共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
We analyzed the integration specificity of the hobo transposable element of Drosophila melanogaster. Our results indicate
that hobo is similar to other transposable elements in that it can integrate into a large number of sites, but that some sites
are preferred over others, with a few sites acting as integration hot spots. A comparison of DNA sequences from 112 hobo integration
sites identified a consensus sequence of NTNNNNAC, but this consensus was insufficient to account for the observed integration
specificity. To begin to define the parameters affecting hobo integration preferences, we analyzed sequences flanking a donor
hobo element, as well as sequences flanking a hobo integration hot spot for their relative influence on hobo integration specificity.
We demonstrate experimentally that sequences flanking a hobo donor element do not influence subsequent integration site preference,
whereas, sequences contained within 31 base pairs flanking an integration hot spot have a significant effect on the frequency
of integration into that site. However, sequence analysis of the DNA flanking several hot spots failed to identify any common
sequence motif shared by these sites. This lack of primary sequence information suggests that higher order DNA structural
characteristics of the DNA and/or chromatin may influence integration site selection by the hobo element.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
5.
6.
The Bicoid morphogen is amongst the earliest triggers of differential spatial pattern of gene expression and subsequent cell fate determination in the embryonic development of Drosophila. This maternally deposited morphogen is thought to diffuse in the embryo, establishing a concentration gradient which is sensed by downstream genes. In most model based analyses of this process, the translation of the bicoid mRNA is thought to take place at a fixed rate from the anterior pole of the embryo and a supply of the resulting protein at a constant rate is assumed. Is this process of morphogen generation a passive one as assumed in the modelling literature so far, or would available data support an alternate hypothesis that the stability of the mRNA is regulated by active processes? We introduce a model in which the stability of the maternal mRNA is regulated by being held constant for a length of time, followed by rapid degradation. With this more realistic model of the source, we have analysed three computational models of spatial morphogen propagation along the anterior-posterior axis: (a) passive diffusion modelled as a deterministic differential equation, (b) diffusion enhanced by a cytoplasmic flow term; and (c) diffusion modelled by stochastic simulation of the corresponding chemical reactions. Parameter estimation on these models by matching to publicly available data on spatio-temporal Bicoid profiles suggests strong support for regulated stability over either a constant supply rate or one where the maternal mRNA is permitted to degrade in a passive manner. 相似文献
7.
8.
A novel circadianly expressed Drosophila melanogaster gene dependent on the period gene for its rhythmic expression. 总被引:1,自引:0,他引:1 下载免费PDF全文
The Drosophila melanogaster period (per) gene is required for expression of endogenous circadian rhythms of locomotion and eclosion. per mRNA is expressed with a circadian rhythm that is dependent on Per protein; this feedback loop has been proposed to be essential to the central circadian pacemaker. This model would suggest the Per protein also controls the circadian expression of other genetic loci to generate circadian behavior and physiology. In this paper we describe Dreg-5, a gene whose mRNA is expressed in fly heads with a circadian rhythm nearly identical to that of the per gene. Dreg-5 mRNA continues to cycle in phase with that of per mRNA in conditions of total darkness and also when the daily feeding time is altered. Like per mRNA, Dreg-5 mRNA is not expressed rhythmically in per null mutant flies. Dreg-5 encodes a novel 298 residue protein and Dreg-5 protein isoforms also oscillate in abundance with a circadian rhythm. The phase of Dreg-5 protein oscillation, however, is different from that of Per protein expression, suggesting that Dreg-5 and per have common translational but different post-translational control mechanisms. These results demonstrate that the per gene is capable of modulating the rhythmic expression of other genes; this activity may form the basis of the output of circadian rhythmicity in Drosophila. 相似文献
9.
In the three maternal effect lethal mutant strains of D. melanogaster described in this report, the homozygous mutant females produce defective eggs that cannot support normal embryonic development. The embryos from these eggs begin to develop for the first 2 hr after fertilization in an apparently normal way, forming a blastula containing a cluster of pole cells at the posterior end and a layer of syncytial blastoderm nuclei. During the subsequent transition from a syncytial to a cellular blastoderm, cell formation in the blastoderm is either partially or totally blocked. In mutant mat(3)1 no blastoderm cells are formed, indicating that there are separate genetic controls for pole cells and blastoderm cells. The other two mutants form an incomplete cellular blastoderm in which certain regions of the blastoderm remain noncellular. The noncellular region in mutant mat(3)3 is on the posterior-dorsal surface, covering about 30% of the total blastoderm. In mutant mat(3)6 blastoderm cells are formed only at the anterior and posterior ends, separated by a noncellular region that covers about 70% of the total blastoderm. The selective effects on blastoderm cell formation in the three mutants emphasize the importance of components present in the egg before fertilization for the transition from a syncytial to a cellular blastoderm.The genes defective in the three mutants are essential only for oogenesis and not for any other period of development, as indicated by a strict dependence of the lethal phenotypes on the maternal genotypes. Heterozygous embryos from the eggs of homozygous mutant females die, whereas homozygous mutant embryos from the eggs of heterozygous females develop into viable adults.One of the mutants, mat(3)3, has a temperature-sensitive phenotype. Homozygous mat(3)3 females maintained at a restrictive temperature of 29°C show the lethal maternal effect. However, at a permissive temperature of 20°C the females produce viable adult progeny. The temperature-sensitive period in mat(3)3 females occurs during the last 12 hr of oogenesis, consistent with the maternal effect phenotype of the mutant. 相似文献
10.
11.
Summary Genetically marked maroon-like (mal) clones were induced by mitotic recombination with X-rays at the blastoderm stage in mal/mal
+ heterozygotes and were analysed in differentiated Malpighian tubules (MT). Marked cells were not confined to single anterior (MA) or posterior (MP) tubules, but were distributed among the four tubules. About 70% of the clones with two or more cells were fragmented, i.e. mal cells were separated by wild-type cells. Since the clones contain, on average, 6 cells and the differentiated MT consist of 484 cells (2 × 136 MA cells, 2 × 106 MP cells), we estimate that there are about 80 cells in the blastoderm anlage which on average pass through two to three mitoses. With increasing radiation doses (254 R, 635 R, 1270 R) a linear increase in clone frequency is observed. The mean sizes and size distributions of clones, however, remain unchanged. Since the increasing radiation dose also results in fewer differentiated Malpighi cells, we assume that regeneration does not occur. Therefore, size distributions of marked clones presumably represent real mitotic patterns in normogenesis. We suggest that essentially three successive mitoses take place, with a decreasing fraction of cells showing mitotic activity. Only a small fraction of cells goes through a fourth or even a fifth mitosis. Marked non-Minute clones induced in Minute heterozygotes are more frequent, but are not larger than non-Minute clones in wild-type background. Therefore, compartment boundaries cannot be recognized by this method. However, frequencies of marked cells found simultaneously in MA and MP pairs or in several single tubules of the same individuals are significantly higher than frequencies of multiple recombination events predicted by the Poisson distribution. From this, we conclude that neither the MA pair nor the MP pair nor single tubules represent compartments of the MT anlage.On the occasion of his 60th birthday, this work is dedicated to Prof. Dr. H.J. Becker, who initiated cell lineage studies in Drosophila 相似文献
12.
DFak56 is a novel Drosophila melanogaster focal adhesion kinase 总被引:2,自引:0,他引:2
Palmer RH Fessler LI Edeen PT Madigan SJ McKeown M Hunter T 《The Journal of biological chemistry》1999,274(50):35621-35629
The mammalian focal adhesion kinase (FAK) family of nonreceptor protein-tyrosine kinases have been implicated in controlling a multitude of cellular responses to the engagement of cell surface integrins and G protein-coupled receptors. We describe here a Drosophila melanogaster FAK homologue, DFak56, which maps to band 56D on the right arm of the second chromosome. Full-length DFak56 cDNA encodes a phosphoprotein of 140 kDa, which shares strong sequence similarity not only with mammalian p125(FAK) but also with the more recently described mammalian Pyk2 (also known as CAKbeta, RAFTK, FAK2, and CADTK) FAK family member. DFak56 has intrinsic tyrosine kinase activity and is phosphorylated on tyrosine in vivo. As is the case for FAK, tyrosine phosphorylation of DFak56 is increased upon plating Drosophila embryo cells on extracellular matrix proteins. In situ hybridization and immunofluorescence staining analysis showed that DFak56 is ubiquitously expressed with particularly high levels within the developing central nervous system. We utilized the UAS-GAL4 expression system to express DFak56 and analyze its function in vivo. Overexpression of DFak56 in the wing imaginal disc results in wing blistering in adults, a phenotype also observed with both position-specific integrin loss of function and position-specific integrin overexpression. Our results imply a role for DFak56 in adhesion-dependent signaling pathways in vivo during D. melanogaster development. 相似文献
13.
High-frequency P element loss in Drosophila is homolog dependent 总被引:50,自引:0,他引:50
P transposable elements in Drosophila melanogaster can undergo precise loss at a rate exceeding 13% per generation. The process is similar to gene conversion in its requirement for a homolog that is wild type at the insertion site and in its reduced frequency when pairing between the homologs is inhibited. However, it differs from classical gene conversion by its high frequency, its requirement for P transposase, its unidirectionality, and its occurrence in somatic and premeiotic cells. Our results suggest a model of P element transposition in which jumps occur by a "cut-and-paste" mechanism but are followed by double-strand gap repair to restore the P element at the donor site. The results also suggest a technique for site-directed mutagenesis in Drosophila. 相似文献
14.
15.
Jym Mohler 《Mechanisms of development》1995,50(2-3):151-161
The effects of mutations in five anterior gap genes (hkb, tll, otd, ems and btd) on the spatial expression of the segment polarity genes, wg and hh, were analyzed at the late blastoderm stage and during subsequent development. Both wg and hh are normally expressed at blastoderm stage in two broad domains anterior to the segmental stripes of the trunk region. At the blastoderm stage, each gap gene acts specifically to regulate the expression of either wg or hh in the anterior cephalic region: hkb, otd and btd regulate the anterior blastoderm expression of wg, while tll and ems regulate hh blastoderm expression. Additionally, btd is required for the first segmental stripe (mandibular segment) of both hh and wg at blastoderm stages. The subsequent segmentation of the cephalic segments (preantennal, antennal and intercalary) appears to be dependent on the overlap of the wg and hh cephalic domains as defined by these gap genes at the blastoderm stage. None of these five known gap genes are required for the activation of the labral segment domains of hh and wg, which are presumably either activated directly by maternal pathways or by an unidentified gap gene. 相似文献
16.
《Cellular signalling》2014,26(12):3016-3026
Notch signaling pathway unravels a fundamental cellular communication system that plays an elemental role in development. It is evident from different studies that the outcome of Notch signaling depends on signal strength, timing, cell type, and cellular context. Since Notch signaling affects a spectrum of cellular activity at various developmental stages by reorganizing itself in more than one way to produce different intensities in the signaling output, it is important to understand the context dependent complexity of Notch signaling and different routes of its regulation. We identified, TRAF6 (Drosophila homolog of mammalian TRAF6) as an interacting partner of Notch intracellular domain (Notch-ICD). TRAF6 genetically interacts with Notch pathway components in trans-heterozygous combinations. Immunocytochemical analysis shows that TRAF6 co-localizes with Notch in Drosophila third instar larval tissues. Our genetic interaction data suggests that the loss-of-function of TRAF6 leads to the rescue of previously identified Kurtz–Deltex mediated wing notching phenotype and enhances Notch protein survival. Co-expression of TRAF6 and Deltex results in depletion of Notch in the larval wing discs and down-regulates Notch targets, Wingless and Cut. Taken together, our results suggest that TRAF6 may function as a negative regulator of Notch signaling. 相似文献
17.
18.
The hierarchy of the segmentation cascade responsible for establishing the Drosophila body plan is composed by gap, pair-rule and segment polarity genes. However, no pair-rule stripes are formed in the anterior regions of the embryo. This lack of stripe formation, as well as other evidence from the literature that is further investigated here, led us to the hypothesis that anterior gap genes might be involved in a combinatorial mechanism responsible for repressing the cis-regulatory modules (CRMs) of hairy (h), even-skipped (eve), runt (run), and fushi-tarazu (ftz) anterior-most stripes. In this study, we investigated huckebein (hkb), which has a gap expression domain at the anterior tip of the embryo. Using genetic methods we were able to detect deviations from the wild-type patterns of the anterior-most pair-rule stripes in different genetic backgrounds, which were consistent with Hkb-mediated repression. Moreover, we developed an image processing tool that, for the most part, confirmed our assumptions. Using an hkb misexpression system, we further detected specific repression on anterior stripes. Furthermore, bioinformatics analysis predicted an increased significance of binding site clusters in the CRMs of h 1, eve 1, run 1 and ftz 1when Hkb was incorporated in the analysis, indicating that Hkb plays a direct role in these CRMs. We further discuss that Hkb and Slp1, which is the other previously identified common repressor of anterior stripes, might participate in a combinatorial repression mechanism controlling stripe CRMs in the anterior parts of the embryo and define the borders of these anterior stripes. 相似文献
19.