxin gene, which encodes a protein located on the outer membrane of mitochondria, was identified to be the gene disrupted in one of the resistant lines. The requirement of metaxin in TNF-induced cell death of L929 was confirmed by the restoration of TNF sensitivity after ectopic reconstitution of metaxin expression. Analysis of the cell death induced by other stimuli revealed that metaxin deficiency-mediated death resistance was selective to certain stimuli. Studies using deletion mutants of metaxin showed that mitochondrial association of metaxin is required for the function of metaxin. Over-expression of truncated metaxin lacking the mitochondria anchoring sequence mimicked metaxin deficiency in wild-type cells. Interfering with metaxin prevented TNF-induced necrotic cell death in L929 cells and apoptosis in MCF-7 cells. Our work has thus defined a novel component in the death pathway used by TNF and some other death stimuli. 相似文献
9.
Chakrabandhu K Hérincs Z Huault S Dost B Peng L Conchonaud F Marguet D He HT Hueber AO 《The EMBO journal》2007,26(1):209-220
Localization of the death receptor Fas to specialized membrane microdomains is crucial to Fas-mediated cell death signaling. Here, we report that the post-translational modification of Fas by palmitoylation at the membrane proximal cysteine residue in the cytoplasmic region is the targeting signal for Fas localization to lipid rafts, as demonstrated in both cell-free and living cell systems. Palmitoylation is required for the redistribution of Fas to actin cytoskeleton-linked rafts upon Fas stimulation and for the raft-dependent, ezrin-mediated cytoskeleton association, which is necessary for the efficient Fas receptor internalization, death-inducing signaling complex assembly and subsequent caspase cascade leading to cell death. 相似文献
10.
The ATP binding cassette transporter ABC1, is required for the engulfment of corpses generated by apoptotic cell death. 总被引:11,自引:0,他引:11 下载免费PDF全文
ATP binding cassette (ABC) transporters define a family of proteins with strong structural similarities conserved across evolution and devoted to the translocation of a variety of substrates across cell membranes. A few members of the family are known in mammals, but although all of them are medically relevant proteins, knowledge of their molecular function remains scanty. We report here a morphological and functional study of the recently identified mammalian ABC transporter, ABC1. Its expression during embryonic development correlates spatially and temporally with the areas of programmed cell death. More specifically, ABC1 is expressed in macrophages engaged in the engulfment and clearance of dead cells. Moreover, ABC1 transporter is required for engulfment since the ability of macrophages to ingest apoptotic bodies is severely impaired after antibody-mediated steric blockade of ABC1. A structural homologue of ABC1 has been identified in the Caenorhabditis elegans genome and maps close to the ced-7 locus. Since ced-7 phenotype is precisely defined by an imparied engulfment of cell corpses, it is tempting to surmise that ABC1 might be a mammalian homologue of ced-7. 相似文献
11.
Ternary complex factor-serum response factor complex-regulated gene activity is required for cellular proliferation and inhibition of apoptotic cell death 下载免费PDF全文
Vickers ER Kasza A Kurnaz IA Seifert A Zeef LA O'donnell A Hayes A Sharrocks AD 《Molecular and cellular biology》2004,24(23):10340-10351
12.
《Autophagy》2013,9(5):680-691
Autophagic cell death in Dictyostelium can be dissociated into a starvation-induced sensitization stage and a death induction stage. A UDP-glucose pyrophosphorylase (ugpB) mutant and a glycogen synthase (glcS) mutant shared the same abnormal phenotype. In vitro, upon starvation alone mutant cells showed altered contorted morphology, indicating that the mutations affected the pre-death sensitization stage. Upon induction of cell death, most of these mutant cells underwent death without vacuolization, distinct from either autophagic or necrotic cell death. Autophagy itself was not grossly altered as shown by conventional and electron microscopy. Exogenous glycogen or maltose could complement both ugpB- and glcS- mutations, leading back to autophagic cell death. The glcS- mutation could also be complemented by 2-deoxyglucose that cannot undergo glycolysis. In agreement with the in vitro data, upon development glcS- stalk cells died but most were not vacuolated. We conclude that a UDP-glucose derivative (such as glycogen or maltose) plays an essential energy-independent role in autophagic cell death. 相似文献
13.
Autophagic cell death in Dictyostelium can be dissociated into a starvation-induced sensitization stage and a death induction stage. A UDP-glucose pyrophosphorylase (ugpB) mutant and a glycogen synthase (glcS) mutant shared the same abnormal phenotype. In vitro, upon starvation alone mutant cells showed altered contorted morphology, indicating that the mutations affected the pre-death sensitization stage. Upon induction of cell death, most of these mutant cells underwent death without vacuolization, distinct from either autophagic or necrotic cell death. Autophagy itself was not grossly altered as shown by conventional and electron microscopy. Exogenous glycogen or maltose could complement both ugpB(-) and glcS(-) mutations, leading back to autophagic cell death. The glcS(-) mutation could also be complemented by 2-deoxyglucose that cannot undergo glycolysis. In agreement with the in vitro data, upon development glcS(-) stalk cells died but most were not vacuolated. We conclude that a UDP-glucose derivative (such as glycogen or maltose) plays an essential energy-independent role in autophagic cell death. 相似文献
14.
Daxx has been implicated in the modulation of apoptosis in response to various stimuli. In the nucleus, Daxx interacts and colocalizes with the promyelocytic leukemia protein (PML) into the PML-nuclear body. Moreover, overexpressed Daxx positively modulates FAS-ligand and TGFbeta-induced apoptosis. However, recent reports indicate that Daxx can also act as an antiapoptotic factor. As most studies on the role of Daxx in cell death have been conducted using tumour cell lines, we analysed the function of Daxx in physiological settings. We found that Daxx is induced upon exposure to ultraviolet (UV) irradiation and hydrogen peroxide treatment. We employed RNA interference to downregulate Daxx in primary fibroblasts. Remarkably, Daxx-depleted cells are resistant to cell death induced by both UV irradiation and oxidative stress. Furthermore, the downregulation of Daxx results in impaired MKK/c-Jun-N-terminal kinase (JNK) activation. This is the first evidence that Daxx promotes cell death and JNK activation in physiological conditions. 相似文献
15.
16.
Autophagy is the main process for bulk protein and organelle recycling in cells under extracellular or intracellular stress. Deregulation of autophagy has been associated with pathological conditions such as cancer, muscular disorders and neurodegeneration. Necrotic cell death underlies extensive neuronal loss in acute neurodegenerative episodes such as ischemic stroke. We find that excessive autophagosome formation is induced early during necrotic cell death in C. elegans. In addition, autophagy is required for necrotic cell death. Impairment of autophagy by genetic inactivation of autophagy genes or by pharmacological treatment suppresses necrosis. Autophagy synergizes with lysosomal catabolic mechanisms to facilitate cell death. Our findings demonstrate that autophagy contributes to cellular destruction during necrosis. Thus, interfering with the autophagic process may protect neurons against necrotic damage in humans. 相似文献
17.
Suhong Zhang Haiting Dai Wenya Li Runming Wang Hanyu Wu Ming Shen Ye Hu Lixin Xie Yiming Xing 《Cell death & disease》2021,12(12)
Transmembrane protein (TMEM) is a family of protein that spans cytoplasmic membranes and allows cell–cell and cell–environment communication. Dysregulation of TMEMs has been observed in multiple cancers. However, little is known about TMEM116 in cancer development. In this study, we demonstrate that TMEM116 is highly expressed in non-small-cell lung cancer (NSCLC) tissues and cell lines. Inactivation of TMEM116 reduced cell proliferation, migration and invasiveness of human cancer cells and suppressed A549 induced tumor metastasis in mouse lungs. In addition, TMEM116 deficiency inhibited PDK1-AKT-FOXO3A signaling pathway, resulting in accumulation of TAp63, while activation of PDK1 largely reversed the TMEM116 deficiency induced defects in cancer cell motility, migration and invasive. Together, these results demonstrate that TMEM116 is a critical integrator of oncogenic signaling in cancer metastasis.Subject terms: Non-small-cell lung cancer, Non-small-cell lung cancer 相似文献
18.
19.
Moschioni M Tombola F de Bernard M Coelho A Zitzer A Zoratti M Montecucco C 《Cellular microbiology》2002,4(7):397-409
Several strains of Vibrio cholerae secrete a haemolytic toxin of 63 kDa, termed V. cholerae cytolysin (VCC). This toxin causes extensive vacuolation and death of cells in culture and forms an anion-selective channel in planar lipid bilayers and in cells. Here, we identify inhibitors of the VCC anion channel and show that the formation of the anion channel is necessary for the development of the vacuoles and for the cell death induced by this toxin. Using markers of cell organelles, we show that vacuoles derive from different intracellular compartments and we identify the contribution of late endosomes and of the trans-Golgi network in vacuole biogenesis. 相似文献
20.
We examined the role of BCR cell membrane redistribution in anti-IgM-induced apoptosis in three human B cell lines, RA#1, 2G6, and MC116, that differ in their relative levels of sIgM expression. The apoptotic response was found to be dependent on the nature of the anti-IgM and the cell line. In the cell lines, RA#1 and MC116, sIgM aggregated into patches that were insensitive to the disruption of cholesterol-rich membrane microdomains by nystatin or beta-MCD. The B cell line 2G6 was able to reorganize sIgM into a tight coalescent cap upon anti-IgM treatment. However, in this case, the lipid raft inhibitors nystatin and beta-MCD disrupted the patching. In 2G6 cells, BCR-mediated apoptosis was not affected by nystatin treatment, whereas it increased in beta-MCD pretreated cells. Thus, no evident correlation was found between apoptosis and BCR cell membrane redistribution or lipid raft formation in either of the three cell lines. The data indicate that the apoptotic signal transduction pathway is independent of BCR translocation into lipid rafts and/or aggregation. 相似文献