首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1986,103(6):2137-2144
Addition of serum or epidermal growth factor to quiescent Swiss mouse 3T3 cells in culture leads to a number of specific changes in the pattern of protein synthesis. Earlier experiments with actinomycin D suggested that the altered expression of these proteins was controlled at either the pretranslational or translational level. Here we have identified and further characterized the regulation of mRNA expression for ten of these proteins, including protein synthesis elongation factor eEF-1 alpha, poly A binding protein, vimentin, the multiple forms of the actin protein family, and alpha- and beta-tubulin. Using an in vitro translation system, we determined the change in the level of mRNA encoding for each of these proteins after serum stimulation. The results showed that the amount of mRNA coding for eEF-1 alpha, poly A binding protein, vimentin, and alpha- and beta-tubulin remains unchanged during this time, whereas that of the actin family increases. Thus, with the exception of the actin family, the results argue that the expression of all the proteins identified is regulated at the translational level. The importance of this latter group of proteins in cell growth and the abundance of their cognate mRNAs should prove them useful tools in elucidating the mechanisms involved in the activation of translationally repressed mRNA during the mitogenic response.  相似文献   

2.
Human keratinocytes and activated monocytes produces factors which can stimulate the proliferation of thymocytes. The same activity has also been implicated in regulating the expression of plasma proteins in liver cells during the acute phase reaction. To assess whether factors produced by such cells can directly influence liver cells to change the production of acute phase plasma proteins, we studied in tissue culture the response pattern of hepatic cells from three species: human hepatoma cells ( HepG2 cells), and primary cultures of rat and mouse hepatocytes. Conditioned media from the squamous carcinoma COLO-16 cells, normal epidermal cells, and activated peripheral monocytes were able to stimulate the synthesis of specific acute phase plasma proteins: alpha 1-antichymotrypsin in HepG -2 cells, alpha 1-antichymotrypsin, alpha 1-acid glycoprotein, alpha 1-acute phase protein, and alpha 2-macroglobulin in rat hepatocytes, and alpha 1-acid glycoprotein, haptoglobin, and hemopexin in mouse hepatocytes. Only in rat cells, dexamethasone was found to have further enhancing effect. The increased production of plasma proteins could be explained by an elevated level of functional mRNA. Comparing thymocyte-stimulating activities with the effects on plasma protein production, we found some difference both between the conditioned media of epidermal cells and monocytes, and between the responses of the three hepatic cell systems. Furthermore, gel chromatography of conditioned media resulted in partial separation of activities regulating liver cells and thymocytes. Since there is no strict correlation between thymocyte- and hepatocyte-stimulating activities, the presence of different sets of specific factors is assumed.  相似文献   

3.
Han YH  Xia L  Song LP  Zheng Y  Chen WL  Zhang L  Huang Y  Chen GQ  Wang LS 《Proteomics》2006,6(11):3262-3274
We reported recently that moderate hypoxia and hypoxia-mimetic agents could induce growth arrest and differentiation of leukemic cells via the mediation of hypoxia-inducible factor 1 alpha (HIF-1alpha), but the exact molecular mechanisms remain largely unknown. In this study, human acute promonocytic leukemic U937 cells were incubated under 2% O2 or in 50 microM of the hypoxia mimetic agent cobalt chloride (CoCl2) and normal oxygen for 24 h, and their protein expression profiles were compared by 2-DE coupled with MALDI-TOF/TOF MS/MS. We identified 62 and 16 proteins that were significantly deregulated by hypoxia and CoCl2 treatment, respectively. These proteins were mainly involved in metabolism, gene expression regulation, signal transduction, cell proliferation, differentiation and apoptosis. As an example, N-myc downstream regulated gene 1 (NDRG1), a putative differentiation-related gene, was up-regulated in both 2% O2- and CoCl2-treated U937 cells. Moreover, enforced HIF-1alpha expression also elevated NDRG1 mRNA and protein in U937 cells. These data will provide some clues for understanding mechanisms by which leukemic cells response to hypoxia.  相似文献   

4.
5.
The proteins encoded by the EXT1, EXT2, and EXTL2 genes, members of the hereditary multiple exostoses gene family of tumor suppressors, are glycosyltransferases required for the heparan sulfate biosynthesis. Only two homologous genes, rib-1 and rib-2, of the mammalian EXT genes were identified in the Caenorhabditis elegans genome. Although heparan sulfate is found in C. elegans, the involvement of the rib-1 and rib-2 proteins in heparan sulfate biosynthesis remains unclear. In the present study, the substrate specificity of a soluble recombinant form of the rib-2 protein was determined and compared with those of the recombinant forms of the mammalian EXT1, EXT2, and EXTL2 proteins. The present findings revealed that the rib-2 protein was a unique alpha1,4-N-acetylglucosaminyltransferase involved in the biosynthetic initiation and elongation of heparan sulfate. In contrast, the findings confirmed the previous observations that both the EXT1 and EXT2 proteins were heparan sulfate copolymerases with both alpha1,4-N-acetylglucosaminyltransferase and beta1,4-glucuronyltransferase activities, which are involved only in the elongation step of the heparan sulfate chain, and that the EXTL2 protein was an alpha1,4-N-acetylglucosaminyltransferase involved only in the initiation of heparan sulfate synthesis. These findings suggest that the biosynthetic mechanism of heparan sulfate in C. elegans is distinct from that reported for the mammalian system.  相似文献   

6.
7.
8.
Hepatitis B virus (HBV) infection is a worldwide health problem and may develop to liver fibrosis, cirrhosis, and even hepatocellular carcinoma. To investigate the global proteome responses of liver‐derived cells to HBV infection and IFNα treatment, 2‐DE and MS‐based analysis were performed to compare the proteome changes between HBV stably transfected cell line HepG2.2.15 and its parental cell line HepG2, as well as HepG2.2.15 before and after IFNα treatment (5000 IU/mL for 72 h). Compared to HepG2, 12 of 18 down‐regulated and 27 of 32 up‐regulated proteins were identified in HepG2.2.15. After IFNα treatment, 6 of 7 down‐regulated and 11 of 14 up‐regulated proteins were identified. Differentially expressed proteins caused by HBV infection were involved with cytoskeletal matrix, heat shock stress, kinases/signal transduction, protease/proteasome components, etc. Prohibitin showed a dose‐dependent up‐regulation during IFNα treatment and might play a potent role in anti‐HBV activities of IFNα by enhancing the crossbinding p53 expression to achieve the apoptosis of HBV infected liver cells. Down‐regulation of interferon‐stimulated gene 15 (ISG15) in HepG2.2.15 and recovery by IFNα suggested its relationship with IFNα's anti‐HBV effect.  相似文献   

9.
SET-related cell division autoantigen-1 (CDA1) arrests cell growth   总被引:1,自引:0,他引:1  
We used an autoimmune serum from a patient with discoid lupus erythematosus to clone a cDNA of 2808 base pairs. Its open reading frame of 2079 base pairs encodes a predicted polypeptide of 693 amino acids named CDA1 (cell division autoantigen-1). CDA1 has a predicted molecular mass of 79,430 Daltons and a pI of 4.26. The size of the cDNA is consistent with its estimated mRNA size. CDA1 comprises an N-terminal proline-rich domain, a central basic domain, and a C-terminal bipartite acidic domain. It has four putative nuclear localization signals and potential sites for phosphorylation by cAMP and cGMP-dependent kinases, protein kinase C, thymidine kinase, casein kinase II, and cyclin-dependent kinases (CDKs). CDA1 is phosphorylated in HeLa cells and by cyclin D1/CDK4, cyclin A/CDK2, and cyclin B/CDK1 in vitro. Its basic and acidic domains contain regions homologous to almost the entire human leukemia-associated SET protein. The same basic region is also homologous to nucleosome assembly proteins, testis TSPY protein, and an uncharacterized brain protein. CDA1 is present in the nuclear fraction of HeLa cells and localizes to the nucleus and nucleolus in HeLa cells transfected with CDA1 or its N terminus containing all four nuclear localization signals. Its acidic C terminus localizes mainly to the cytoplasm. CDA1 levels are low in serum-starved cells, increasing dramatically with serum stimulation. Expression of the CDA1 transgene, but not its N terminus, arrests HeLa cell growth, colony numbers, cell density, and bromodeoxyuridine uptake in a dose-dependent manner. The ability of CDA1 to arrest cell growth is abolished by mutation of the two CDK consensus phosphorylation sites. We propose that CDA1 is a negative regulator of cell growth and that its activity is regulated by its expression level and phosphorylation.  相似文献   

10.
Cellular hypoxia response is regulated at the level of hypoxia-inducible factor (HIF) activity. A number of recently identified oxygen sensors are HIF-modifying enzymes that respond to low oxygen by altering HIF modification and thus lead to its activation. In addition to the HIF proline hydroxylases and asparagine hydroxylases, ARD1 is recently described as a HIF-1alpha acetylase that regulates its stability. We found that ARD1 is down-regulated in a number of cell lines in response to hypoxia and hypoxia mimic compounds. After surveying these lines for erythropoietin production and retroviral transfection efficiency, we chose to use HepG2 cells to study the function of ARD1. ARD1 short hairpin RNA delivered by a retroviral vector caused >80% reduction in ARD1 message. We observed decreases in erythropoietin and vascular endothelial growth factor protein production, whereas there was no change in the HIF-1alpha protein level. A gene chip analysis of HepG2 cells transduced with virus expressing ARD1 short hairpin RNA under normoxia and hypoxia conditions or with virus overexpressing recombinant ARD1 confirmed that inhibition of ARD1 does not cause activation of HIF and downstream target genes. However, this analysis revealed that ARD1 is involved in cell proliferation and in regulating a series of cellular metabolic pathways that are regulated during hypoxia response. The role of ARD1 in cell proliferation is confirmed using fluorescence labeling analysis of cell division. From these studies we conclude that ARD1 is not required to suppress HIF but is required to maintain cell proliferation in mammalian cells.  相似文献   

11.
Serum levels of phospholipase A2 (PLA2) activity have been shown to be elevated in cases of septic shock and rheumatoid arthritis. The cellular origin of serum PLA2, however, is not known. In this report, we demonstrate that human group II PLA2 expression and secretion are induced in hepatoma cells (HepG2) following treatment with interleukin-6 (IL-6), tumor necrosis factor (TNF), and interleukin-1 (IL-1). Of the three cytokines, IL-6 is the most potent. Significant synergy is observed between IL-6 and IL-1 and between IL-6 and TNF, but not between IL-1 and TNF. PLA2 induction does not occur in human YT cells, which are known to have receptors for both IL-1 and IL-6, indicating that the regulatory mechanism involved is cell type-specific. The results of RNA blot analysis indicate that the PLA2 gene is regulated in HepG2 cells at the pretranslational level. Induction of PLA2 synthesis in HepG2 cells in response to these cytokines resembles the induction of the acute phase plasma proteins which are synthesized in cultured hepatocytes and hepatoma cells following exposure to the same cytokines and in liver in response to inflammation and infection. In addition, a putative IL-6-responsive element, which is homologous to a similar element found in several acute phase genes, is present in the 5'-promoter-proximal region of the PLA2 gene. These results suggest that serum PLA2 is synthesized in and secreted from liver cells in response to inflammatory stimuli, mediated primarily by IL-6, and therefore should be classified as an acute phase protein.  相似文献   

12.
13.
14.
Tong A  Wu L  Lin Q  Lau QC  Zhao X  Li J  Chen P  Chen L  Tang H  Huang C  Wei YQ 《Proteomics》2008,8(10):2012-2023
Hepatitis B virus (HBV) is one of the major etiological factors responsible for acute and chronic liver disease and for the development of hepatocellular carcinoma (HCC). To determine the effects of HBV replication on host cell-protein expression, we utilized 2-DE and MS/MS analysis to compare and identify differentially expressed proteins between an HBV-producing cell line HepG2.2.15 and its parental cell line HepG2. Of the 66 spots identified as differentially expressed (+/- over twofold, p <0.05) between the two cell lines, 62 spots (corresponding to 61 unique proteins) were positively identified by MS/MS analysis. These proteins could be clearly divided into three major groups by cluster and metabolic/signaling pathway analysis: proteins involved in retinol metabolism pathway, calcium ion-binding proteins, and proteins associated with protein degradation pathways. Other proteins identified include those that function in diverse biological processes such as signal transduction, immune regulation, molecular chaperone, electron transport/redox regulation, cell proliferation/differentiation, and mRNA splicing. In summary, we profiled proteome alterations between HepG2.2.15 and HepG2 cells. The proteins identified in this study would be useful in revealing the mechanisms underlying HBV-host cell interactions and the development of HCC. This study can also provide some useful clues for antiviral research.  相似文献   

15.
Alpha-crystallins comprise 35% of soluble proteins in the ocular lens and possess chaperone-like functions. Furthermore, the alphaA subunit (alphaA-crystallin) of alpha crystallin is thought to be "lens-specific" as only very low levels of expression were detected in a few non-lenticular tissues. Here we report that human alphaA-crystallin is expressed in human livers and is regulated by farnesoid X-activated receptor (FXR) in response to FXR agonists. AlphaA-crystallin was identified in a microarray screen as one of the most highly induced genes after treatment of HepG2 cells with the synthetic FXR ligand GW4064. Northern blot and quantitative real-time PCR analyses confirmed that alphaA-crystallin expression was induced in HepG2-derived cell lines and human primary hepatocytes and hepatic stellate cells in response to either natural or synthetic FXR ligands. Transient transfection studies and electrophoretic mobility shift assays revealed a functional FXR response element located in intron 1 of the human alphaA-crystallin gene. Importantly, immunohistochemical staining of human liver sections showed increased alphaA-crystallin expression in cholangiocytes and hepatocytes. As a member of the small heat shock protein family possessing chaperone-like activity, alphaA-crystallin may be involved in protection of hepatocytes from the toxic effects of high concentrations of bile acids, as would occur in disease states such as cholestasis.  相似文献   

16.
The cell division cycle 25 (CDC25) phosphatases regulate key transitions between cell-cycle phases during normal cell division, and in the case of DNA damage, they are key targets of the checkpoint machinery that ensure genetic stability. Little is known about the mechanisms underlying dysregulation and downstream targets of CDC25. To understand these mechanisms, we silenced the CDC25A gene in breast cancer cell line MDA-MB-231 and studied downstream targets of CDC25A gene. MDA-MB-231 breast cancer cells were transfected and silenced by CDC25A small interfering RNA. Total messenger RNA (mRNA) was extracted and analyzed by quantitative real-time polymerase chain reaction. CDC25A phosphatase level was visualized by Western blot analysis and was analyzed by 2D electrophoresis and LC-ESI-MS/MS. After CDC25A silencing, cell proliferation reduced, and the expression of 12 proteins changed. These proteins are involved in cell-cycle regulation, programmed cell death, cell differentiation, regulation of gene expression, mRNA editing, protein folding, and cell signaling pathways. Five of these proteins, including ribosomal protein lateral stalk subunit P0, growth factor receptor bound protein 2, pyruvate kinase muscle 2, eukaryotic translation elongation factor 2, and calpain small subunit 1 increase the activity of cyclin D1. Our results suggest that CDC25A controls the cell proliferation and tumorigenesis by a change in expression of proteins involved in cyclin D1 regulation and G1/S transition.  相似文献   

17.
18.
19.
The GABARAPL1 (GABARAP-LIKE 1) gene was first described as an early estrogen-regulated gene that shares a high sequence homology with GABARAP and is thus a part of the GABARAP family. GABARAPL1, like GABARAP, interacts with the GABAA receptor and tubulin and promotes tubulin polymerization. The GABARAP family members (GABARAP, GABARAPL1 and GABARAPL2) and their close homologs (LC3 and Atg8) are not only involved in the transport of proteins or vesicles but are also implicated in various mechanisms such as autophagy, cell death, cell proliferation and tumor progression. However, despite these similarities, GABARAPL1 displays a complex regulation that is different from that of other GABARAP family members. Moreover, it presents a regulated tissue expression and is the most highly expressed gene among the family in the central nervous system. In this review article, we will outline the specific functions of this protein and also hypothesize about the roles that GABARAPL1 might have in several important biological processes such as cancer or neurodegenerative diseases.  相似文献   

20.
The motility of keratinocytes is an essential component of wound closure and the development of epidermal tumors. In vitro, the specific motile behavior of keratinocytes is dictated by the assembly of laminin-332 tracks, a process that is dependent upon alpha6beta4 integrin signaling to Rac1 and the actin-severing protein cofilin. Here we have analyzed how cofilin phosphorylation is regulated by phosphatases (slingshot (SSH) or chronophin (CIN)) downstream of signaling by alpha6beta4 integrin/Rac1 in human keratinocytes. Keratinocytes express all members of the SSH family (SSH1, SSH2, and SSH3) and CIN. However, expression of phosphatase-dead versions of all three SSH proteins, but not dominant inactive CIN, results in phosphorylation/inactivation of cofilin, changes in actin cytoskeleton organization, loss of cell polarity, and assembly of aberrant arrays of laminin-332 in human keratinocytes. SSH activity is regulated by 14-3-3 protein binding, and intriguingly, 14-3-3/alpha6beta4 integrin protein interaction is required for keratinocyte migration. We wondered whether 14-3-3 proteins function as regulators of Rac1-mediated keratinocyte migration patterns. In support of this hypothesis, inhibition of Rac1 results in an increase in 14-3-3 protein association with SSH. Thus, we propose a novel mechanism in which alpha6beta4 integrin signaling via Rac1, 14-3-3 proteins, and SSH family members regulates cofilin activation, cell polarity, and matrix assembly, leading to specific epidermal cell migration behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号