首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Cyclin-dependent kinase (CDK) inhibitor genes encode low molecular weight proteins which have important functions in cell cycle regulation, development and perhaps also in tumorigenesis. The first plant CDK inhibitor gene ICK1 was recently identified from Arabidopsis thaliana . Although the C-terminal domain of ICK1 contained an important consensus sequence with the mammalian CDK inhibitor p27Kip1, the remainder of the deduced ICK1 sequence showed little similarity to any known CDK inhibitors. In vitro assays showed that recombinant ICK1 exhibited unique kinase inhibitory properties. In the present study we characterized ICK1 in terms of its gene structure, its interaction with both A. thaliana Cdc2a and CycD3, and its induction by the plant growth regulator, abscisic acid (ABA). ICK1 was expressed at a relatively low level in the tissues surveyed. However, ICK1 was induced by ABA, and along with ICK1 induction there was a decrease in Cdc2-like histone H1 kinase activity. These results suggest a molecular mechanism by which plant cell division might be inhibited by ABA. ICK1 clones were also identified from independent yeast two-hybrid screens using the CycD3 construct. The implication that ICK1 protein could interact with both Cdc2a and CycD3 was confirmed by in vitro binding assays. Furthermore, deletion analysis indicated that different regions of ICK1 are required for the interactions with Cdc2a and CycD3. These results provide a mechanistic basis for understanding the role of CDK inhibitors in cell cycle regulation in plant cells.  相似文献   

3.
Cyclin-dependent kinases (CDKs) are important regulators of the eukaryotic cell division cycle. To study protein-protein interactions involving plant CDKs, the Arabidopsis thaliana Cdc2aAt was used as bait in the yeast two-hybrid system. Here we report on the isolation of ICK2, and show that it interacts with Cdc2aAt, but not with a second CDK from Arabidopsis, Cdc2bAt. ICK2 contains a carboxy-terminal domain related to that of ICK1, a previously described CDK inhibitor from Arabidopsis, and to the CDK-binding domain of the mammalian inhibitor p27Kip1. Outside of this domain, ICK2 is distinct from ICK1, p27Kip1, and other proteins. At nanogram levels (8 nM), purified recombinant ICK2 inhibits p13Suc1-associated histone H1 kinase activity from Arabidopsis tissue extracts, demonstrating that it is a potent inhibitor of plant CDK activity in vitro. ICK2 mRNA was present in all tissues analysed by Northern hybridization, and its distribution was distinct from that of ICK1. These results demonstrate that plants possess a family of differentially regulated CDK inhibitors that contain a conserved carboxy terminal but with distinct amino terminal regions.  相似文献   

4.
The Arabidopsis genome contains seven cyclin-dependent kinase (CDK) inhibitors (ICK for inhibitor/interactor with cyclin-dependent kinase) which share a small conserved C-terminal domain responsible for the CDK-inhibition activity by these proteins. Different ICK/KRPs have been shown to have unique expression patterns within tissues, organs and during the cell cycle. Previous studies have shown that overexpressing one of the ICK/KRPs inhibits CDK activity, cell division, and profoundly affects plant growth and development. In this study, we investigated the subcellular localization of the seven Arabidopsis ICK proteins and domains responsible for this localization. Using transgenic expression in Arabidopsis plants and transient expression in tobacco leaf cells, all ICK/KRPs fused to green fluorescent protein (GFP) were localized to the nucleus, suggesting that the nucleus is the cellular compartment for the plant CDK inhibitors to function. While ICK2/KRP2, ICK4/KRP6, and ICK5/KRP7 were localized to the nucleoplasm in a homogeneous manner, ICK1/KRP1, ICK3/KRP5, ICK6/KRP3, and ICK7/KRP4 showed a punctate pattern of localization. A small motif conserved amongst the latter group of ICK/KRPs is required to confer this subcellular pattern as deletion of this motif from ICK7/KRP4 resulted in a shift from a punctate to a homogeneous pattern of localization. While a single nuclear localization signal (NLS) is responsible for the nuclear localization of ICK2/KRP2, multiple mechanisms for nuclear localization are suggested to exist for the other six ICK/KRPs since deletion mutants lacking predicted NLS motifs and the conserved C-terminal domain are still localized in the nucleus.  相似文献   

5.
The plant CDK inhibitor ICK1 was identified previously from Arabidopis thaliana with its inhibitory activity characterized in vitro. ICK1 displayed several structural and functional features that are distinct from known animal CDK inhibitors. Despite the initial characterization, there is no information on the functions of any plant CDK inhibitor in plants. To gain insight into ICK1 functions in vivo and the role of cell division during plant growth and development, transgenic plants were generated expressing ICK1 driven by the cauliflower mosaic virus 35S promoter. In comparison to control plants, growth was significantly inhibited in transgenic 35S-ICK1 plants, with some plants weighing <10% of wild-type plants at the 3 week stage. Most organs of 35S-ICK1 plants were smaller. There were also modifications in plant morphology such as shape and serration of leaves and petals. The changes were so drastic that 35S-ICK1 plants with strong phenotype no longer resembled wild-type plants morphologically. Analyses showed that increased ICK1 expression resulted in reduced CDK activity and reduced the number of cells in these plants. Cells in 35S-ICK1 plants were larger than corresponding cells in control plants. These results demonstrate that ICK1 acts as a CDK inhibitor in the plant, and the inhibition of cell division by ICK1 expression has profound effects on plant growth and development. They also suggest that alterations of plant organ shape can be achieved by restriction of cell division.  相似文献   

6.
Interactor/inhibitor 1 of Cdc2 kinase (ICK1) from Arabidopsis thaliana is the first plant cyclin-dependent kinase (CDK) inhibitor, and overexpression of ICK1 inhibits CDK activity, cell division and plant growth in transgenic plants. In this study, ICK1 and deletion mutants were expressed either alone or as green fluorescent protein (GFP) fusion proteins in transgenic Arabidopsis plants. Deletion of the C-terminal 15 or 29 amino acids greatly reduced or completely abolished the effects of ICK1 on the transgenic plants, and recombinant proteins lacking the C-terminal residues lost the ability to bind to CDK complex and the kinase inhibition activity, demonstrating the role of the conserved C-terminal domain in in vivo kinase inhibition. In contrast, the mutant ICK1DeltaN108 with the N-terminal 108 residues deleted had much stronger effects on plants than the full-length ICK1. Analyses demonstrated that this effect was not because of an enhanced ability of ICK1DeltaN108 protein to inhibit CDK activity, but a result of a much higher level of ICK1DeltaN108 protein in the plants, indicating that the N-terminal domain contains a sequence or element increasing protein instability in vivo. Furthermore, GFP-ICK1 protein was restricted to the nuclei in roots of transgenic plants, even with the C-terminal or the N-terminal domain deleted, suggesting that a sequence in the central domain of ICK1 is responsible for nuclear localization. These results provide mechanistic understanding about the function and regulation of this cell cycle regulator in plants.  相似文献   

7.
ICK1 is the first member of a family of plant cyclin-dependent kinase (CDK) inhibitors. It has been shown that ICK1 is localized in the nuclei of transgenic Arabidopsis plants. Since cellular localization is important for the functions of cell cycle regulators, a comprehensive analysis was undertaken to identify specific sequences regulating the cellular localization of ICK1. Deletion and site-specific mutants fused to the green fluorescent protein (GFP) were used in transgenic Arabidopsis plants and transfected tobacco cells. Surprisingly, three separate sequences in the N-terminal, central and C-terminal regions of ICK1 could independently confer nuclear localization of the GFP fusion proteins. The central nuclear localization signal NLSICK1 could transport the much larger GUS (β-glucuronidase)-GFP fusion protein into nuclei, while the other two sequences were unable to. These results suggest that NLSICK1 is a strong NLS that actively transports the fusion protein into nuclei, while the other two sequences are either a weaker NLS or confer the nuclear localization of GFP indirectly. It was further observed that the N-terminal sequence specifies a punctate pattern of subnuclear localization, while the C-terminal sequence suppresses it. Furthermore, co-expression of ICK1 and Arabidopsis CDKA, tagged with different GFP variants, showed that ICK1 could mediate the transport of CDKA into nuclei while a mutant ICK11–162 that does not interact with CDKA lost this ability. These results illustrate how the nuclear localization of ICK1 is regulated and also suggest a possible role of ICK1 in regulating the cellular distribution of CDKA.  相似文献   

8.
9.
Reversible phosphorylation of proteins by kinases and phosphatases plays a key regulatory role in several eukaryotic cellular functions including the control of the division cycle. Increasing numbers of sequence and biochemical data show the involvement of cyclin-dependent kinases (CDKs) and cyclins in regulation of the cell cycle progression in higher plants. The complexity represented by different types of CDKs and cyclins in a single species such as alfalfa, indicates that multicomponent regulatory pathways control G2/M transition. A set of cdc2-related genes (cdc2Ms A, B, D and F) was expressed in G2 and M cells. Phosphorylation assays also revealed that at least three kinase complexes (Cdc2Ms A/B, D and F) were successively active in G2/M cells after synchronization. Interaction between alfalfa mitotic cyclin (Medsa;CycB2;1) and a kinase partner has been reported previously. The present yeast two-hybrid analyses showed differential interaction between defined D-type cyclins and Cdc2Ms kinases functioning in G2/M phases. Localization of Cdc2Ms F kinase to the preprophase band (PPB), the perinuclear ring in early prophase, the mitotic spindle and the phragmoplast indicated a pivotal role for this kinase in mitotic plant cells. So far limited research efforts have been devoted to the functions of phosphatases in the control of plant cell division. A homologue of dual phosphatase, cdc25, has not been cloned yet from alfalfa; however tyrosine phosphorylation was indicated in the case of Cdc2Ms A kinase and the p13suc1-bound kinase activity was increased by treatment of this complex with recombinant Drosophila Cdc25. The potential role of serine/threonine phosphatases can be concluded from inhibitor studies based on okadaic acid or endothall. Endothall elevated the kinase activity of p13suc1-bound fractions in G2-phase alfalfa cells. These biochemical data are in accordance with observed cytological abnormalities. The present overview with selected original data outlines a conclusion that emphasizes the complexity of G2/M regulatory events in flowering plants.  相似文献   

10.
The inhibitory activity of Arabidopsis thaliana ICK1, a plant cyclin-dependent kinase inhibitor, has previously been characterised by its effect on plant cyclin-dependent kinase activity in vitro and its effect on growth in transgenic plants. Herein, we examine cyclin-dependent kinase-driven cell-cycle events, probed by testing the sensitivity of living cells to introduced ICK1 protein. The microinjection of ICK1 into individual Tradescantia virginiana stamen hair cells during late prophase and prometaphase resulted in a clear protein-specific increase in the metaphase transit time (time from nuclear envelope breakdown to the onset of anaphase) in a manner dependent on load and injection time. The results indicate a continuing role for cyclin-dependent kinases in mitotic progression and provide in vivo evidence at the cellular level that ICK1 can restrict growth in the plant by inhibiting cell division.  相似文献   

11.
The Arabidopsis genome encodes 10 D-type cyclins (CYCD); however, their differential role in cell cycle control is not well known. Among them, CYCD4;2 is unique in the amino acid sequence; namely, it lacks the Rb-binding motif and the PEST sequence that are conserved in CYCDs. Here, we have shown that CYCD4;2 suppressed G1 cyclin mutations in yeast and formed a kinase complex with CDKA;1, an ortholog of yeast Cdc28, in insect cells. Hypocotyl explants of CYCD4;2 over-expressing plants showed faster induction of calli than wild-type explants on a medium containing lower concentration of auxin. These results suggest that CYCD4;2 has a promotive function in cell division by interacting with CDKA;1 regardless of the unusual primary sequence.  相似文献   

12.
Zhou Y  Wang H  Gilmer S  Whitwill S  Keller W  Fowke LC 《Planta》2002,215(2):248-257
The cyclin-dependent protein kinases (CDKs) have a central role in cell cycle regulation and can be inhibited by the binding of small protein CDK inhibitors. The first plant CDK inhibitor gene ICK1 was previously identified in Arabidopsis thaliana. In comparison to known animal CDK inhibitors, ICK1 protein exhibits unique structural and functional properties. The expression of ICK1 directed by the constitutive CaMV 35S promoter was shown to inhibit cell division and plant growth. The aim of this study was to determine the effects of ICK1 overexpression on particular organs and cells. ICK1 was expressed in specific tissues or cells of Brassica napus L. plants using two tissue-specific promoters, Arabidopsis AP3 and Brassica Bgp1. Transgenic AP3-ICK1 plants were morphologically normal except for some modified flowers either without petals or with petals of reduced size. Surprisingly, petals of novel shapes such as tubular petals were also observed, indicating a profound effect of cell division inhibition on morphogenesis. The cell size in the smaller modified petals was similar to that in control petals, suggesting that the reduction of petal size is mainly due to the reduction of cell numbers and that the inhibition of cell division does not necessarily lead to an increase in cell size. Transgenic Bgp1-ICK1 plants were normal morphologically; however, dramatic decreases in seed production were observed in some plants. In those plants, the ability of pollen to germinate and pollen nuclear number were affected. These results are discussed in relation to the cell cycle and plant development.  相似文献   

13.
In higher plants, one of the major components of developmental processes is cell division. The cell division cycle in plants is controlled by cyclins and cyclin-dependend kinases. Nutrient and hormonal signals can influence the roles that D-type cyclins play in the G1-to-S phase transition. Auxins and cytokinins are long known to be important plant hormones controlling plant growth. Additionally, as sucrose is the major transported carbon source in higher plants, it is possible that it plays a major role in cell division. To access the molecular aspects of the effect of auxin, cytokinin and sucrose on the regulation of cell cycle machinery and plant development, we cloned a Passiflora morifolia putative homolog to a D-type cyclin, PmCYCD1, which showed high sequence similarity to other known plant D-type cyclins. We examined the expression patterns of PmCYCD1 during callus induction and growth in in vitro conditions. We observed incremented expression levels of PmCYCD1 correlated to increasing concentrations of sucrose, α-naphthalene acetic acid and 6-benzyladenine in the culture medium. Additionally, the results of in situ hybridization experiments indicated a dynamic spatial expression pattern for PmCYCD1 during callus growth.  相似文献   

14.
The ICK/KRP cyclin‐dependent kinase (CDK) inhibitors are important plant cell cycle factors sharing only limited similarity with the metazoan CIP/KIP family of CDK inhibitors. Little is known about the specific functions of different ICK/KRP genes in planta. In this study, we created double and multiple mutants from five single Arabidopsis ICK/KRP T‐DNA mutants, and used a set of 20 lines for the functional investigation of the important gene family. There were gradual increases in CDK activity from single to multiple mutants, indicating that ICK/KRPs act as CDK inhibitors under normal physiological conditions in plants. Whereas lower‐order mutants showed no morphological phenotypes, the ick1 ick2 ick6 ick7 and ick1 ick2 ick5 ick6 ick7 mutants had a slightly altered leaf shape. The quintuple mutant had larger cotyledons, leaves, petals and seeds than the wild‐type control. At the cellular level, the ICK/KRP mutants had more but smaller cells in all the organs examined. These phenotypic effects became more apparent as more ICK/KRPs were downregulated, suggesting that to a large extent ICK/KRPs function in plants redundantly in a dosage‐dependent manner. Analyses also revealed increased expression of E2F‐dependent genes, and elevated RBR1 as well as an increased level of phospho‐RBB1 protein in the quintuple mutant. Thus, downregulation of multiple ICK/KRP genes increases CDK activity, upregulates the E2F pathway and stimulates cell proliferation, resulting in increased cell numbers, and larger organs and seeds.  相似文献   

15.
Cyclin dependent kinases (CDKs) play important roles in the plant cell cycle, a highly coordinated process in plant growth and development. To understand the regulatory network involving the CDKs, we have examined the role of ACK1, a gene that has significant homology to known ICKs (inhibitors of CDKs), but occupies a distinct branch of the ICK phylogenetic tree. Overexpression of ACK1 in transgenic Arabidopsis significantly inhibited growth, leading to effects such as serration of leaves, as a result of strong inhibition of cell division in the leaf meristem. ACK1 transgenic plants also differed morphologically from control Arabidopsis plants, and the cells of ACK1 transgenics were more irregular than the corresponding cells of control plants. These results suggest that ACK1 acts as a CDK inhibitor in Arabidopsis, and that the alterations in leaf shape may be the result of restricted cell division.  相似文献   

16.
The integration of cell division in root growth and development requires mediation of developmental and physiological signals through regulation of cyclin-dependent kinase activity. Cells within the pericycle form de novo lateral root meristems, and D-type cyclins (CYCD), as regulators of the G1-to-S phase cell cycle transition, are anticipated to play a role. Here, we show that the D-type cyclin protein CYCD2;1 is nuclear in Arabidopsis thaliana root cells, with the highest concentration in apical and lateral meristems. Loss of CYCD2;1 has a marginal effect on unstimulated lateral root density, but CYCD2;1 is rate-limiting for the response to low levels of exogenous auxin. However, while CYCD2;1 expression requires sucrose, it does not respond to auxin. The protein Inhibitor-Interactor of CDK/Kip Related Protein2 (ICK2/KRP2), which interacts with CYCD2;1, inhibits lateral root formation, and ick2/krp2 mutants show increased lateral root density. ICK2/KRP2 can modulate the nuclear levels of CYCD2;1, and since auxin reduces ICK2/KRP2 protein levels, it affects both activity and cellular distribution of CYCD2;1. Hence, as ICK2/KRP2 levels decrease, the increase in lateral root density depends on CYCD2;1, irrespective of ICK2/CYCD2;1 nuclear localization. We propose that ICK2/KRP2 restrains root ramification by maintaining CYCD2;1 inactive and that this modulates pericycle responses to auxin fluctuations.  相似文献   

17.
Wang F  Huo SN  Guo J  Zhang XS 《Planta》2006,224(5):1129-1140
  相似文献   

18.
19.
20.
Cell Cycle Control in Arabidopsis   总被引:1,自引:0,他引:1  
Although the basic mechanism of cell cycle control is conservedamong eukaryotes, its regulation differs in each type of organism.Plants have unique developmental features that distinguish themfrom other eukaryotes. These include the absence of cell migration,the formation of organs throughout the entire life-span fromspecialized regions called meristems, and the potency of non-dividingcells to re-enter the cell cycle. The study of plant cell cyclecontrol genes is expected to contribute to the understandingof these unique developmental phenomena. The principal regulatorsof the eukaryotic cell cycle, the cyclin-dependent kinases (CDKs)and cyclins, are conserved in plants. This review focuses oncell cycle regulation in the plant Arabidopsis thaliana . Whileexpression of one Arabidopsis CDK gene, Cdc2aAt, was positivelycorrelated with the competence of cells to divide, expressionof a mitotic-like cyclin, cyc1At, was almost exclusively confinedto dividing cells. The expression of the Arabidopsis -type cyclinsappears to be an early stage in the response of plant cellsto external and internal stimuli. Arabidopsis thaliana (L.) Heynh.; cell cycle; CDK; cyclin; plant development; plant hormone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号