共查询到20条相似文献,搜索用时 9 毫秒
1.
The major pathway for HIV internalization in CD4+ T cells has been thought to be the direct fusion of virus and cell membranes, because the cell surface is the point of entry of infectious particles. However, the exact contribution of endocytic pathways to the infection of CD4+ T lymphocytes is unknown, and the mechanisms involved in endocytosis of HIV particles are unclear. Recent evidence suggests that endocytosis of cell-free and cell-associated virus particles could lead to effective virus entry and productive infections. Such observations have, in turn, spurred a debate on the relevance of endosomal entry as a mechanism of escape from the immune system and HIV entry inhibitors. In this paper, we review the endocytosis of HIV and discuss its role in HIV infection and pathogenesis. 相似文献
2.
Parasitic plants and their hosts have proven remarkably adept at exchanging fragments of mitochondrial DNA. Two recent studies provide important mechanistic insights into the pattern, process and consequences of horizontal gene transfer, demonstrating that genes can be transferred in large chunks and that gene conversion between foreign and native genes leads to intragenic mosaicism. A model involving duplicative horizontal gene transfer and differential gene conversion is proposed as a hitherto unrecognized source of genetic diversity. 相似文献
3.
Methods for historical biogeographical analyses: anything goes? 总被引:1,自引:0,他引:1
Marco G.P. Van Veller 《Journal of Biogeography》2004,31(9):1552-1553
4.
Complete or near-complete mitochondrial genomes are now available for 11 species or strains of parasitic flatworms belonging to the Trematoda and the Cestoda. The organization of these genomes is not strikingly different from those of other eumetazoans, although one gene (atp8) commonly found in other phyla is absent from flatworms. The gene order in most flatworms has similarities to those seen in higher protostomes such as annelids. However, the gene order has been drastically altered in Schistosoma mansoni, which obscures this possible relationship. Among the sequenced taxa, base composition varies considerably, creating potential difficulties for phylogeny reconstruction. Long non-coding regions are present in all taxa, but these vary in length from only a few hundred to approximately 10000 nucleotides. Among Schistosoma spp., the long non-coding regions are rich in repeats and length variation among individuals is known. Data from mitochondrial genomes are valuable for studies on species identification, phylogenies and biogeography. 相似文献
5.
Predicting the distribution of Sasquatch in western North America: anything goes with ecological niche modelling 总被引:1,自引:0,他引:1
The availability of user-friendly software and publicly available biodiversity databases has led to a rapid increase in the use of ecological niche modelling to predict species distributions. A potential source of error in publicly available data that may affect the accuracy of ecological niche models (ENMs), and one that is difficult to correct for, is incorrect (or incomplete) taxonomy. Here we remind researchers of the need for careful evaluation of database records prior to use in modelling, especially when the presence of cryptic species is suspected or many records are based on indirect evidence. To draw attention to this potential problem, we construct ENMs for the North American Sasquatch (i.e. Bigfoot). Specifically, we use a large database of georeferenced putative sightings and footprints for Sasquatch in western North America, demonstrating how convincing environmentally predicted distributions of a taxon's potential range can be generated from questionable site-occurrence data. We compare the distribution of Bigfoot with an ENM for the black bear, Ursus americanus , and suggest that many sightings of this cryptozoid may be cases of mistaken identity. 相似文献
6.
7.
The Microviridae comprises icosahedral lytic viruses with circular single-stranded DNA genomes. The family is divided into two distinct groups based on genome characteristics and virion structure. Viruses infecting enterobacteria belong to the genus Microvirus, whereas those infecting obligate parasitic bacteria, such as Chlamydia, Spiroplasma and Bdellovibrio, are classified into a subfamily, the Gokushovirinae. Recent metagenomic studies suggest that members of the Microviridae might also play an important role in marine environments. In this study we present the identification and characterization of Microviridae-related prophages integrated in the genomes of species of the Bacteroidetes, a phylum not previously known to be associated with microviruses. Searches against metagenomic databases revealed the presence of highly similar sequences in the human gut. This is the first report indicating that viruses of the Microviridae lysogenize their hosts. Absence of associated integrase-coding genes and apparent recombination with dif-like sequences suggests that Bacteroidetes-associated microviruses are likely to rely on the cellular chromosome dimer resolution machinery. Phylogenetic analysis of the putative major capsid proteins places the identified proviruses into a group separate from the previously characterized microviruses and gokushoviruses, suggesting that the genetic diversity and host range of bacteriophages in the family Microviridae is wider than currently appreciated. 相似文献
8.
Ni‐Ni Shi Long Fan Yong‐Gang Yao Min‐Sheng Peng Ya‐Ping Zhang 《Molecular ecology》2014,23(22):5393-5397
More than 1000 complete or near‐complete mitochondrial DNA (mtDNA) sequences have been deposited in GenBank for eight common domestic animals (cattle, dog, goat, horse, pig, sheep, yak and chicken) and their close wild ancestors or relatives, as well. Nevertheless, few efforts have been performed to evaluate the sequence data quality. Herein, we conducted a phylogenetic survey of these complete or near‐complete mtDNA sequences based on mtDNA haplogroup trees for the eight animals. We show that errors due to artificial recombination, surplus of mutations and phantom mutations do exist in 14.5% (194/1342) of mtDNA sequences and all of them should be treated with wide caution. We propose some caveats for future mtDNA studies of domestic animals. 相似文献
9.
Mitochondria are subcellular organelles in which oxidative phosphorylation and other important biochemical functions take place within the cell. Within these organelles is a mitochondrial (mt) genome, which is distinct from, but cooperates with, the nuclear genome of the cell. Studying mt genomes has implications for various fundamental areas, including mt biochemistry, physiology and molecular biology. Importantly, the mt genome is a rich source of markers for population genetic and systematic studies. To date, more than 696 mt genomes have been sequenced for a range of metazoan organisms. However, few of these are from parasitic nematodes, despite their socioeconomic importance and the need for fundamental investigations into areas such as nematode genetics, systematics and ecology. In this article, we review knowledge and recent progress in mt genomics of parasitic nematodes, summarize applications of mt gene markers to the study of population genetics, systematics, epidemiology and evolution of key nematodes, and highlight some prospects and opportunities for future research. 相似文献
10.
11.
Candida alimentaria, Candida deformans, Candida galli, and Candida phangngensis have been recently reported to be the close relatives of Yarrowia lipolytica. To explore this clade of yeasts, we sequenced the mitochondrial genome (mtDNA) of these four species and compared it with the mtDNA of Y.?lipolytica. The five mtDNAs exhibit a similar architecture and a high level of similarity of protein coding sequences. Genome sizes are variable, ranging from 28?017?bp in C.?phangngensis to 48?508?bp in C.?galli, mainly because of the variations in intron size and number. All introns are of group I, except for a group II intron inserted in the cob gene of a single species, C.?galli. Putative endonuclease coding sequences were present in most group I introns, but also twice as free-standing ORFs in C.?galli. Phylogenetic relationships of the five species were explored using protein alignments. No close relative of the Yarrowia clade could be identified, but protein and rRNA gene orders were partially conserved in the mtDNA of Candida salmanticensis. 相似文献
12.
Mitochondrial pseudogenes in nuclear chromosomes (numts) have been detected in the genomes of a diverse range of eukaryotic species. However, the numt content of different genomes and their properties is not uniform, and study of these differences provides insight into the mechanisms and dynamics of genome evolution in different organisms. In the genus Drosophila, numts have previously only been identified on a genome-wide scale in the melanogaster subgroup. The present study extends the identification to 11 species of the Drosophila genus. We identify a total of 302 numts and show that the numt complement is highly variable in Drosophilids, ranging from just 4 in D. melanogaster to 67 in D. willistoni, broadly correlating with genome size. Many numts have undergone large-scale rearrangements in the nucleus, including interruptions, inversions, deletions and duplications of sequence of variable size. Estimating the age of the numts in the nucleus by phylogenetic tree reconstruction reveals the vast majority of numts to be recent gains, 90% having arisen on terminal branches of the species tree. By identifying paralogs and counting duplications among the extant numts we estimate that 23% of extant numts arose through post-insertion duplications. We estimate genus average rates of insertion of 0.75 per million years, and a duplication rate of 0.010 duplications per numt per million years. 相似文献
13.
Mitochondrial genomes advance phylogenetic hypotheses for Tylenchina (Nematoda: Chromadorea) 下载免费PDF全文
Jiyeon Kim Sang‐Hwa Lee Mohiuddin Gazi Taeho Kim Daewui Jung Jae‐Yong Chun Sanghee Kim Tae‐Kun Seo Chungoo Park James G. Baldwin Steven A. Nadler Joong‐Ki Park 《Zoologica scripta》2015,44(4):446-462
Within the nematode class Chromadorea, the suborder Tylenchina is an ecologically and morphologically diverse assemblage of nematodes that includes free‐living microbivores, fungivores and various types of plant parasites. A recent nematode classification system based largely on SSU rDNA phylogenetic trees classified suborder Tylenchina to include four infraorders: Panagrolaimomorpha, Cephalobomorpha, Tylenchomorpha and Drilonematomorpha, and phylogenetic relationships among species of these infraorders have not always been robustly supported. In this study, we determined the complete mitochondrial genome sequences of three Tylenchina species (Aphelenchus avenae [Aphelenchidae, Tylenchomorpha], Halicephalobus gingivalis, Panagrellus redivivus [Panagrolaimomorpha]) and the partial genome sequence of Acrobeles complexus (Cephalobomorpha) and used these sequences to infer phylogenetic relationships among representatives of the Tylenchina and other nematodes. Phylogenetic analysis of amino acid sequences for 12 protein‐coding genes of 100 nematode species supports monophyly of: Chromadorea, Spiruromorpha, Oxyuridomorpha, Ascarididae + Toxocaridae + Anisakidae, Meloidogynidae + Pratylenchidae + Heteroderidae and Aphelenchoidea. Bayesian and maximum‐likelihood analyses also show the nested position of Diplogasteromorpha within Rhabditomorpha, and Rhigonematomorpha within Ascaridomorpha. These analyses also show non‐monophyly of: clade III, Ancylostomatidae, Panagrolaimomorpha, Tylenchina and Tylenchomorpha. Reconstructed mitochondrial genome phylogeny also revealed that among two main Tylenchomorpha groups, the monophyletic group representing Aphelenchoidea species was sister to the large clade consisting of Ascaridomorpha, Diplogasteromorpha, Rhabditomorpha and Rhigonematomorpha and some Panagrolaimomorpha species, whereas Tylenchoidea species were sister to the most inclusive assemblage containing all infraordinal groups of Chromadorea, except for P. redivivus (Panagrolaimomorpha) and Acrobeles complexus (Cephalobomorpha). The monophyly of Aphelenchoidea (i.e. sister relationship between Aphelenchidae and Aphelenchoididae) recovered in this study indicates that similarity in certain aspects of pharyngeal structure between these two families appears best explained by common ancestry, rather than convergent evolution. 相似文献
14.
Recent progress in the analysis of protein components of the mitochondrial nucleoid and replisome of baker's yeast, Saccharomyces cerevisiae, opens a unique opportunity for understanding the molecular principles of mitochondrial inheritance. In this work we identified homologs of proteins involved in the mitochondrial DNA packaging and replication in the complete genome sequence of the petite-negative yeast Kluyveromyces lactis. Comparative analysis of their counterparts from phylogenetically diverse yeast species revealed conserved as well as diverged features of the organellar chromosome structure and its replication strategy. Moreover, it provides a basis for subsequent functional studies of the structure and dynamics of the mitochondrial nucleoids. 相似文献
15.
16.
We determined the complete nucleotide sequences of the mitochondrial genomes for the three currently recognized species of ocean sunfish: Mola mola, Masturus lanceolatus, and Ranzania laevis (Tetraodontiformes: Molidae). Each genome contained the 37 genes as found in teleosts, with the typical gene order in teleosts. Bayesian, maximum-likelihood, and maximum-parsimony analyses were conducted with the data set comprising concatenated nucleotide sequences from 36 genes (excluding the ND6 gene) of three molids and four outgroups (three tetraodontiforms plus a caproid). The resultant trees supported monophyly of the Molidae and its intrarelationships ((Mola, Masturus), Ranzania), which were congruent with previous morphology-based hypotheses. 相似文献
17.
Gibb GC Kardailsky O Kimball RT Braun EL Penny D 《Molecular biology and evolution》2007,24(1):269-280
We improve the taxon sampling for avian phylogeny by analyzing 7 new mitochondrial genomes (a toucan, woodpecker, osprey, forest falcon, American kestrel, heron, and a pelican). This improves inference of the avian tree, and it supports 3 major conclusions. The first is that some birds (including a parrot, a toucan, and an osprey) exhibit a complete duplication of the control region (CR) meaning that there are at least 4 distinct gene orders within birds. However, it appears that there are regions of continued gene conversion between the duplicate CRs, resulting in duplications that can be stable for long evolutionary periods. Because of this stable duplicated state, gene order can eventually either revert to the original order or change to the new gene order. The existence of this stable duplicate state explains how an apparently unlikely event (finding the same novel gene order) can arise multiple times. Although rare genomic changes have theoretical advantages for tree reconstruction, they can be compromised if these apparently rare events have a stable intermediate state. Secondly, the toucan and woodpecker improve the resolution of the 6-way split within Neoaves that has been called an "explosive radiation." An explosive radiation implies that normal microevolutionary events are insufficient to explain the observed macroevolution. By showing the avian tree is, in principle, resolvable, we demonstrate that the radiation of birds is amenable to standard evolutionary analysis. Thirdly, and as expected from theory, additional taxa breaking up long branches stabilize the position of some problematic taxa (like the falcon). In addition, we report that within the birds of prey and allies, we did not find evidence pairing New World vultures with storks or accipitrids (hawks, eagles, and osprey) with Falconids. 相似文献
18.
To date, the taxonomic status and phylogenetic affinities within Hyphessobrycon, even among other genera in Characidae, remain unclear. Here, we determined five new mitochondrial genomes (mitogenomes) of Hyphessobrycon species (H. elachys, H. flammeus, H. pulchripinnis, H. roseus, and H. sweglesi). The mitogenomes were all classical circular structures, with lengths ranging from 16,008 to 17,224 bp. The type of constitutive genes and direction of the coding strand that appeared in the mitogenomes were identical to those of other species in Characidae. The highest value of the Ka/Ks ratio within 13 protein‐coding genes (PCGs) was found in ND2 with 0.83, suggesting that they were subject to purifying selection in the Hyphessobrycon genus. Comparison of the control region sequences among seven Hyphessobrycon fish revealed that repeat units differ in length and copy number across different species, which led to sharp differences in mitogenome sizes. Phylogenetic trees based on the 13 PCGs did not support taxonomic relationships, as the Hyphessobrycon fish mixed with those from other genera. These data were combined to explore higher level relationships within Characidae and could aid in the understanding of the evolution of this group. 相似文献
19.
For over a century the relationships between the four major groups of the phylum Arthropoda (Chelicerata, Crustacea, Hexapoda and Myriapoda) have been debated. Recent molecular evidence has confirmed a close relationship between the Crustacea and the Hexapoda, and has included the suggestion of a paraphyletic Hexapoda. To test this hypothesis we have sequenced the complete or near-complete mitochondrial genomes of three crustaceans (Parhyale hawaiensis, Squilla mantis and Triops longicaudatus), two collembolans (Onychiurus orientalis and Podura aquatica) and the insect Thermobia domestica. We observed rearrangement of transfer RNA genes only in O. orientalis, P. aquatica and P. hawaiensis. Of these, only the rearrangement in O. orientalis, an apparent autapomorphy for the collembolan family Onychiuridae, was phylogenetically informative.We aligned the nuclear and amino acid sequences from the mitochondrial protein-encoding genes of these taxa with their homologues from other arthropod taxa for phylogenetic analysis. Our dataset contains many more Crustacea than previous molecular phylogenetic analyses of the arthropods. Neighbour-joining, maximum-likelihood and Bayesian posterior probabilities all suggest that crustaceans and hexapods are mutually paraphyletic. A crustacean clade of Malacostraca and Branchiopoda emerges as sister to the Insecta sensu stricto and the Collembola group with the maxillopod crustaceans. Some, but not all, analyses strongly support this mutual paraphyly but statistical tests do not reject the null hypotheses of a monophyletic Hexapoda or a monophyletic Crustacea. The dual monophyly of the Hexapoda and Crustacea has rarely been questioned in recent years but the idea of both groups' paraphyly dates back to the nineteenth century. We suggest that the mutual paraphyly of both groups should seriously be considered. 相似文献
20.
Mitochondrial genomes of two eyelid geckos (Hemitheconyx caudicinctus and Hemitheconyx taylori) were sequenced. Although these genomes conserve a typical vertebrate gene organization, tRNA(Gln) gene of the former appears to have been pseudogenized. A very extensive RNA editing may restore its function in the RNA level or a functional tRNA(Gln) encoded in the nuclear chromosome may be imported into mitochondria. 相似文献