首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Appropriate application of techniques for detection andmonitoring of microbiologically influenced corrosion isessential for understanding the mechanistic nature of theinteractions and for obtaining control methods. This paperreviews techniques and methods applied tomicrobiologically influenced corrosion in recent years.The techniques presented in this paper includeelectrochemical noise measurement, concentric electrodes,scanning vibrating electrode mapping, electrochemicalimpedance spectroscopy, atomic force microscopy,confocal laser microscopy, Fourier transform infraredspectroscopy, x-ray photoelectron spectroscopy, Augerelectron spectroscopy, extended x-ray absorption finestructure and utilization of piezoelectric materials. Thesetechniques are reviewed regarding the heterogeneouscharacteristics of microbial consortia and their possibleinfluences on metal substrata. We hope this review willmotivate application and combination of new techniquesfor practical detection and on-line monitoring of theimpact of biofilms on engineering alloys.  相似文献   

2.
Synthetic iron oxides (goethite, -FeO·OH; hematite, Fe2O3; and ferrihydrite, Fe(OH)3) were used as model compounds to simulate the mineralogy of surface films on carbon steel. Dissolution of these oxides exposed to pure cultures of the metal-reducing bacterium, Shewanella putrefaciens, was followed by direct atomic absorption spectroscopy measurement of ferrous iron coupled with microscopic analyses using confocal laser scanning and environmental scanning electron microscopies. During an 8-day exposure the organism colonized mineral surfaces and reduced solid ferric oxides to soluble ferrous ions. Elemental composition, as monitored by energy dispersive x-ray spectroscopy, indicated mineral replacement reactions with both ferrihydrite and goethite as iron reduction occurred. When carbon steel electrodes were exposed to S. putrefaciens, microbiologically influenced corrosion was demonstrated electrochemically and microscopically.  相似文献   

3.
Microbiologically influenced corrosion is a serious type of corrosion as approximately 20% of the total economic losses. Sulfate reducing bacteria and Iron oxidizing bacteria are one of the typical representatives of the anaerobic and aerobic bacteria, which are ubiquitous in natural environments and corrode steel structures. Cathodic polarization has been recognized as an effective method for preventing steels from microbial corrosion. Although cathodic polarization method has been widely studied, the specific properties of cathodic current that influences the bacterial removal and inactivation remained largely unclear. This review is to show the main effects of Sulfate reducing bacteria and Iron oxidizing bacteria on metal decay as well as the inhibition mechanism of cathodic polarization in the study of bio-corrosion.  相似文献   

4.
In the current study, ferritic stainless grades AISI 439 and AISI 444 were investigated as possible construction materials for machinery and equipment in the cane-sugar industry. Their performance in corrosive cane-sugar juice environment was compared with the presently used low carbon steel AISI 1010 and austenitic stainless steel AISI 304. The Tafel plot electrochemical technique was used to evaluate general corrosion performance. Microbiologically influenced corrosion (MIC) behaviour in sugarcane juice environment was studied. Four microbial colonies were isolated from the biofilms on the metal coupon surfaces on the basis of their different morphology. These were characterized as Brevibacillus parabrevis, Bacillus azotoformans, Paenibacillus lautus and Micrococcus sp. The results of SEM micrographs showed that AISI 439 and AISI 304 grades had suffered maximum localized corrosion. MIC investigations revealed that AISI 444 steel had the best corrosion resistance among the tested materials. However from the Tafel plots it was evident that AISI 1010 had the least corrosion resistance and AISI 439 the best corrosion resistance.  相似文献   

5.
Microbial degradation of the oil soluble corrosion inhibitor (OSCI) Baker NC 351 contributed to a decrease in inhibitor efficiency. Corrosion inhibition efficiency was studied by the rotating cage and flow loop methods. The nature of the biodegradation of the corrosion inhibitor was also analysed using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. The influence of bacterial activity on the degradation of the corrosion inhibitor and its influence on corrosion of API 5LX were evaluated using a weight loss technique and impedance studies. Serratia marcescens ACE2 and Bacillus cereus ACE4 can degrade aromatic and aliphatic hydrocarbons present in the corrosion inhibitor. The present study also discusses the demerits of the oil soluble corrosion inhibitors used in petroleum product pipeline.  相似文献   

6.
Abstract

Microbial degradation of the oil soluble corrosion inhibitor (OSCI) Baker NC 351 contributed to a decrease in inhibitor efficiency. Corrosion inhibition efficiency was studied by the rotating cage and flow loop methods. The nature of the biodegradation of the corrosion inhibitor was also analysed using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. The influence of bacterial activity on the degradation of the corrosion inhibitor and its influence on corrosion of API 5LX were evaluated using a weight loss technique and impedance studies. Serratia marcescens ACE2 and Bacillus cereus ACE4 can degrade aromatic and aliphatic hydrocarbons present in the corrosion inhibitor. The present study also discusses the demerits of the oil soluble corrosion inhibitors used in petroleum product pipeline.  相似文献   

7.
A manganese oxidizing bacterium was isolated from the surface of steel scraps and biochemical tests and 16S rRNA sequencing analysis confirmed the isolate as Bacillus flexus. Potentiodynamic polarization curves showed ennoblement of open circuit potential, increased passive current, a lowering of breakdown potential, active re-passivation potential and enhanced cathodic current in the presence of B. flexus. Adhesion studies with B. flexus on SS304 specimens with different surface treatments demonstrated decreased adhesion on passivated and FeCl(3) treated specimens due to the removal of MnS inclusions. The present study provides evidence that surface treatment of stainless steels can reduce adhesion of this manganese oxidizing bacterium and decrease the probability of microbiologically influenced corrosion.  相似文献   

8.
A manganese oxidizing bacterium was isolated from the surface of steel scraps and biochemical tests and 16S rRNA sequencing analysis confirmed the isolate as Bacillus flexus. Potentiodynamic polarization curves showed ennoblement of open circuit potential, increased passive current, a lowering of breakdown potential, active re-passivation potential and enhanced cathodic current in the presence of B. flexus. Adhesion studies with B. flexus on SS304 specimens with different surface treatments demonstrated decreased adhesion on passivated and FeCl3 treated specimens due to the removal of MnS inclusions. The present study provides evidence that surface treatment of stainless steels can reduce adhesion of this manganese oxidizing bacterium and decrease the probability of microbiologically influenced corrosion.  相似文献   

9.
Microbiologically influenced corrosion is responsible for most of the internal corrosion problems in oil transportation pipelines and storage tanks. One problematic area in treating gas lines is the occurrence of the stratification of water in the line. Under these conditions, corrosion inhibitors do not come into contact properly and oil and inhibitors undergo degradation. The role of bacteria on oil degradation, the consequences of oil degradation in fuel systems and its influence on corrosion have been explained in detail. Besides, factors influencing on degradation of oil and corrosion inhibitors have also been discussed. Mechanism of microbiologically influenced corrosion in oil pipeline has been explained. Many of the misapplication of biocides/inhibitors occur mainly because the characteristics of biocides/inhibitors are not considered before use in pipeline industry. List of biocides and monitoring programme have been collected from literature and presented.  相似文献   

10.
Microbially influenced corrosion of glass and countermeasures were studied by literature research and by an investigation of contaminated glass samples. Such corrosion is often linked to the growth of fungi. It is assumed that glass composition is not the decisive factor in biogenic contamination, but can encourage or retard the microbial activity significantly. It is suggested that a biochemically initiated ion-exchange reaction is most important for corrosion of glass exposed to the atmosphere. Future work will emphasize the biotechnological applications in the recovery of heavy metals from special glasses. Received: 26 September 1996 / Received revision: 17 December 1996 / Accepted: 17 December 1996  相似文献   

11.
Protected area systems and conservation corridors can help mitigate the impacts of climate change on Amazonian biodiversity. We propose conservation design criteria that will help species survive in situ or adjust range distributions in response to increased drought. The first priority is to protect the western Amazon, identified as the 'Core Amazon', due to stable rainfall regimes and macro-ecological phenomena that have led to the evolution of high levels of biodiversity. Ecotones can buffer the impact from climate change because populations are genetically adapted to climate extremes, particularly seasonality, because high levels of habitat diversity are associated with edaphic variability. Future climatic tension zones should be surveyed for geomorphological features that capture rain or conserve soil moisture to identify potential refugia for humid forest species. Conservation corridors should span environmental gradients to ensure that species can shift range distributions. Riparian corridors provide protection to both terrestrial and aquatic ecosystems. Multiple potential altitudinal corridors exist in the Andes, but natural and anthropogenic bottlenecks will constrain the ability of species to shift their ranges and adapt to climate change. Planned infrastructure investments are a serious threat to the potential to consolidate corridors over the short and medium term.  相似文献   

12.
Microbiologically influenced corrosion: looking to the future.   总被引:5,自引:0,他引:5  
This review discusses the state-of-the-art of research into biocorrosion and the biofouling of metals and alloys of industrial usage. The key concepts needed to understand the main effects of microorganisms on metal decay, and current trends in monitoring and control strategies to mitigate the deleterious effects of biocorrosion and biofouling are also described. Several relevant cases of biocorrosion studied by our research group are provided as examples: (i) biocorrosion of aluminum and its alloys by fungal contaminants of jet fuels; (ii) sulfate-reducing bacteria (SRB)-induced corrosion of steel; (iii) biocorrosion and biofouling interactions in the marine environment; (iv) monitoring strategies for assessing biocorrosion in industrial water systems; (v) microbial inhibition of corrosion; (vi) use and limitations of electrochemical techniques for evaluating biocorrosion effects. Future prospects in the field are described with respect to the potential of innovative techniques in microscopy (environmental scanning electron microscopy, confocal scanning laser microscopy, atomic force microscopy), new spectroscopic techniques for the study of corrosion products and biofilms (energy dispersion X-ray analysis, X-ray photoelectron spectroscopy, electron microprobe analysis) and electrochemistry (electrochemical impedance spectroscopy, electrochemical noise analysis).  相似文献   

13.
Nitrous oxide (N(2)O) is a powerful atmospheric greenhouse gas and cause of ozone layer depletion. Global emissions continue to rise. More than two-thirds of these emissions arise from bacterial and fungal denitrification and nitrification processes in soils, largely as a result of the application of nitrogenous fertilizers. This article summarizes the outcomes of an interdisciplinary meeting, 'Nitrous oxide (N(2)O) the forgotten greenhouse gas', held at the Kavli Royal Society International Centre, from 23 to 24 May 2011. It provides an introduction and background to the nature of the problem, and summarizes the conclusions reached regarding the biological sources and sinks of N(2)O in oceans, soils and wastewaters, and discusses the genetic regulation and molecular details of the enzymes responsible. Techniques for providing global and local N(2)O budgets are discussed. The findings of the meeting are drawn together in a review of strategies for mitigating N(2)O emissions, under three headings, namely: (i) managing soil chemistry and microbiology, (ii) engineering crop plants to fix nitrogen, and (iii) sustainable agricultural intensification.  相似文献   

14.
A multiple chemostat system has been developed in which metal specimens can be exposed to a consortium of bacteria. The system comprises a single test chemostat containing the test specimen operated at a high dilution rate to facilitate the wash out of planktonic bacteria, selecting for attached or biofilm growth. This chemostat is fed at a steady low rate by a number of separate chemostats each of which contains a pure axenic culture of one member of the consortium being tested. This system has the advantage of providing a continual inoculum of the test species to the test specimen allowing both aerobic and anaerobic bacteria to be grown in the same system. Constant levels of three bacterial types were maintained in the system: Pseudomonas aeruginosa, Thiobacillus ferrooxidans and Desulfovibrio vulgaris. Exposure of 316L stainless steel electrodes to this system resulted in increased corrosion of coupons exposed biotically, as compared to those exposed abiotically. A current monitoring technique and electrochemical impedance spectroscopy were used to evaluate effects of bacteria on metallic corrosion.  相似文献   

15.
16.
Utilization of N-substituted-4-hydroxy-3-methylsulfonanilidoethanolamines 1 as selective beta(3) agonists is complicated by their propensity to undergo metabolic oxidative N-dealkylation, generating 0.01-2% of a very potent alpha(1) adrenergic agonist 2. A summary of the SAR for this hepatic microsomal conversion precedes presentation of strategies to maintain the advantages of chemotype 1 while mitigating the consequences of N-dealkylation. This effort led to the identification of 4-hydroxy-3-methylsulfonanilidopropanolamines 15 for which the SAR for the unique stereochemical requirements for binding to the beta adrenergic receptors culminated in the identification of the potent, selective beta(3) agonist 15f.  相似文献   

17.
In fruit growing preharvest sprayings in the orchard are mainly applied to protect fruit from decaying. Next to multisite fungicides (captan, thiram, tolylfluanid) the most commonly used products recognized for the Belgium market are Bellis (pyraclostrobin & boscalid) and the combination of Topsin M (thiophanate-methyl) and Frugico (diethofencarb). In general the spraying schedule varies depending on weather conditions (infection risk), preharvest interval of available fungicides, fruitgrower and cultivar of pome fruit (apple/pear). Facing the climatological conditions before picking the residue loading on the fruit surface can differ enormously. Also wet (pre)grading is considered to decrease the product residue resulting to fruits which are less protected before entering the cold storage room. In this context a partially replacement of the preharvest treatments by one postharvest application could offer a reliable alternative to the PPP reduction program (Plant Protection Products) in the orchard. A standardized application method by dipping or drenching will cover the fruits homogenically resulting in a rationalized fungicide use compared to the preharvest sprayings in the orchard. For the Belgium market Philabuster (imazalil & pyrimethanil) is registered for postharvest treatments since for this product a proper solution for the waste water of postharvest uses was developed to protect surface waters (Funds technology). Philabuster provides an advanced mould control towards fruit rot pathogens Gloeosporium spp., Botrytis cinerea and Penicillium spp. In this context several trials were set up to evaluate the biological efficacy of Philabuster alone or in combination with preharvest sprayings in the orchard. In concrete different preharvest spraying schedules were applied in the last six weeks before harvest on apple and pear facing parameters as rational fungicide use, antifungal effectiveness and cost price. The purpose was to select the optimal combination in use of preharvest fungicides with Philabuster as postharvest treatment, which offer full protection towards all key pathogens in apple and pear.  相似文献   

18.
The HIV epidemic is, by many criteria, the worst outbreak of infectious disease in history. The rate of new infections is now approximately 5 million per year, mainly in the developing world, and is increasing. Women are now substantially more at risk of infection with HIV than men. With no cure or effective vaccine in sight, a huge effort is required to develop topical agents (often called microbicides) that, applied to the vaginal mucosa, would prevent infection of these high-risk individuals. We discuss the targets for topical agents that have been identified by studies of the biology of HIV infection and provide an overview of the progress towards the development of a usable agent.  相似文献   

19.
Morita  Masaya  Kitanobo  Seiya  Nozu  Ryo  Iwao  Kenji  Fukami  Hironobu  Isomura  Naoko 《Coral reefs (Online)》2019,38(6):1211-1223
Coral Reefs - Although many sympatric species of the coral Acropora spawns on the same day, hybridization is partly prevented by their species-specific fertilization manner. On the other hand,...  相似文献   

20.
Soil and crop management strategies to prevent iron deficiency in crops   总被引:5,自引:0,他引:5  
Plants and humans cannot easily acquire iron from their nutrient sources although it is abundant in nature. Thus, iron deficiency is one of the major limiting factors affecting crop yields, food quality and human nutrition. Therefore, approaches need to be developed to increase Fe uptake by roots, transfer to edible plant portions and absorption by humans from plant food sources. Integrated strategies for soil and crop management are attractive not only for improving growing conditions for crops but also for exploiting a plant??s potential for Fe mobilization and utilization. Recent research progress in soil and crop management has provided the means to resolve complex plant Fe nutritional problems through manipulating the rhizosphere (e.g., rhizosphere fertilization and water regulation), and crop management (includes managing cropping systems and screening for Fe efficient species and varieties). Some simple and effective soil management practices, termed ??rhizosphere fertilization?? (such as root feeding and bag fertilization) have been developed and widely used by local farmers in China to improve the Fe nutrition of fruit plants. Production practices for rice cultivation are shifting from paddy-rice to aerobic rice to make more efficient use of irrigation water. This shift has brought about increases in Fe deficiency in rice, a new challenge depressing iron availability in rice and reducing Fe supplies to humans. Current crop management strategies addressing Fe deficiency include Fe foliar application, trunk injection, plant breeding for enriched Fe crop species and varieties, and selection of cropping systems. Managing cropping systems, such as intercropping strategies may have numerous advantages in terms of increasing Fe availability to plants. Studies of intercropping systems on peanut/maize, wheat/chickpea and guava/sorghum or -maize increased Fe content of crops and their seed, which suggests that a reasonable intercropping system of iron-efficient species could prevent or mitigate Fe deficiency in Fe-inefficient plants. This review provides a comprehensive comparison of the strategies that have been developed to address Fe deficiency and discusses the most recent advance in soil and crop management to improve the Fe nutrition of crops. These proofs of concept studies will serve as the basis for future Fe research and for integrated and optimized management strategies to alleviate Fe deficiency in farmers?? fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号