首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A group of beta-phenylethylidenehydrazines possessing a variety of substituents (Me, OMe, Cl, F, and CF(3)) at the ortho-, meta-, or para-positions of the phenyl ring, in conjunction with either a N-bis-(2-propynyl) or a N-mono-(2-propynyl) moiety, were synthesized and compared to the novel neuroprotective drug beta-phenylethylidenehydrazine (PEH) with regard to their ability to inhibit the enzymes GABA-transaminase (GABA-T) and monoamine oxidase (MAO)-A and -B in vitro in brain tissue. Two of the analogs synthesized (mono- and bis-N-propynylPEH) were also studied exvivo in rats to compare their effects to those of PEH with regard to ability to inhibit GABA-T and MAO and to change brain levels of several important amino acids. Unlike PEH, none of the new drugs inhibited GABA-T in vitro at 10 or 100 microM, and all of the drugs (including PEH) were poor inhibitors (at 10 microM) of MAO-A and -B invitro. The two analogs studied exvivo inhibited GABA-T to a lesser extent than PEH, unlike PEH that did not elevate brain levels of GABA, and inhibited MAO-A and -B more potently than PEH. Interestingly, unlike PEH, the two analogs caused marked increases in brain levels of glycine; because of the current interest in drugs that increase glycine availability in the brain as potential antipsychotic drugs, these two analogs now warrant further investigation.  相似文献   

2.
The presence of gamma-aminobutyric acid (GABA) as well as glutamic acid decarboxylase (GAD) and GABA-transaminase (GABA-T) enzymes was demonstrated in the cockroach (Periplaneta americana) brain. Isonicotinic acid hydrazide (INH) in vivo (2.19 mumol/g) inhibited brain GAD activity, the inhibition lasted for about 2 hours and the normal activity levels reappeared at 4 h after INH administration. Brain GABA levels increased initially but then declined and were restored to normal levels at 4 h after INH administration. GABA-T activity was strongly inhibited by INH and a total 100% inhibition was observed at 2-3 h following INH treatment. The GABA-T activity, however, began to recover after 3 h but only 37% of the total enzyme activity was released from inhibition. Mercaptopropionic acid (MPA) in vivo (32 micrograms/g) inhibited brain GAD activity and depleted GABA level also. Results indicate that INH response of the cockroach brain GABA system is similar to that reported for the chick brain but differs from that of the mammalian brain.  相似文献   

3.
Effect of L-cycloserine on brain GABA metabolism   总被引:6,自引:0,他引:6  
The administration of L-cycloserine to mice resulted in a dramatic decrease in the activities of 4-aminobutyrate:2-oxoglutarate aminotransferase (GABA-T) and L-alanine:2-oxoglutarate aminotransferase (ALA-T) in both brain and liver. L-Aspartate:2-oxoglutarate aminotransferase was inhibited only slightly, and brain glutamic acid decarboxylase not at all. Liver ALA-T activity returned to near normal levels within 24 h of L-cycloserine administration whereas liver GABA-T and brain ALA-T activities had returned only halfway to normal levels in the same time period. The recovery in the activity of brain GABA-T was even slower. A consequence of the inhibition of brain GABA-T activity was an elevation in the GABA content of the tissue which was maximal 3 h after L-cycloserine administration and which was still noticeable 8 h after the drug treatment. L-Cycloserine was also a potent in vitro inhibitor of brain GABA-T activity. The inhibition was competitive with respect to GABA, the Ki value being 3.1 X 10(-5) M. The prior administration of L-cycloserine to mice significantly delayed the onset of isonicotinic acid hydrazide induced convulsions.  相似文献   

4.
The time course of the effects of aminooxyacetic acid, γ-vinyl GABA, γ-acetylenic GABA, gabaculine, ethanolamine-O-sulphate (EOS) and valproic acid (VPA) on brain GABA content and the activities of glutamic acid decarboxylase (GAD) and GABA aminotransferase (GABA-T), the enzymes involved in biosynthesis and degradation of GABA, was re-determined and compared with the action on the electroconvulsive threshold in mice. All drugs caused significant increases in the seizure threshold, and the temporal pattern of this effect correlated rather well with the induced elevation of brain GABA. However, no clear relationship was found between the extent of GABA increase and the relative increase of seizure threshold. Except for VPA, the time course of the increment in brain GABA followed closely the inhibition of GABA-T. The activity of GAD was gradually decreased by γ-acetylenic GABA and a slow decline of GAD activity was also observed after γ-vinyl GABA. EOS and gabaculine suggesting a feedback repression of GAD synthesis by highly elevated GABA concentrations. Concomitant with significant reduction of GAD activity, a decrease in seizure threshold occurred though brain GABA levels remained markedly elevated. On the other hand, following administration of VPA the effect of GABA levels was paralleled by an increase in GAD activity indicating that the GABA-elevating action of this drug can be attributed at least in part to an activation of GABA synthesis. The data suggest that reduction of GAD activity may be an inevitable consequence of increasing brain GABA concentrations over a certain extent and this effect seems to limit the anticonvulsant efficacy of GABA-T inhibitors.  相似文献   

5.
(1) The inhibitor of γ-aminobutyrate transaminase (GABA-T), amino-oxyacetic acid (AOAA), drastically reduced the activity of GABA-T to 30 per cent of the control value, with a corresponding increase of brain GABA, but had no effect on the activity of glutamate decarboxylase (GAD). (2) The monoamine oxidase (MAO) inhibitors phenelzine, phenylpropylhydrazine and phenylvalerylhydrazine, lowered GABA-T activity to 58, 49 and 48 per cent, respectively; this was associated with a marked elevation of brain GABA. (3) The action of phenelzine and phenylpropylhydrazine in vivo and in vitro could be abolished by pre-treatment of the tissue with the structurally related MAO inhibitors phenylisopropylhydrazine and trans-2-phenylcyclopropylamine. These had no action on the GABA system in vivo, either on the GABA content or on the GABA-T activity. These latter drugs, however, were unable to influence the effects of AOAA either on GABA or on GABA-T. (4) The possible mechanism of action on GABA and the enzyme activities of the GABA system is discussed.  相似文献   

6.
Rats were given γ-vinyl GABA (4-amino-hex-5-enoic acid), a new irreversible inhibitor of GABA aminotransferase (GABA-T), by daily subcutaneous injection (100mgkg) for 11 days. Amino acids were quantitated in the brains of the γ-vinyl GABA-treated and control animals 24 h after the last injection, and enzyme activities of GABA-T and glutamic acid decarboxylase (GAD) were measured. Chronic administration of γ-vinyl GABA produced a 150% increase in brain GABA content, along with marked increases in the contents of B-alanine and homocarnosine. Brain GABA-T activity was reduced by 26%, and GAD activity was reduced by 22%. In addition, γ-vinyl GABA caused a marked increase in hypotaurine content in rat brain, suggesting that it acts as an inhibitor of hypotaurine dehydrogenase, and it produced significant decreases in brain contents of glutamine and threonine. Although it is an effective GABA-T inhibitor, γ-vinyl GABA apparently affects several other brain enzymes as well, and it may not be an ideal drug for elevating brain GABA levels in man.  相似文献   

7.
Abstract— γ-Vinyl GABA (4-amino-hex-5-enoic acid, RMI 71754) is a catalytic inhibitor of GABA-T in vitro. When given by a peripheral route to mice, it crosses the blood-brain barrier and induces a long-lasting, dose-dependent, irreversible inhibition of brain GABA transaminase (GABA-T). Glutamate decarboxylase (GAD) is only slightly affected even at the highest doses used. γ -Vinyl GABA has little or no effect on brain succinate semialdehyde dehydrogenase, aspartate transaminase and alanine transaminase activities. GABA-T inhibition is accompanied by a sustained dose-dependent increase of brain GABA concentration. From the rate of accumulation of GABA it was estimated that GABA turnover in brain was at least 6.5 μmol/g/h. Based on recovery of enzyme activity the half-life of GABA-T was found to be 3.4 days, that of GAD was estimated to be about 2.4 days. γ -Vinyl GABA should be valuable for manipulations of brain GABA metabolism.  相似文献   

8.
Gamma-aminobutyrate transaminase (GABA-T), a key homodimeric enzyme of the GABA shunt, converts the major inhibitory neurotransmitter GABA to succinic semialdehyde. We previously overexpressed, purified and characterized human brain GABA-T. To identify the structural and functional roles of the cysteinyl residue at position 321, we constructed various GABA-T mutants by site-directed mutagenesis. The purified wild type GABA-T enzyme was enzymatically active, whereas the mutant enzymes were inactive. Reaction of 1.5 sulfhydryl groups per wild type dimer with 5,5 cent-dithiobis-2-nitrobenzoic acid (DTNB) produced about 95% loss of activity. No reactive -SH groups were detected in the mutant enzymes. Wild type GABA-T, but not the mutants, existed as an oligomeric species of Mr = 100,000 that was dissociable by 2-mercaptoethanol. These results suggest that the Cys321 residue is essential for the catalytic function of GABA-T, and that it is involved in the formation of a disulfide link between two monomers of human brain GABA-T.  相似文献   

9.
The effect of anticonvulsant drugs was examined on brain GABA levels and GAD and GABA-T activities. The level of GABA was increased by the treatment with diphenylhydantoin. The drug had no effect on GABA-T activity, whereas GAD activity was inhibited. Carbamazepine increased the GABA level but did not effect GAD and GABA-T activities. Diazepam had no effect on GABA level and GAD activity, whereas it caused a slight inhibition of GABA-T activity. Phenobarbital administration decreased GABA level only at the higher concentration. Clonazepam effected only GAD activity. Some anticonvulsant drugs generally increase brain GABA level; however the lack of correlation with an effect on the GAD and GABA-T activities indicate that other factors than metabolism, such as membrane transport processes, are involved in the mechanism of action of anticonvulsant drugs.  相似文献   

10.
The technique of estimating gamma-aminobutyric acid (GABA) turnover by inhibiting its major degrading enzyme GABA-T (4-aminobutyrate:2-oxoglutarate aminotransferase; EC 2.6.1.19) and measuring GABA accumulation has been used repeatedly, but, at least in rats, its usefulness has been limited by several difficulties, including marked differences in the degree of GABA-T inhibition in different brain regions after systemic injection of GABA-T inhibitors. In an attempt to improve this type of approach for measuring GABA turnover, the time course of GABA-T inhibition and accumulation of GABA in 12 regions of rat brain has been studied after systemic administration of aminooxyacetic acid (AOAA), injected at various doses and with different routes of administration. A total and rapidly occurring inhibition of GABA-T in all regions was obtained with intraperitoneal injection of 100 mg/kg AOAA, whereas after lower doses, marked regional differences in the degree of GABA-T inhibition were found, thus leading to underestimation of GABA synthesis rates, e.g., in substantia nigra. The activity of the GABA-synthesizing enzyme GAD (L-glutamate-1-decarboxylase; EC 4.1.1.15) was not reduced significantly at any time after intraperitoneal injection of AOAA, except for a small decrease in olfactory bulbs. Even the highest dose of AOAA tested (100 mg/kg) was not associated with toxicity in rats, but induced motor impairment, which was obviously related to the marked GABA accumulation found with this dose. The increase in GABA concentrations induced with intraperitoneal injection of 100 mg/kg AOAA was rapid in onset, allowing one to estimate GABA turnover rates from the initial rate of GABA accumulation, i.e., during the first 30 min after AOAA injection. GABA turnover rates thus determined were correlated in a highly significant fashion with the GAD activities determined in brain regions, with highest turnover rates measured in substantia nigra, hypothalamus, olfactory bulb, and tectum. Pretreatment of rats with diazepam, 5 mg/kg i.p., 5-30 min prior to AOAA, reduced the AOAA-induced GABA accumulation in all 12 regions examined, most probably as a result of potentiation of postsynaptic GABA function. The data indicate that AOAA is a valuable tool for regional GABA turnover studies in rats, provided the GABA-T inhibitor is administered in sufficiently high doses to obtain complete inhibition of GABA degradation.  相似文献   

11.
Abstract: 1-( n -decyl)-3-Pyrazolidinone (BW357U) is a potent, selective inhibitor of gamma-aminobutyrate aminotransferase (GABA-T) in vitro and in vivo. After acute or chronic, oral or intraperitoneal administration of BW357U to rats, brain GABA levels were elevated in a dose-dependent manner. When inhibition of brain GABA-T exceeded 50%, whole brain GABA levels were elevated approximately threefold, and an anorectic effect was observed in the absence of other symptoms. This compound, because of its potency and selectivity, may be useful in studies relating to the function of GABA-containing neurons in appetite regulation.  相似文献   

12.
Abstract: Ethanolamine O-sulphate (EOS) dissolved in the drinking water (5mg-ml−1) was administered ad libitum to rats for 26 days. At the end of this period, glutamate decarboxylase (GAD) and GABA-transaminase (GABA-T) activities, 4-aminobutyrate (GABA) concentration, and the levels of six other amino acids were measured in various brain regions. Significant inhibition of GABA-T accompanied by significant increases in GABA content were observed throughout the brain, although the magnitudes of these effects varied according to region. GAD activity was significantly reduced in most brain regions, although this effect was apparently not related to cofactor availability or the direct actions of EOS or increased GABA concentration. Glutamine levels were significantly reduced to approximately 72% of control values in all brain regions. Aspartate levels were significantly reduced to approximately 84% of control values in all regions except the striatum and cerebellum. Minor changes in other amino acid levels were also detected. These neurochemical changes which accompanied the primary effect of EOS on GABA-T are discussed in terms of indirect secondary metabolic changes rather than nonspecific enzyme inhibition by EOS.  相似文献   

13.
—The effect of intramuscularly administered INH on brain levels of GABA in chicks was dependent on the amount injected. A subconvulsant dose of INH (1·1 mmol/kg) produced a slow steady decline in the level of GABA, whereas a convulsant dose (2·19 mmol/kg) brought about a sequential fall and rise in GABA level. This sequence of events reflected changes in the relative activities of GAD and GABA-T brought about by the hydrazide. The administration of pyridoxine together with the INH (2·19 mmol/kg) prevented the onset of seizures and lessened the effect of the INH on GABA levels and GAD activity but not on GABA-T activity. The possibility that a deranged GABA metabolism is responsible for hydrazide-induced seizures is discussed.  相似文献   

14.
GABA-T (4-aminobutyrate-2-ketoglutarate aminotransferase) has been found in human hair follicle. Kinetics experiments with hair follicle homogenate supported a ping-pong type of enzymatic mechanism. Extrapolated Km values were 1.02 mmol/l for GABA and 0.45 mmol/l for alpha-ketoglutarate. Hair follicle GABA-T activity was completely inhibited by preincubation of the samples with either 5 x 10(-8) mol/l aminooxyacetic acid or 5 x 10(-4) mol/l gamma-vinyl GABA. The radioenzymatic assay presented is both sensitive enough (only 10 hair follicles are needed for one assay) and economical, making it suitable for clinical practice. Hair follicle GABA-T activity determination could be useful in the study of GABA deficiency diseases (such as epilepsy), congenital GABA-T deficiencies or the control of GABA-T inhibitors treatment.  相似文献   

15.
Abstract: Five inhibitors of the GABA degrading enzyme GABA-aminotransferase (GABA-T), viz., gabaculine, γ-acetylenic GABA, γ-vinyl GABA, ethanolamine O -sulphate, and aminooxyacetic acid, as well as GABA itself and the antiepileptic sodium vdproate were administered to mice in doses equieffective to raise the electroconvulsive threshold by 30 V. The animals were killed at the time of maximal anticonvulsant effect of the respective drugs and GABA, GABA-T and glutamate decarboxylase (GAD) were determined in whole brain and synaptosomes, respectively. The synaptosomal fraction was prepared from brain by conventional ultracentrifugation procedures. All drugs studied brought about significant increases in both whole brain and synaptosomal GABA concentrations, and, except GABA itself, inhibited the activity of GABA-T. Furthermore, all drugs, except GABA and γ-acetylenic GABA, activated GAD in the synaptosomal fraction. This was most pronounced with ethanolamine O -sulphate, which induced a twofold activation of this enzyme but exerted only a weak inhibitory effect on GABA-T. The results suggest that activation of GAD is an important factor in the mechanism by which several inhibitors of GABA-T and also valproate increase GABA concentrations in nerve terminals, at least in the relatively non-toxic doses as used in this study.  相似文献   

16.
Dyskinetic effects of intrastriatally injected GABA-transaminase inhibitors   总被引:2,自引:0,他引:2  
Injection of GABA antagonists into the striatum of rats induces abnormal involuntary movements that are blocked by increasing GABA levels in this area. Attempts to increase GABA by intrastriatal (i.s.) injection of GABA-transaminase (GABA-T) inhibitors surprisingly induced identical dyskinesias. This property was shared by all GABA-T inhibitors tested except ethanolamine-O-sulphate. This dyskinesia is easily blocked by i.s. injection of GABA and muscimol, as well as by intraperitoneal pretreatment with the GABA-T inhibitors themselves. These observations suggest that some GABA-T inhibitors may behave as GABA antagonists when locally applied in the brain at high concentrations.  相似文献   

17.
In this work new methods for the determination of ornithine (Orn) and l-ornithine:2-oxoacid aminotransferase (OAT) activity are described. These methods were used to demonstrate linear interrelationships between brain GABA and Orn concentrations. Brain GABA levels were modulated by administration of vigabatrin (4-aminohex-5-enoic acid), a specific inactivator of GABA-T, which is not an inhibitor of OAT. The results suggest feed-back inhibition of OAT by GABA, a mechanism which is compatible with the assumption that Orn may serve in certain neurons as a precursor of glutamate and GABA.  相似文献   

18.
19.
We have previously shown that short-lasting reduction of cerebral blood flow by bilateral clamping of carotid arteries (BCCA) results in long-lasting increase in regional GABA concentration and decrease in seizure susceptibility in rats. In the present experiments, the effect of BCCA on GABA turnover and the enzymes involved in GABA synthesis and degradation were studied in rats. Regional GABA turnover was measured by means of GABA accumulation induced by the GABA-transaminase (GABA-T) inhibitor aminooxyacetic acid (AOAA). Fourteen days after BCCA, GABA turnover was significantly increased in hippocampus, substantia nigra and cortex, but not different from sham-operated controls in several other brain regions, including striatum, hypothalamus and cerebellum. The activity of glutamate decarboxylase (GAD) measured ex vivo did not show any changes in investigated structures, while the activity of GABA-T was slightly increased in hippocampus. The increased GABA turnover in some brain regions may explain our previous findings of increased GABA content in these brain regions and decreased sensitivity of BCCA treated animals to the GABAA-receptor antagonist bicuculline.  相似文献   

20.
1. Phenelzine (PLZ) is an antidepressant with anxiolytic properties. Acute and chronic PLZ administration increase brain GABA levels, an effect due, at least in part, to an inhibition of the activity of the GABA metabolizing enzyme, GABA transaminase (GABA-T).2. Previous preliminary reports have indicated that acute PLZ treatment also elevates brain alanine levels. As with GABA, the metabolism of alanine involves a pyridoxal phosphate-dependent transaminase.3. In the study reported here, the effects of acute PLZ treatment on the levels of various amino acids, some of which are also metabolized by pyridoxal phosphate-dependent transaminases were compared in rat whole brain. Of the 6 amino acids investigated, only GABA and alanine levels were elevated (in a time- and dose-dependent manner).4. The elevation in brain alanine levels could be explained, at least in part, by a time- and dose-dependent inhibitory effect of PLZ on alanine transaminase (ALA-T), although as with GABA the increases are higher than expected from the degree of enzyme inhibition produced. In addition, we also showed that the elevation in alanine levels and the inhibition of alanine transaminase in the brain are retained after 14 days of PLZ treatment, and that PLZ produces a marked increase in extracellular levels of alanine.5. These results are discussed in terms of their relevance to synaptic function and to the pharmacological profile of PLZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号