首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human vaults are intracellular ribonucleoprotein particles believed to be involved in multidrug resistance. The complex consists of a major vault protein (MVP), two minor vault proteins (VPARP and TEP1), and several small untranslated RNA molecules. Three human vault RNA genes (HVG1-3) have been described, and a fourth was found in a homology search (HVG4). In the literature only the association of hvg1 with vaults was shown in vivo. However, in a yeast three-hybrid screen the association of hvg1, hvg2, and hvg4 with TEP1 was demonstrated. In this study we investigated the expression and vault association of different vault RNAs in a variety of cell lines, including pairs of drug-sensitive and drug-resistant cells. HVG1-3 are expressed in all cell lines examined, however, none of the cell lines expressed HVG4. This probably is a consequence of the absence of essential external polymerase III promoter elements. The bulk of the vault RNA associated with vaults was hvg1. Interestingly, an increased amount of hvg3 was bound to vaults isolated from multidrug-resistant cell lines. Our findings suggest that vaults bind the RNA molecules with different affinities in different situations. The ratio in which the vault RNAs are associated with vaults might be of functional importance.  相似文献   

2.
The prevalence and differentiation of dendritic cells (DC) in lymphoid tissue of simian immunodeficiency virus (SIV)-infected cynomolgus monkeys was studied during disease progression. Lymph node biopsies were consecutively obtained from clinical rapid and slow progressors until the development of disease consistent with simian acquired immunodeficiency syndrome (sAIDS) occurred. Quantitative evaluation of CD1a+ DC and the expression of DC antigens related to maturation (CD83, DC-LAMP and S100b) were performed at the single cell level by in situ image analysis. Despite a persistent prevalence of CD1a+ DC in lymphoid tissue during disease progression, there was a subsequent drop of mature CD83+, DC-LAMP+ and S100b+ DC, correlating with the decline of CD4+ T cells in blood. Thus, disease progression to sAIDS was associated with impaired maturation of DC, and lack of CD83, DC-LAMP and S100b expression.  相似文献   

3.
Dendritic cells (DCs) are antigen-presenting cells that play a major role in initiating primary immune responses. We have utilized two independent approaches, DNA microarrays and proteomics, to analyze the expression profile of human CD14(+) blood monocytes and their derived DCs. Analysis of gene expression changes at the RNA level using oligonucleotide microarrays complementary to 6300 human genes showed that approximately 40% of the genes were expressed in DCs. A total of 255 genes (4%) were found to be regulated during DC differentiation or maturation. Most of these genes were not previously associated with DCs and included genes encoding secreted proteins as well as genes involved in cell adhesion, signaling, and lipid metabolism. Protein analysis of the same cell populations was done using two-dimensional gel electrophoresis. A total of 900 distinct protein spots were included, and 4% of them exhibited quantitative changes during DC differentiation and maturation. Differentially expressed proteins were identified by mass spectrometry and found to represent proteins with Ca(2+) binding, fatty acid binding, or chaperone activities as well as proteins involved in cell motility. In addition, proteomic analysis provided an assessment of post-translational modifications. The chaperone protein, calreticulin, was found to undergo cleavage, yielding a novel form. The combined oligonucleotide microarray and proteomic approaches have uncovered novel genes associated with DC differentiation and maturation and has allowed analysis of post-translational modifications of specific proteins as part of these processes.  相似文献   

4.
5.
Summary While tumor cell-derived factors have been demonstrated to hamper the in vitro differentiation and maturation of dendritic cells (DCs) from hematopoietic stem cells, their effects on DC differentiation from CD14+ plastic-adherent monocytic precursors have been controversial. To address this issue, we examined the effects of the culture supernatants from six tumor cell lines on in vitro DC differentiation and maturation from monocytes. Two tumor cell supernatants, MDA468 and 293T, were found to be able to affect the in vitro differentiation of DCs from monocytic precursors, leading to the generation of a distinct type of DC with markedly reduced expression of DC-SIGN, downregulation of CD11c, HLA-DR and CD1a, and upregulation of CD123, HLA-ABC, CD80, CD40, CD86, CD54, CD83, CD25 and CCR7. Functionally, these DCs exhibited reduced phagocytosis and enhanced allostimulatory capacity. Further investigation demonstrated that the changes in DC phenotype and functions were due to the presence of mycoplasmas in these two cell lines; eradication of mycoplasmas completely abolished the observed effects, and importantly, pure mycoplasmas in the absence of tumor cell supernatants were able to produce the same effects. Since mycoplasmas are common contamination agents in routine tissue culture, our results caution that many reported effects of DCs in culture warrant re-evaluation. The distinct effects of mycoplasmas on DC differentiation described in this report could potentially benefit future development of DC-based vaccination and therapeutic applications.Received 21 April 2004; accepted in revised form 1 August 2004 © 2005 National Science Council, Taipei  相似文献   

6.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

7.
Polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BP) are environmental carcinogens exhibiting potent immunosuppressive properties. To determine the cellular bases of this immunotoxicity, we have studied the effects of PAHs on differentiation, maturation, and function of monocyte-derived dendritic cells (DC). Exposure to BP during monocyte differentiation into DC upon the action of GM-CSF and IL-4 markedly inhibited the up-regulation of markers found in DC such as CD1a, CD80, and CD40, without altering cell viability. Besides BP, PAHs such as dimethylbenz(a)anthracene and benzanthracene also strongly altered CD1a levels. Moreover, DC generated in the presence of BP displayed decreased endocytic activity. Features of LPS-mediated maturation of DC, such as CD83 up-regulation and IL-12 secretion, were also impaired in response to BP treatment. BP-exposed DC poorly stimulated T cell proliferation in mixed leukocyte reactions compared with their untreated counterparts. In contrast to BP, the halogenated arylhydrocarbon 2,3,7,8-tetrachlorodibenzo-p-dioxin, which shares some features with PAHs, including interaction with the arylhydrocarbon receptor, failed to phenotypically alter differentiation of monocytes into DC, suggesting that binding to the arylhydrocarbon receptor cannot mimic PAH effects on DC. Overall, these data demonstrate that exposure to PAHs inhibits in vitro functional differentiation and maturation of blood monocyte-derived DC. Such an effect may contribute to the immunotoxicity of these environmental contaminants due to the major role that DC play as potent APC in the development of the immune response.  相似文献   

8.
The clinical use of dendritic cells (DC) as tumor vaccines is very much dependent on their survival potential. Members of the tumor necrosis factor (TNF) receptor superfamily and their ligands are involved in the regulation of cell death. Fas (CD95) is a representative protein that promotes apoptosis. The Bcl-2 family of proteins functions as an integrator of diverse pro- and anti-apoptotic signals. It has been found that DC maturation facilitates their survival, and thus has an anti-apoptotic function. However, little is known about the underlying mechanisms. We investigated the effects of TNF-alpha and lipopolysaccharide (LPS) on the expression of apoptotic molecules during differentiation and maturation of DC under serum-free conditions, and correlated this to the sensitivity to apoptosis by the Fas-mediated pathway. Indeed, DC activation effectively inhibited DC apoptosis, which was predominantly accompanied by the upregulation of Bcl-X(L) and to a lesser extent Bcl-2, while Bax and FLICE inhibitory protein (FLIP) remained unchanged. In contrast, in the presence of serum FLIP was also upregulated. We conclude that under serum-free conditions, Bcl-X(L) rather than FLIP plays the main role in protection against DC apoptosis.  相似文献   

9.
10.
Acute and chronic Plasmodium falciparum malaria are accompanied by severe immunodepression possibly related to subversion of dendritic cells (DC) functionality. Phagocytosed hemozoin (malarial pigment) was shown to inhibit monocyte functions related to immunity. Hemozoin-loaded monocytes, frequently found in circulation and adherent to endothelia in malaria, may interfere with DC development and play a role in immunodepression. Hemozoin-loaded and unloaded human monocytes were differentiated in vitro to immature DC (iDC) by treatment with GM-CSF and IL-4, and to mature DC (mDC) by LPS challenge. In a second setting, hemozoin was fed to iDC further cultured to give mDC. In both settings, cells ingested large amounts of hemozoin undegraded during DC maturation. Hemozoin-fed monocytes did not apoptose but their differentiation and maturation to DC was severely impaired as shown by blunted expression of MHC class II and costimulatory molecules CD83, CD80, CD54, CD40, CD1a, and lower levels of CD83-specific mRNA in hemozoin-loaded iDC and mDC compared with unfed or latex-loaded DC. Further studies indicated activation of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in hemozoin-loaded iDC and mDC, associated with increased expression of PPAR-gamma mRNA, without apparent involvement of NF-kappaB. Moreover, expression of PPAR-gamma was induced and up-regulation of CD83 was inhibited by supplementing iDC and mDC with plausible concentrations of 15(S)-hydroxyeicosatetraenoic acid, a PPAR-gamma ligand abundantly produced by hemozoin via heme-catalyzed lipoperoxidation.  相似文献   

11.
The plastic role of dendritic cells (DCs) in the regulation of immune responses has made them interesting targets for immunotherapy, but also for pathogens or tumors to evade immunity. Functional alterations of DCs are often ascribed to manipulation of canonical NF-κB activity. However, though this pathway has been linked to murine myeloid DC biology, a detailed analysis of its importance in human myeloid DC differentiation, survival, maturation, and function is lacking. The myeloid DC subsets include interstitial DCs and Langerhans cells. In this study, we investigated the role of canonical NF-κB in human myeloid DCs generated from monocytes (monocyte-derived DCs [mo-DCs]) or CD34(+) progenitors (CD34-derived myeloid DCs [CD34-mDCs]). Inhibition of NF-κB activation during and after mo-DC, CD34-interstitial DC, or CD34-Langerhans cell differentiation resulted in apoptosis induction associated with caspase 3 activation and loss of mitochondrial transmembrane potential. Besides regulating survival, canonical NF-κB activity was required for the acquisition of a DC phenotype. Despite phenotypic differences, however, Ag uptake, costimulatory molecule and CCR7 expression, as well as T cell stimulatory capacity of cells generated under NF-κB inhibition were comparable to control DCs, indicating that canonical NF-κB activity during differentiation is redundant for the development of functional APCs. However, both mo-DC and CD34-mDC functionality were reduced by NF-κB inhibition during activation. In conclusion, canonical NF-κB activity is essential for the development and function of mo-DCs as well as CD34-mDCs. Insight into the role of this pathway may help in understanding how pathogens and tumors escape immunity and aid in developing novel treatment strategies aiming to interfere with human immune responses.  相似文献   

12.
The ability of dendritic cells (DC) to initiate immune responses in naive T cells is dependent upon a maturation process that allows the cells to develop their potent Ag-presenting capacity. Although immature DC can be derived in vitro by treatment of peripheral blood monocytes with GM-CSF and IL-4, additional signals such as those provided by TNF-alpha, CD40 ligand, or LPS are required for complete maturation and maximum APC function. Because we recently found that microbial lipoproteins can activate monocytes and DC through Toll-like receptor (TLR) 2, we also investigated whether lipoproteins can drive DC maturation. Immature DC were cultured with or without lipoproteins and were monitored for expression of cell surface markers indicative of maturation. Stimulation with lipopeptides increased expression of CD83, MHC class II, CD80, CD86, CD54, and CD58, and decreased CD32 expression and endocytic activity; these lipopeptide-matured DC also displayed enhanced T cell stimulatory capacity in MLR, as measured by T cell proliferation and IFN-gamma secretion. The lipid moiety of the lipopeptide was found to be essential for induction of maturation. Preincubation of maturing DC with an anti-TLR2 blocking Ab before addition of lipopeptide blocked the phenotypic and functional changes associated with DC maturation. These results demonstrate that lipopeptides can stimulate DC maturation via TLR2, providing a mechanism by which products of bacteria can participate in the initiation of an immune response.  相似文献   

13.
Multi-drug-resistant cancer cells frequently express elevated levels of ribonucleoprotein complexes termed vaults. The increased expression of vault proteins and their mRNAs has led to the suggestion that vaults may play a direct role in preventing drug toxicity. To further understand vault component up-regulation, the three proteins that comprise the vault, the major vault protein (MVP), vault poly(ADP-ribose) polymerase (VPARP), and telomerase-associated protein-1 (TEP1), were examined with respect to gene amplification and drug-induced chromatin remodeling. Gene amplification was not responsible for increased vault component levels in multi-drug-resistant cancer cell lines. The TATA-less murine MVP and human VPARP promoters were identified and functionally characterized. There was no significant activation of either the MVP or VPARP promoters in drug-resistant cell lines in comparison to their parental, drug-sensitive counterparts. Treatment of various cell lines with sodium butyrate, an inhibitor of histone deacetylase (HDAC), led to an increase in vault component protein levels. Furthermore, treatment with trichostatin A (TSA), a more specific inhibitor of HDAC, caused an increase in MVP protein, mRNA, and promoter activity. These results suggest that up-regulation of MVP in multi-drug resistance (MDR) may involve chromatin remodeling.  相似文献   

14.
We describe a phenotypically and functionally novel monocyte-derived dendritic cell (DC) subset, designated mDC2, that lacks IL-12 synthesis, produces high levels of IL-10, and directs differentiation of Th0/Th2 cells. Like conventional monocyte-derived DC, designated mDC1, mDC2 expressed high levels of CD11c, CD40, CD80, CD86, and MHC class II molecules. However, in contrast to mDC1, mDC2 lacked expression of CD1a, suggesting an association between cytokine production profile and CD1a expression in DC. mDC2 could be matured into CD83+ DC cells in the presence of anti-CD40 mAbs and LPS plus IFN-gamma, but they remained CD1a- and lacked IL-12 production even upon maturation. The lack of IL-12 and CD1a expression by mDC2 did not affect their APC capacity, because mDC2 stimulated MLR to a similar degree as mDC1. However, while mDC1 strongly favored Th1 differentiation, mDC2 directed differentiation of Th0/Th2 cells when cocultured with purified human peripheral blood T cells, further indicating functional differences between mDC1 and mDC2. Interestingly, the transfection efficiency of mDC2 with plasmid DNA vectors was significantly higher than that of mDC1, and therefore mDC2 may provide improved means to manipulate Ag-specific T cell responses after transfection ex vivo. Taken together, these data indicate that peripheral blood monocytes have the capacity to differentiate into DC subsets with different cytokine production profiles, which is associated with altered capacity to direct Th cell differentiation.  相似文献   

15.
The interaction between immune complexes (IC) and the receptors for the Fc portion of IgG (FcgammaRs) triggers regulatory and effector functions in the immune system. In this study, we investigated the effects of IC on differentiation, maturation, and functions of human monocyte-derived dendritic cells (DC). When IC were added on day 0, DC generated on day 6 (IC-DC) showed lower levels of CD1a and increased expression of CD14, MHC class II, and the macrophage marker CD68, as compared with normally differentiated DC. The use of specific blocking FcgammaR mAbs indicated that the effect of IC was exerted mainly through their interaction with FcgammaRI and to a lesser extend with FcgammaRII. Immature IC-DC also expressed higher levels of CD83, CD86, and CD40 and the expression of these maturation markers was not further regulated by LPS. The apparent lack of maturation following TLR stimulation was associated with a decreased production of IL-12, normal secretion of IL-10 and CCL22, and increased production of CXCL8 and CCL2. IC-DC displayed low endocytic activity and a reduced ability to induce allogeneic T cell proliferation both at basal and LPS-stimulated conditions. Altogether, these data reveal that IC strongly affect DC differentiation and maturation. Skewing of DC function from Ag presentation to a proinflammatory phenotype by IC resembles the state of activation observed in DC obtained from patients with chronic inflammatory autoimmune disorders, such as systemic lupus erythematosus disease and arthritis. Therefore, the altered maturation of DC induced by IC may be involved in the pathogenesis of autoimmune diseases.  相似文献   

16.
Understanding the whole process of dendritic cell (DC) activation might help in the development of more efficient immunotherapeutic strategies for tumor patients. Part of this process is cytokine secretion, which has important effects on innate and adaptive immune response. Here, we cultured circulating monocytes for five days with interleukin-4 and GM-CSF followed by two-day culture with or without CD40 ligand and LPS to create a mature DC (mDC) and an immature DC (iDC) phenotype, respectively, characterized by differential expression of co-stimulatory molecules (CD80, CD83). We then compared the cytokine expression profile of the mDC and iDC using two protein platform arrays. Twelve supernatants from mDC paired with 12 from iDC were compared. The mDC protein expression profile showed significant increases in 16 out of 34 factors tested, including TNFalpha, IL-10, IL-12, IFNgamma, MIP1alpha, MIP1beta, IL-8, MDC, RANTES, and IL-6, which play a crucial role in the regulation of the innate immune response as well as the recruitment and activation of adaptive immune effectors. Interestingly, some of the cytokines expressed during maturation were also found in the gene expression profile identified in tumor metastases following IL-2 therapy using cDNA arrays. This finding suggests a possible role for resident DC maturation as a mediator of systemic IL-2 effects. Most important, the array of cytokines secreted during DC maturation may be considered an important component during adoptive transfer. Further characterization of the kinetics and persistence of their secretion should be undertaken in the future.  相似文献   

17.
Dendritic cells (DCs) play a key role in the initiation stage of an antigen-specific immune response. A variety of tumor-derived factors (TDFs) can suppress DC maturation and function, resulting in defects in the tumor-specific immune response. To identify unknown TDFs that may suppress DCs maturation and function, we established a high-throughput screening technology based on a human liver tumor T7 phage cDNA library and screened all of the proteins derived from hepatoma cells that potentially interact with immature DCs. Growth/differentiation factor-15 (GDF-15) was detected and chosen for further study. By incubation of DCs cultures with GDF-15, we demonstrate that GDF-15 can inhibit surface protrusion formation during DC maturation; suppress the membrane expression of CD83, CD86 and HLA-DR on DCs; enhance phagocytosis by DCs; reduce IL-12 and elevate TGF-β1 secretion by DCs; inhibit T cell stimulation and cytotoxic T lymphocyte (CTL) activation by DCs. By building tumor-bearing mouse models, we demonstrate that GDF-15 can inhibit the ability of DCs to stimulate a tumor-specific immune response in vivo. These results indicate that GDF-15 may be one of the critical molecules that inhibit DC maturation and function and are involved in tumor immune escape. Thus, GDF-15 may be a novel target in tumor immunotherapy.  相似文献   

18.
To trigger an effective T cell-mediated immune response in the skin, cutaneous dendritic cells (DC) migrate into locally draining lymph nodes, where they present Ag to naive T cells. Little is known about the interaction of DC with the various cellular microenvironments they encounter during their migration from the skin to lymphoid tissues. In this study, we show that human DC generated from peripheral blood monocytes specifically interact with human dermal fibroblasts via the interaction of beta(2) integrins on DC with Thy-1 (CD90) and ICAM-1 on fibroblasts. This induced the phenotypic maturation of DC reflected by expression of CD83, CD86, CD80, and HLA-DR in a TNF-alpha- and ICAM-1-dependent manner. Moreover, fibroblast-matured DC potently induced T cell activation reflected by CD25 expression and enhanced T cell proliferation. Together these data demonstrate that dermal fibroblasts that DC can encounter during their trafficking from skin to lymph node can act as potent regulators of DC differentiation and function, and thus may actively participate in the regulation and outcome of DC-driven cutaneous immune responses.  相似文献   

19.
In vivo, dendritic cells (DC) are programmed to orchestrate innate and adaptive immunity in response to pathogen-derived "danger" signals. Under particular circumstances, DC can also be directly cytotoxic against tumor cells, potentially allowing them to release tumor associated Ags from dying cells and then prime antitumor immunity against them. In this study, we describe the innate characteristics of DC (OK-DC) generated in vitro after exposure of immature human myeloid-derived DC to OK432, a penicillin-inactivated and lyophilized preparation of Streptococcus pyrogenes. OK-DC produced proinflammatory cytokines, stimulated autologous T cell proliferation and IFN-gamma secretion, expressed CCR7, and migrated in response to MIP-3beta. Moreover, OK-DC displayed strong, specific cytotoxicity toward tumor cell targets. This cytotoxicity was associated with novel, OK432-induced up-regulation of CD40L on the cell surface of OK-DC, and was absolutely dependent on expression of CD40 on the tumor targets. These data demonstrate that maturation of human DC with OK432, an adjuvant suitable for clinical use, induces direct tumor cell killing by DC, and describes a novel CD40/CD40L-mediated mechanism for specific DC antitumor cytotoxicity.  相似文献   

20.
Maturation of dendritic cells (DC) is crucial for their ability to induce adaptive immunity. Although several mediators of DC maturation have been found, their contributions to DC maturation during infection are poorly understood. In this study we show that murine conventional (CD11c(high)) DC up-regulate costimulatory molecules in a subset-specific manner after oral Salmonella infection. Although both CD8alpha+ and CD8alpha- subsets increase CD86 expression, CD40 was preferentially up-regulated on CD8alpha+ DC, and CD80 was preferentially increased on CD8alpha- DC. In addition, high levels of CD80 and CD86 were found on CD11c(int)CD11b+ cells that accumulated in infected organs. Costimulatory molecules were simultaneously induced on CD11c(high) and CD11c(int)CD11b+ cells in Peyer's patches, mesenteric lymph nodes and spleen 5 days after infection despite different kinetics of peak bacterial burden in these organs. Up-regulation of costimulatory molecules occurred on all DC within the respective subset. Moreover, <1% of CD11c-expressing cells associated with Salmonella expressing enhanced GFP in vivo. Thus, DC maturation did not depend on bacterial uptake. Rather, infection-induced up-regulation of CD80, CD86, and CD40 on CD11c-expressing cells of mesenteric lymph nodes was dependent on TNFR type I (TNFRI) signaling. Although indirect up-regulation of costimulatory molecules on DC and CD11c(int)CD11b+ cells was TNFRI dependent, cells directly associated with Salmonella were able to mature independently of TNFRI signaling. Thus, Salmonella-induced TNF-alpha is an important mediator of indirect DC maturation during infection, whereas a TNF-alpha-independent maturation pathway contributes to direct maturation of bacteria-associated DC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号