首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hyperoxia causes cell injury and death associated with reactive oxygen species formation and inflammatory responses. Recent studies show that hyperoxia-induced cell death involves apoptosis, necrosis, or mixed phenotypes depending on cell type, although the underlying mechanisms remain unclear. Using murine lung endothelial cells, we found that hyperoxia caused cell death by apoptosis involving both extrinsic (Fas-dependent) and intrinsic (mitochondria-dependent) pathways. Hyperoxia-dependent activation of the extrinsic apoptosis pathway and formation of the death-inducing signaling complex required NADPH oxidase-dependent reactive oxygen species production, because this process was attenuated by chemical inhibition, as well as by genetic deletion of the p47(phox) subunit, of the oxidase. Overexpression of heme oxygenase-1 prevented hyperoxia-induced cell death and cytochrome c release. Likewise, carbon monoxide, at low concentrations, markedly inhibited hyperoxia-induced endothelial cell death by inhibiting cytochrome c release and caspase-9/3 activation. Carbon monoxide, by attenuating hyperoxia-induced reactive oxygen species production, inhibited extrinsic apoptosis signaling initiated by death-inducing signal complex trafficking from the Golgi apparatus to the plasma membrane and downstream activation of caspase-8. We also found that carbon monoxide inhibited the hyperoxia-induced activation of Bcl-2-related proteins involved in both intrinsic and extrinsic apoptotic signaling. Carbon monoxide inhibited the activation of Bid and the expression and mitochondrial translocation of Bax, whereas promoted Bcl-X(L)/Bax interaction and increased Bad phosphorylation. We also show that carbon monoxide promoted an interaction of heme oxygenase-1 with Bax. These results define novel mechanisms underlying the antiapoptotic effects of carbon monoxide during hyperoxic stress.  相似文献   

2.
High oxygen tension (hyperoxia) causes pulmonary cell death, involving apoptosis, necrosis, or mixed death phenotypes, though the underlying mechanisms remain unclear. In mouse lung endothelial cells (MLEC) hyperoxia activates both extrinsic (Fas-dependent) and intrinsic (mitochondria-dependent) apoptotic pathways. We examined the hypothesis that FLIP, an inhibitor of caspase-8, can protect endothelial cells against the lethal effects of hyperoxia. Hyperoxia caused the time-dependent downregulation of FLIP in MLEC. Overexpression of FLIP attenuated intracellular reactive oxygen species generation during hyperoxia exposure, by downregulating extracellular-regulated kinase-1/2 activation and p47(phox) expression. FLIP prevented hyperoxia-induced trafficking of the death-inducing signal complex from the Golgi apparatus to the plasma membrane. Furthermore, FLIP blocked the activations of caspase-8/Bid, caspases -3/-9, and inhibited the mitochondrial translocation and activation of Bax, resulting in protection against hyperoxia-induced cell death. Under normoxic conditions, FLIP expression increased the phosphorylation of p38 mitogen-activated protein kinase leading to increased phosphorylation of Bax during hyperoxic stress. Furthermore, FLIP expression markedly inhibited protein kinase C activation and expression of distinct protein kinase C isoforms (alpha, eta, and zeta), and stabilized an interaction of PKC with Bax. In conclusion, FLIP exerted novel inhibitory effects on extrinsic and intrinsic apoptotic pathways, which significantly protected endothelial cells from the lethal effects of hyperoxia.  相似文献   

3.
4.
The compound(E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1 H-inden-1-one(BCI) is known as an inhibitor of dual specific phosphatase 1/6 and mitogen-activated protein kinase. However, its precise anti-lung cancer mechanism remains unknown. In this study, the effects of BCI on the viability of non-small cell lung cancer cell lines NCI-H1299, A549, and NCI-H460 were evaluated. We confirmed that BCI significantly inhibited the viability of p53(-) NCI-H1299 cells as compared to NCI-H460 and A549 cells, which express wild-type p53. Furthermore, BCI treatment increased the level of cellular reactive oxygen species and pre-treatment of cells with N-acetylcysteine markedly attenuated BCI-mediated apoptosis of NCI-H1299 cells. BCI induced cellular morphological changes, inhibited viability, and produced reactive oxygen species in NCI-H1299 cells in a dose-dependent manner. BCI induced processing of caspase-9, caspase-3, and poly ADP-ribose polymerase as well as the release of cytochrome c from the mitochondria into the cytosol. In addition, BCI downregulated Bcl-2 expression and enhanced Bax expression in a dose-dependent manner in NCI-H1299 cells. However, BCI failed to modulate the expression of the death receptor and extrinsic factor caspase-8 and Bid, a linker between the intrinsic and extrinsic apoptotic pathways in NCI-H1299 cells. Thus, BCI induces apoptosis via generation of reactive oxygen species and activation of the intrinsic pathway in NCI-H1299 cells.  相似文献   

5.
Medicinal plants represent a rich source of cancer drug leads. Indioside D, a furostanol glycoside isolated from Solanum mammosum, was found to possess antiproliferative activity toward a panel of human cancer cell lines. Proteomic analysis of indioside D-treated HeLa cells revealed profound protein changes related to energy production and oxidative stress, suggesting that mitochondria dysfunction plays a role in indioside D-induced apoptosis. Indioside D caused a rapid dissipation of mitochondrial transmembrane potential (DeltaPsim) and the generation of reactive oxygen species (ROS), leading to the activation of caspase-dependent apoptotic cell death. The Fas death receptor pathway was also activated following indioside D treatment, and triggered the activation of caspase-8 and cleavage of Bid, which also acted through the mitochondrial apoptosis pathway. These results suggest that indioside D induced apoptosis in HeLa cells via both intrinsic and extrinsic cell death pathways.  相似文献   

6.
Human epithelial (A549) cells exposed to hyperoxia die by cellular necrosis. In the current study, we demonstrated the involvement of apoptogenic factors in epithelial cell necrosis in response to hyperoxia, including the formation of the Fas-related death-inducing signaling complex and initiation of mitochondria-dependent apoptotic pathways. We showed increased activation of both Bid and Bax in A549 cells subjected to hyperoxia. Bax activation involved a Bid-assisted conformational change. We discovered that the response to hyperoxia in vivo predominantly involved the activation of the Bid/caspase-8 pathway without apparent increases in Bax expression. Disruption of the Bid pathway by gene deletion protected against cell death in vivo and in vitro. Likewise, inhibition of caspase-8 by Flip also protected against cell death. Taken together, we have demonstrated the involvement of apoptogenic factors in epithelial cell responses to hyperoxia, despite a final outcome of cellular necrosis. We have, for the first time, identified a predominant role for the caspase-8/Bid pathway in signaling associated with hyperoxic lung injury and cell death in vivo and in vitro.  相似文献   

7.
Jurkat leukemic T cells are highly sensitive to the extrinsic pathways of apoptosis induced via the death receptor Fas or tumor necrosis factor-related apoptosis-inducing ligand as well as to the intrinsic/mitochondrial pathways of death induced by VP-16 or staurosporin. We report here that clonal Jurkat cell lines selected for resistance to Fas-induced apoptosis were cross-resistant to VP-16 or staurosporin. Each of the apoptotic pathways was blocked at an apical phase, where common regulators of apoptosis have not yet been defined. The Fas pathway was blocked at the level of caspase-8, whereas the intrinsic pathway was blocked at the mitochondria. No processing or activity of caspases was detected in resistant cells in response to either Fas-cross-linking or VP-16 treatment. Also, no apoptosis-associated alterations in the mitochondrial inner membrane, outer membrane, or matrix were detected in resistant Jurkat cells treated with VP-16. Thus, no changes in permeability transition, loss in inner membrane cardiolipin, generation of reactive oxygen species, or release of cytochrome c were observed in resistant cells treated with VP-16. Further, unlike purified mitochondria from wild type cells, those obtained from resistant cells did not release cytochrome c or apoptosis-inducing factor in response to recombinant Bax or truncated Bid. These results identify a defect in mitochondria ability to release intermembrane proteins in response to Bid or Bax as a mechanism of resistance to chemotherapeuetic drugs. Further, the selection of VP-16-resistant mitochondria via elimination of Fas-susceptible cells may suggest the existence of a shared regulatory component between the extrinsic and intrinsic pathways of apoptosis.  相似文献   

8.
The use of nano-sized materials offers exciting new options in technical and medical applications. Single-walled carbon nanotubes are emerging as technologically important in different industries. However, adverse effects on cells have been reported and this may limit their use. We previously found that 200μg/mL of single-walled carbon nanotubes induce apoptosis in rat aorta endothelial cells. The current study aimed to determine the signaling pathway involved in this process. We found that reactive oxygen species generation was involved in activation of the mitochondria-dependent apoptotic pathway. The finding of apoptosis was supported by a number of morphological and biochemical hallmarks, including chromatin condensation, internucleosomal DNA fragmentation, and caspase-3 activation. In conclusion, our results demonstrate that single-walled carbon nanotubes induce apoptosis in rat aorta endothelial cells and that reactive oxygen species are involved in the mitochondrial pathway.  相似文献   

9.
Cholesterol oxidation products formed under the enhanced oxidative stress in the brain are suggested to induce neuronal cell death. However, it is still unknown whether oxysterol-induced apoptosis in neuronal cells is mediated by Akt and NF-κB pathways. We assessed the apoptotic effect of 7-ketocholesterol against differentiated PC12 cells in relation to activation of the reactive oxygen species-dependent nuclear factor (NF)-κB, which is mediated by the Akt pathway. 7-Ketocholesterol induced a decrease in cytosolic Bid and Bcl-2 levels, increase in cytosolic Bax levels, cytochrome c release, caspase-3 activation and upregulation of p53. 7-Ketocholesterol induced an increase in phosphorylated inhibitory κB-α, NF-κB p65 and NF-κB p50 levels, binding of NF-κB p65 to DNA, and activation of Akt. Treatment with Bay 11-7085 (an inhibitor of NF-κB activation) and oxidant scavengers, including N-acetylcysteine, prevented the 7-ketocholesterol-induced formation of reactive oxygen species, activation of NF-κB, Akt and apoptosis-related proteins, and cell death. Results from this study suggest that 7-ketocholesterol may exert an apoptotic effect against PC12 cells by inducing activation of the caspase-8-dependent pathway as well as activation of the mitochondria-mediated cell death pathway, leading to activation of caspases, via the reactive oxygen species-dependent activation of NF-κB, which is mediated by the Akt pathway.  相似文献   

10.
The antimalarial agent artesunate (ART) activates programmed cell death (PCD) in cancer cells in a manner dependent on the presence of iron and the generation of reactive oxygen species. In malaria parasites, ART cytotoxicity originates from interactions with heme-derived iron within the food vacuole. The analogous digestive compartment of mammalian cells, the lysosome, similarly contains high levels of redox-active iron and in response to specific stimuli can initiate mitochondrial apoptosis. We thus investigated the role of lysosomes in ART-induced PCD and determined that in MCF-7 breast cancer cells ART activates lysosome-dependent mitochondrial outer membrane permeabilization. ART impacted endolysosomal and autophagosomal compartments, inhibiting autophagosome turnover and causing perinuclear clustering of autophagosomes, early and late endosomes, and lysosomes. Lysosomal iron chelation blocked all measured parameters of ART-induced PCD, whereas lysosomal iron loading enhanced death, thus identifying lysosomal iron as the lethal source of reactive oxygen species upstream of mitochondrial outer membrane permeabilization. Moreover, lysosomal inhibitors chloroquine and bafilomycin A1 reduced ART-activated PCD, evidencing a requirement for lysosomal function during PCD signaling. ART killing did not involve activation of the BH3-only protein, Bid, yet ART enhanced TNF-mediated Bid cleavage. We additionally demonstrated the lysosomal PCD pathway in T47D and MDA-MB-231 breast cancer cells. Importantly, non-tumorigenic MCF-10A cells resisted ART-induced PCD. Together, our data suggest that ART triggers PCD via engagement of distinct, interconnected PCD pathways, with hierarchical signaling from lysosomes to mitochondria, suggesting a potential clinical use of ART for targeting lysosomes in cancer treatment.  相似文献   

11.
The isoprenoid farnesol has been shown to preferentially induce apoptosis in cancerous cells; however, the mode of action of farnesol-induced death is not established. We used chemogenomic profiling using Saccharomyces cerevisiae to probe the core cellular processes targeted by farnesol. This screen revealed 48 genes whose inactivation increased sensitivity to farnesol. The gene set indicated a role for the generation of oxygen radicals by the Rieske iron-sulfur component of complex III of the electron transport chain as a major mediator of farnesol-induced cell death. Consistent with this, loss of mitochondrial DNA, which abolishes electron transport, resulted in robust resistance to farnesol. A genomic interaction map predicted interconnectedness between the Pkc1 signaling pathway and farnesol sensitivity via regulation of the generation of reactive oxygen species. Consistent with this prediction (i) Pkc1, Bck1, and Mkk1 relocalized to the mitochondria upon farnesol addition, (ii) inactivation of the only non-essential and non-redundant member of the Pkc1 signaling pathway, BCK1, resulted in farnesol sensitivity, and (iii) expression of activated alleles of PKC1, BCK1, and MKK1 increased resistance to farnesol and hydrogen peroxide. Sensitivity to farnesol was not affected by the presence of the osmostabilizer sorbitol nor did farnesol affect phosphorylation of the ultimate Pkc1-responsive kinase responsible for controlling the cell wall integrity pathway, Slt2. The data indicate that the generation of reactive oxygen species by the electron transport chain is a primary mechanism by which farnesol kills cells. The Pkc1 signaling pathway regulates farnesol-mediated cell death through management of the generation of reactive oxygen species.  相似文献   

12.
Ubiquitous calpains (mu- and m-calpain) have been repeatedly implicated in apoptosis, but the underlying mechanism(s) remain(s) to be elucidated. We examined ionomycin-induced cell death in LCLC 103H cells, derived from a human large cell lung carcinoma. We detected hallmarks of apoptosis such as membrane blebbing, nuclear condensation, DNA ladder formation, caspase activation, and poly-(ADP-ribose)polymerase cleavage. Apoptosis was prevented by preincubation of the cells with the calpain inhibitor acetyl-calpastatin 27-peptide and the caspase inhibitor Z-DEVD-fmk, implicating both the calpains and caspases in the apoptotic process. The apoptotic events correlated in a calpastatin-inhibitable manner with Bid and Bcl-2 decrease and with activation of caspases-9, -3, and -7. In vitro both ubiquitous calpains cleaved recombinant Bcl-2, Bid, and Bcl-x(L) at single sites truncating their N-terminal regions. Binding studies revealed diminished interactions of calpain-truncated Bcl-2 and Bid with immobilized intact Bcl-2 family proteins. Moreover, calpain-cleaved Bcl-2 and Bid induced cytochrome c release from isolated mitochondria. We conclude that ionomycin-induced calpain activation promotes decrease of Bcl-2 proteins thereby triggering the intrinsic apoptotic pathway.  相似文献   

13.
The human hepatoma cell line (HepG2) exhibited a dose and time-dependent apoptotic response following treatment with N-Nitrosopiperidine (NPIP) and N-Nitrosodibutylamine (NDBA), two recognized human carcinogens. Our results showed a significant apoptotic cell death (95%) after 24 h treatment with NDBA (3.5 mM), whereas it was necessary to use high doses of NPIP (45 mM) to obtain a similar percentage of apoptotic cells (86%). In addition, both extrinsic (caspase-8) and intrinsic pathway (caspase-9) could be implicated in the N-Nitrosamines-induced apoptosis. This study also addresses the role of reactive oxygen species (ROS) as intermediates for apoptosis signaling. A significant increase in ROS levels was observed after NPIP treatment, whereas NDBA did not induce ROS. However, N-acetylcysteine (NAC) did not block NPIP-induced apoptosis. All these findings suggest that NPIP and NDBA induce apoptosis in HepG2 cells via a pathway that involves caspases but not ROS.  相似文献   

14.
Proapoptotic receptor agonists cause cellular demise through the activation of the extrinsic and intrinsic apoptotic pathways. Inhibitor of apoptosis (IAP) proteins block apoptosis induced by diverse stimuli. Here, we demonstrate that IAP antagonists in combination with Fas ligand (FasL) or the death receptor 5 (DR5) agonist antibody synergistically stimulate death in cancer cells and inhibit tumor growth. Single-agent activity of IAP antagonists relies on tumor necrosis factor-α signaling. By contrast, blockade of tumor necrosis factor-α does not affect the synergistic activity of IAP antagonists with FasL or DR5 agonist antibody. In most cancer cells, proapoptotic receptor agonist-induced cell death depends on amplifying the apoptotic signal via caspase-8-mediated activation of Bid and subsequent activation of the caspase-9-dependent mitochondrial apoptotic pathway. In the investigated cancer cell lines, induction of apoptosis by FasL or DR5 agonist antibody can be inhibited by knockdown of Bid. However, knockdown of X chromosome-linked IAP (XIAP) or antagonism of XIAP allows FasL or DR5 agonist antibody to induce activation of effector caspases efficiently without the need for mitochondrial amplification of the apoptotic signal and thus rescues the effect of Bid knockdown in these cells.  相似文献   

15.
Mitogen-activated protein (MAP) kinase signaling cascades are multi-functional signaling networks that influence cell growth, differentiation, apoptosis, and cellular responses to stress. Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase that triggers apoptogenic kinase cascade leading to the phosphorylation/activation of c-Jun N-terminal kinases and p38-MAP kinase, which are responsible for inducing apoptotic cell death. This pathway plays a pivotal role in transduction of signals from different apoptotic stimuli. In the present review, we summarized the recent evidence concerning MAP kinase-dependent apoptotic pathway and its regulation in the mammalian cells and organism in vivo. We have shown that the key messengers of regulation of this pathway are the reactive oxygen and nitrogen species. The role of protein oxidation and S-nitrosation in induction of apoptotic cell death via ASK1 is discussed. Also we have outlined other recently discovered signal transduction processes involved in the regulation of ASK1 activity and downstream pathway.  相似文献   

16.
Granule-mediated cytolysis is the major pathway for killer lymphocytes to kill pathogens and tumor cells. Little is known about how granzyme K functions in killer lymphocyte-mediated cytolysis. We previously showed that human GzmK triggers rapid cell death independently of caspase activation with single-stranded DNA nicks, similar to GzmA. In this study we found that GzmK can induce rapid reactive oxygen species generation and collapse of mitochondrial inner membrane potential (DeltaPsim). Blockade of reactive oxygen species production by antioxidant N-acetylcysteine or superoxide scavenger Tiron inhibits GzmK-induced cell death. Moreover GzmK targets mitochondria by cleaving Bid to generate its active form tBid, which disrupts the outer mitochondrial membrane leading to the release of cytochrome c and endonuclease G. Thus, we showed herein that GzmK-induced caspase-independent death occurs through Bid-dependent mitochondrial damage that is different from GzmA.  相似文献   

17.
Unlike other immune cells, activation of macrophages by stimulating agents, such as lipopolysaccharide (LPS), confers significant resistance to many apoptotic stimuli, but the underlying mechanism of this phenomenon remains largely unknown. Here, we demonstrate that LPS-induced early caspase activation is essential for macrophage survival because blocking caspase activation with a pancaspase inhibitor (zVAD [benzyloxycarbonyl-Val-Ala-Asp]) rapidly induced death of activated macrophages. This type of death process by zVAD/LPS was principally mediated by intracellular generation of superoxide. STAT1 knockout macrophages demonstrated profoundly decreased superoxide production and were resistant to treatment with zVAD/LPS, indicating the crucial involvement of STAT1 in macrophage death by zVAD/LPS. STAT1 level and activity were reciprocally regulated by caspase activation and were associated with cell death. Activation of STAT1 was critically dependent upon serine phosphorylation induced by p38 mitogen-activated protein kinase (MAPK) because a p38 MAPK inhibitor nullified STAT1 serine phosphorylation, reactive oxygen species (ROS) production, and macrophage death by zVAD/LPS. Conversely, p38 MAPK activation was dependent upon superoxide and was also nullified in STAT1 knockout macrophages, probably due to impaired generation of superoxide. Our findings collectively indicate that STAT1 signaling modulates intracellular oxidative stress in activated macrophages through a positive-feedback mechanism involving the p38 MAPK/STAT1/ROS pathway, which is interrupted by caspase activation. Furthermore, our study may provide significant insights in regards to the unanticipated critical role of STAT1 in the caspase-independent death pathway.  相似文献   

18.
We have previously reported that airborne particulate matter air pollution (PM) activates the intrinsic apoptotic pathway in alveolar epithelial cells through a pathway that requires the mitochondrial generation of reactive oxygen species (ROS) and the activation of p53. We sought to examine the source of mitochondrial oxidant production and the molecular links between ROS generation and the activation of p53 in response to PM exposure. Using a mitochondrially targeted ratiometric sensor (Ro-GFP) in cells lacking mitochondrial DNA (ρ0 cells) and cells stably expressing a small hairpin RNA directed against the Rieske iron-sulfur protein, we show that site III of the mitochondrial electron transport chain is primarily responsible for fine PM (PM2.5)-induced oxidant production. In alveolar epithelial cells, the overexpression of SOD1 prevented the PM2.5-induced ROS generation from the mitochondria and prevented cell death. Infection of mice with an adenovirus encoding SOD1 prevented the PM2.5-induced death of alveolar epithelial cells and the associated increase in alveolar-capillary permeability. Treatment with PM2.5 resulted in the ROS-mediated activation of the oxidant-sensitive kinase ASK1 and its downstream kinase JNK. Murine embryonic fibroblasts from ASK1 knock-out mice, alveolar epithelial cells transfected with dominant negative constructs against ASK1, and pharmacologic inhibition of JNK with SP600125 (25 μm) prevented the PM2.5-induced phosphorylation of p53 and cell death. We conclude that particulate matter air pollution induces the generation of ROS primarily from site III of the mitochondrial electron transport chain and that these ROS activate the intrinsic apoptotic pathway through ASK1, JNK, and p53.Epidemiologic studies have consistently demonstrated a strong link between the daily levels of particulate matter air pollution <2.5 μm in diameter (PM2.5)3 and PM <10 μmin diameter (PM10) and cardiopulmonary morbidity and mortality (13). In humans, exposure to PM10 has been associated with an increase in mortality from ischemic cardiovascular events including stroke and myocardial infarction, an acceleration in the age-related decline in lung function in normal adults, impairment in normal lung development in children, exacerbations of asthma in children and adults, accelerated atherosclerosis in women, increased rates of lung cancer, and the development of myocardial ischemia in men with stable coronary artery disease (410). The intracellular generation of reactive oxygen species (ROS) has emerged as a common mechanism by which particulates might initiate signaling pathways that end in these diverse pathologic conditions (11). We have reported that the PM-induced generation of ROS requires a functional electron transport chain, suggesting that PM might induce the inadvertent transfer of electrons from one or more sites in the electron transport chain to molecular oxygen (12).One of the mechanisms by which exposure to PM can contribute to alveolar epithelial dysfunction, lung injury and inflammation, and lung cancer is by activating the intrinsic apoptotic pathway to induce cell death (11, 12). We have reported that this process requires the activation of p53; however, the molecular events linking the generation of ROS by the mitochondrial electron transport chain with the activation of p53 are not known (12). In this paper, we show that exposure of alveolar epithelial cells to PM2.5 induces the generation of ROS from site III of the mitochondrial electron transport chain. These mitochondrially derived oxidants activate the mitogen-activated signaling kinase kinase kinase (MAPKKK) apoptosis signaling kinase 1 (ASK1), which activates the c-Jun N-terminal kinase (JNK) signaling pathway. The activation of JNK is required for the phosphorylation of p53 and the subsequent cell death. Inhibition of mitochondrial oxidant production in mouse lungs prevents PM2.5-induced cell death and the associated PM2.5-induced increase in the permeability of the alveolar-capillary barrier.  相似文献   

19.
Cathepsin S (CTSS), which is highly expressed in various malignant tumor cells, has been proposed to promote tumor progression, migration, and invasion. CTSS inhibition not only blocks tumor cell invasion and endothelial tube formation but also induces cellular cytotoxicity. In our previous studies, we have observed that CTSS inhibition induces autophagy, which is responsible for up-regulating xanthine oxidase for early ROS generation and consequent cell death. However, whether the autophagy-regulated early ROS triggers apoptosis remains unclear. We conducted a long-term follow-up study to investigate the relationship between early autophagy and late mitochondria-dependent apoptosis. We demonstrated that early ROS generation is critical for mitochondria damage and the activation of intrinsic apoptotic pathway. Attenuating the early ROS level diminished later mitochondrial damage and downstream apoptotic signaling. Collectively, mitochondria-dependent apoptosis is regulated by autophagy-regulated early ROS, which serves as an early effector that triggers mitochondrial signaling for late apoptosis. The data emphasize the essential role of autophagy-regulated early ROS in triggering late apoptotic signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号