首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Myosin from the thin-filament regulated flexor muscle of lobster contains 2 moles of each of 2 light chains. 2. The Lb 1 light chain of 19,000 daltons which can be removed by DTNB is heavier than the DTNB light chain of chicken. The Lb 2 light chain of 17,000 daltons can be removed with urea. 3. On electrophoresis in 8 M urea (pH 8.7) the Lb 2 light chain migrates with a mobility similar to that of chicken A2, but the Lb 1 migrates significantly faster than any of the chicken light chains. 4. In lobster, the DTNB treatment destroys the Ca and K-EDTA ATPase activity of lobster myosin.  相似文献   

2.
The solubility of rabbit skeletal and lobster abdominal muscle myosin has been studied in monovalent salt solutions as a function of pH (over the range 4.75 to 8.5) and ionic strength (50-500 mM). Rabbit skeletal muscle myosin was found to precipitate over a narrower pH range than the lobster abdominal muscle myosin but at equivalent pH values and ionic strengths the former exhibited greater solubility. Comparison of the solubility of rabbit myosin, per se with that of light meromyosin and lobster myosin with its equivalent proteolytically produced fragment (fraction B1) showed that both rod fragments were more soluble than their parent molecules. Under conditions of low solubility (low ionic strength and pH) the quantitiy of protein in solution remained essentially constant with increasing total protein, thus suggesting that the aggregation phenomenon is of a phase transition type. Examination of the aggregates by electron microscopy revealed that rabbit myosin formed classical, elongate, spindle-shaped filaments similar to those previously observed by others. In contrast lobster myosin only formed short, dumbbell-shaped filaments 0.2-0.3 mum long. Consideration of the pH ranges over which aggregation occurred suggests that protonation of histidine residues may be involved in rabbit myosin filament formation while for lobster myosin, aggregation may involve protonation of epsilon-amino or guanidino groups. The possible relationship between the distribution of these groups along the rod portion of the myosin molecule and the formation of elongate filaments has been explored.  相似文献   

3.
Polarity of the myosin molecule   总被引:10,自引:0,他引:10  
  相似文献   

4.
Haemoglobin from the tadpole shrimp, Lepidurus apus lubbocki, was found to have a sedimentation coefficient (s020,w) of 19.3 +/- 0.2 S and a molecular weight, as determined by sedimentation equilibrium, of 798000 +/- 20000. The amino acid composition showed the lack of cysteine and cystine residues. A haem content of 3.55 +/- 0.03% was determined, corresponding to a minimal mol.wt. of 17400 +/- 200. The pH-independence in the range pH 5-11 of the sedimentation coefficient indicates a relatively high stability of the native molecule. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis gave one band with mobility corresponding to a mol.wt. of 34000 +/- 1500. The molecular weight of the polypeptide chain was determined to be 32800 +/- 800 by sedimentation equilibrium in 6 M-guanidinium chloride and 0.1 M-2-mercaptoethanol. The findings indicate that Lepidurus haemoglobin is composed of 24 identical polypeptide chains, carrying two haem groups each.  相似文献   

5.
1. Hydrolysis of the myosins from smooth and from skeletal muscle by a rat trypsin-like serine proteinase and by bovine trypsin at pH 7 is compared. 2. Proteolysis of the heavy chains of both myosins by the rat enzyme proceeds at rates approx. 20 times faster than those obtained with bovine trypsin. Whereas cleavage of skeletal-muscle myosin heavy chain by both enzymes results in the generation of conventional products i.e. heavy meromyosin and light meromyosin, the heavy chain of smooth-muscle myosin is degraded into a fragment of mol. wt. 150000. This is dissimilar from heavy meromyosin and cannot be converted into heavy meromyosin. It is shown that proteolysis of the heavy chain takes place in the head region. 3. The 'regulatory' light chain (20kDa) of smooth-muscle myosin is degraded very rapidly by the rat proteinase. 4. The ability of smooth-muscle myosin to have its ATPase activity activated by actin in the presence of a crude tropomyosin fraction on introduction of Ca2+ is diminished progressively during exposure to the rat proteinase. The rate of loss of the Ca2+-activated actomyosin ATPase activity is very similar to the rate observed for proteolysis of the heavy chain and 3-4 times slower than the rate of removal of the so-called 'regulatory' light chain. 5. The significance of these findings in terms of the functional organization of the smooth muscle myosin molecule is discussed. 6. Since the degraded myosin obtained after exposure to very small amounts of the rat proteinase is no longer able to respond to Ca2+, i.e. the functional activity of the molecule has been removed, the implications of a similar type of proteolysis operating in vivo are considered for myofibrillar protein turnover in general, but particularly with regard to the initiation of myosin degradation, which is known to take place outside the lysosome (i.e. at neutral pH).  相似文献   

6.
To determine the localization of F-protein binding sites on myosin, the interaction of F-protein with myosin and its proteolytic fragments in 0.1 M KCl, 10 mM K-phosphate pH 6.5 was studied, using sedimentation, electron microscopic and optical diffraction methods. Sedimentation experiments showed that F-protein binds to myosin and myosin rod rather than to light meromyosin or S-1. The F-protein binding to myosin and rod is of a similar character. The calculated values of the constants of F-protein binding to myosin and rod are 2.6 X 10(5) M-1 and 2.1 X 10(5) M-1, respectively. The binding sites are probably located on the subfragment-2 portion of the myosin molecule. The number of F-protein binding sites on myosin calculated per chain weight of 80 000 is 5 +/- 1. The sedimentation results were confirmed by electron microscopic data. F-protein does not bind to light meromyosin paracrystals, but decorates myosin and rod filaments with the interval of 14.3 nm regardless of whether F-protein is added before or after filamentogenesis. A comparison of optical diffraction patterns obtained from myosin and rod filaments with those from decorated ones revealed a marked enhancement of meridional reflection at (14.3 nm)-1 in the latter case.  相似文献   

7.
Chymotrypsin cleaves Dictyostelium myosin in half, splitting the heavy chain (210,000 daltons) into two fragments of 105,000 daltons each. One of the two major fragments is soluble at low ionic strength and has a native molecular weight of 130,000. As judged by SDS polyacrylamide gel electrophoresis, this soluble fragment consists of the two intact myosin light chains of 18,000 and 16,000 daltons and a 105,000-dalton polypeptide derived from the myosin heavy chain. The soluble fragment retains actin-activated ATPase activity and the ability to bind to actin in an ATP-dissociable fashion. The maximal velocity of the actin- activated ATPase activity of the soluble fragment is 80% of that of uncleaved myosin, although its apparent Km for actin is 12-fold greater than that of myosin. In addition to the major soluble 105,000-dalton fragment discussed above, chymotryptic cleavage of the Dictyostelium myosin also generates fragments that are insoluble at low ionic strength. The major insoluble fragment is 105,000 daltons on an SDS polyacrylamide gel and forms thick filaments that are devoid of myosin heads. A less prevalent insoluble fragment has a molecular weight of 83,000 and is probably a subfragment of the insoluble 105,000-dalton fragment. The heavy chain of myosin is phosphorylated in vivo and the phosphorylation site has been localized to the insoluble fragments, which derive from the tail portion of the myosin molecule.  相似文献   

8.
We have examined the effect of a mercurial sulfhydryl reagent, mersalyl, on the protein composition of cytoskeletons by SDS-polyacrylamide gel electrophoresis after treatment of human platelets with Triton X-100 (Triton) containing mersalyl and Ca2+, and have found that mersalyl alters the protein composition of cytoskeletons in a Ca2+-dependent manner. At 1 X 10(-7) M Ca2+, 0.2 mM mersalyl, which represents approximately the equivalent amount of sulfhydryl of platelet suspensions that we used, specifically made myosin insoluble. The amount of myosin in Triton-mersalyl residues was increased by increasing the Ca2+ concentration of Triton lysis buffer. Actin-binding protein, 235 kDa polypeptide and alpha-actinin-like protein were decreased in Triton residues by mersalyl at Ca2+ concentrations less than 1 X 10(-7) M, while these polypeptides in Triton residues were increased by mersalyl in the presence of more than 2 X 10(-7) M Ca2+. Electron microscopic study revealed the presence of thick filaments with an appearance similar to that of the thick filaments of platelet myosin. Thus, the modification with mersalyl of sulfhydryls of platelet polypeptides along with changes in Ca2+ concentrations within a physiological range leads to changes in solubility of, and filament formation of, myosin, actin and other cytoskeletal proteins.  相似文献   

9.
M P Walsh 《Biochemistry》1985,24(14):3724-3730
Myosin light chain kinase plays a central role in the regulation of smooth muscle contraction. The activity of this enzyme is controlled by protein-protein interaction (the Ca2+-dependent binding of calmodulin) and by phosphorylation catalyzed by cAMP-dependent protein kinase. The effects of these two regulatory mechanisms on the conformation of myosin light chain kinase and the locations of the phosphorylation sites, the calmodulin-binding site, and the active site have been probed by limited proteolysis. Phosphorylated and nonphosphorylated myosin light chain kinases were subjected to limited digestion by four proteases having different peptide bond specificities (trypsin, chymotrypsin, Staphylococcus aureus V8 protease, and thrombin), both in the presence and in the absence of bound calmodulin. The digests were compared in terms of gel electrophoretic pattern, distribution of phosphorylation sites, and Ca2+ dependence of kinase activity. A 24 500-dalton chymotryptic peptide containing both sites of phosphorylation was purified and tentatively identified as the amino-terminal peptide. The following conclusions can be drawn: neither phosphorylation nor calmodulin binding induces dramatic changes in the conformation of the kinase; the kinase contains two regions that are particularly susceptible to proteolytic cleavage, one located approximately 25 000 daltons from the amino terminus and the other near the center of the molecule; the two phosphorylation sites are located within 24 500 (probably 17 500) daltons of the amino terminus; the active site is located close to the center of the molecule; the calmodulin-binding site is located in the amino-terminal half of the molecule, between the sites of phosphorylation and the active site, and this region is very susceptible to cleavage by trypsin.  相似文献   

10.
D W Frederiksen 《Biochemistry》1979,18(9):1651-1656
Porcine aortic myosin is a smooth muscle contractile protein similar to its striated muscle counterpart. Electrophoresis in sodium dodecyl sulfate indicates that the molecule consists of three classes of subunits with polypeptide chain molecular weights of 192,000, 19,000, and 15,000. At 277 nm the absorption spectrum gives an extinction coefficient for aortic myosin of 0.558 cm2/mg; the circular dichroism spectrum of the protein indicates that aortic myosin contains about 70% of its residues in the alpha-helical configuration. Amino acid analysis shows that the smooth muscle myosin has significantly more arginine and leucine and significantly less valine and isoleucine than rabbit skeletal muscle myosin. Other studies yielded these data: Vapp = 0.716 mL/g [eta] = 0.213 mL/mg, S20, w = 5.84 x 10(-13)S. Similar studies with rabbit skeletal muscle myosin indicate that Vapp = 0.711 mL/g and S20, w = 6.36 x 10(-13)S. These properties suggest that aortic myosin, like skeletal muscle myosin, behaves hydrodynamically like a rigid rod.  相似文献   

11.
Two isoforms of lobster muscle tropomyosin, a fast muscle type, fTm, and a slow muscle type, sTm1, are identical except for 15 residues within the region of amino acids 39-80, which corresponds to exon 2 of the tropomyosin genes of many phyla. Although the difference in the sequence does not include the terminal regions, the two isoforms are extremely different in viscosity, which is a good measure of the head-to-tail interaction strength and should be dependent on the conformation of the terminal 7-9 residues. To determine the influence of amino-acid replacements in the internal region on the overall conformation and the functional properties of the molecule, we compared the physical properties of the two isoforms and their interactions with other proteins, such as actin and myosin subfragment 1 (S1). Limited proteolysis by trypsin and chymotrypsin showed that sTm1 is more susceptible than fTm at the sites outside the region with the replaced residues. Compared with fTm, sTm1 showed higher viscosity, had a higher actin affinity, and inhibited acto-S1 ATPase to a greater extent. Finally, the binding isotherm of S1-ADP to actin-sTm1 is less sigmoidal than that to actin-fTm. These results indicate that the amino-acid replacements in the internal region alter the conformation and the physical properties of the entire molecule as well as its interactions with actin and myosin.  相似文献   

12.
The light chains of scallop myosin as regulatory subunits   总被引:27,自引:0,他引:27  
In molluscan muscles contraction is regulated by the interaction of calcium with myosin. The calcium dependence of the aotin-activated ATPase activity of scallop myosin requires the presence of a specific light chain. This light chain is released from myosin by EDTA treatment (EDTA-light chains) and its removal desensitizes the myosin, i.e. abolishes the calcium requirement for the actin-activated ATPase activity, and reduces the amount of calcium the myosin binds; the isolated light chain, however, does not bind calcium and has no ATPase activity. Calcium regulation and calcium binding is restored when the EDTA-light chain is recombined with desensitized myosin preparations. Dissociation of the EDTA-light chain from myosin depends on the concentration of divalent cations; half dissociation is reached at about 10?5 M-magnesium or 10?7 M-calcium concentrations. The EDTA-light chain and the residual myosin are fairly stable and the components may be kept separated for a day or so before recombination.Additional light chains containing half cystine residues (SH-light chains) are detached from desensitized myosin by sodium dodecyl sulfate. The EDTA-light chains and the SH-light chains have a similar chain weight of about 18,000 daltons; however, they differ in several amino acid residues and the EDTA-light chains contain no half cystine. The SH-light chains and EDTA-light chains have different tryptic fingerprints. Both light chains can be prepared from washed myofibrils.Densitometry of dodecyl sulfate gel electrophoresis bands and Sephadex chromatography in sodium dodecyl sulfate indicate that there are three moles of light chains in a mole of purified myosin, but only two in myosin treated with EDTA. The ratio of the SH-light chains to EDTA-light chains was found to be two to one in experiments where the total light-chain complements of myosin or myofibril preparations were carboxymethylated. A similar ratio was obtained from the densitometry of urea-acrylamide gel electrophoresis bands. We conclude that a myosin molecule contains two moles of SH-light chain and one mole of EDTA-light chain, and that the removal of a single EDTA-light chain completely desensitizes scallop myosin.Heavy meromyosin and S-1 subfragment can be prepared from scallop myosin. Both of these preparations bind calcium and contain light chains in significant amounts. The heavy meromyosin of scallop is extensively degraded; the S-1 preparation, however, is remarkably intact. Significantly, heavy meromyosin has a calcium-dependent actin-activated ATPase while the S-1 does not require calcium and shows high ATPase activity in its absence. These results suggest that regulation involves a co-operativity between the two globular ends of the myosin.Desensitized scallop myosin and scallop S-1 preparations can be made calcium sensitive when mixed with rabbit actin containing the rabbit regulatory proteins. This result makes it unlikely that specific light chains of myosin are involved in the regulation of the vertebrate system.The fundamental similarity in the contractile regulation of molluscs and vertebrates is that interaction between actin and myosin in both systems requires a critical level of calcium. We propose that the difference in regulation of these systems is that the interaction between myosin and actin is prevented by blocking sites on actin in the case of vertebrate muscles, whereas in the case of molluscan muscles it is the sites on myosin which are blocked in the absence of calcium.  相似文献   

13.
Conformational studies of myosin phosphorylated by protein kinase C   总被引:2,自引:0,他引:2  
Smooth muscle myosin from chicken gizzard is phosphorylated by Ca2+-activated phospholipid-dependent protein kinase, protein kinase C, as well as by Ca2+/calmodulin-dependent kinase, myosin light chain kinase (Endo, T., Naka, M., and Hidaka, H. (1982) Biochem. Biophys. Res. Commun. 105, 942-948). We have now demonstrated the effect of phosphorylation by protein kinase C on the smooth muscle myosin molecule. In glycerol/urea polyacrylamide gel electrophoresis the 20,000-dalton light chain phosphorylated by protein kinase C co-migrated with that phosphorylated by myosin light chain kinase. Moreover, the light chain phosphorylated by both kinases migrated more rapidly than did the light chain phosphorylated by either myosin light chain kinase or protein kinase C alone. Myosin phosphorylated by protein kinase C formed a bent 10 S monomer while that phosphorylated by myosin light chain kinase was an unfolded and extended 6 S monomer in the presence of 0.2 M KCl. In addition, myosin phosphorylated by kinases had a sedimentation velocity of 7.3 S, thereby suggesting that the myosin was partially unfolded. The unfolded myosin was visualized electron microscopically. The fraction in the looped form was higher when for myosin phosphorylated by both kinases higher than for that phosphorylated by light chain kinase alone. Therefore, phosphorylation by protein kinase C does not lead to the change in myosin conformation seen with myosin light chain kinase.  相似文献   

14.
The primary structure of the cytotoxin restrictocin   总被引:3,自引:0,他引:3  
The complete amino acid sequence of the single polypeptide chain of cytotoxin restrictocin has been determined. Its structure was established by automated Edman degradation of the intact molecule reduced and [14C]carboxymethylated and of fragments obtained by chemical cleavage of the protein with cyanogen bromide and BNPS-skatole and by enzymatic cleavage of the polypeptide chain with trypsin. The molecule consists of 149 amino acid residues with a calculated relative molecular mass of 16836. The protein presents two disulfide bridges, one between cysteine residues at positions 5 and 147 and the other one formed by cysteine residues at positions 75 and 131. The amino acid sequence of restrictocin shows a high degree of homology (86%) with that of the cytotoxin named alpha-sarcin.  相似文献   

15.
Aspects of the structure of myosin molecules from striated muscle as revealed by negative staining are reviewed. These include curvature and domain structure in the heads and flexibility in the tail and its connection to the heads. The effects of various factors on observed structure of the molecule are discussed, including radiation damage, removal of the light polypeptide chains, elevations in temperature, and variations in bathing medium composition.  相似文献   

16.
The Ca2+ activation mechanism of the longitudinal body wall muscles of Parastichopus californicus (sea cucumber) was studied using skinned muscle fiber bundles. Reversible phosphorylation of the myosin light chains correlated with Ca2+-activated tension and relaxation. Pretreatment of the skinned fibers with ATPγS and high Ca2+ (10-5M) resulted in irreversible thiophosphorylation of the myosin light chains and activation of a Ca2+ insensitive tension. In contrast, pretreatment with low Ca2+ (10-8M) and ATPγS results in no thiophosphorylation of the myosin light chains or irreversible activation of tension. These results are consistent with a Ca2+-sensitive myosin light chain kinase/phosphatase system being responsible for the activation of the muscle. Other agents known to have an effect upon the Ca2+-activated tension in skinned vertebrate smooth muscle fibers (trifluoperazine, catalytic subunit of the cyclic AMP-dependent protein kinase, and calmodulin) did not have an effect on myosin light chain phosphorylation or Ca2+-activated tension. These results suggest a different type of myosin light chain kinase than is found in vertebrate smooth muscle is responsible for the activation of parastichopus longitudinal body wall muscle.  相似文献   

17.
To explore the role of a hydrophobic domain of actin in the interaction with a myosin chain we have synthesized a peptide corresponding to residues 75-106 of native actin monomer and studied by fluorescence and ELISA the interaction (13+/-2.6x10(-6) M) with both S-1 and (27 kDa-50 kDa-20 kDa) S-1 trypsin derivative of myosin. The loop corresponding to 96-103 actin residues binds to the S-1 only in the absence of Mg-ATP and under similar conditions but not to the trypsin derivative S-1. Biotinylated C74-K95 and I85-K95 peptide fragments were purified after actin proteolysis with trypsin. The C74-K95 peptide interacted with both S-1 and the S-1 trypsin derivative with an apparent Kd(app) of 6+/-1.2x10(-6) M in the presence or absence of nucleotides. Although peptide fragment I85-K95 binds to S-1 with a Kd(app) of 12+/-2.4x10(-6) M, this fragment did not bind to the trypsin S-1 derivative. We concluded that the actin 85-95 sequence should be a potential binding site to S-1 depending of the conformational state of the intact 70 kDa segment of S-1.  相似文献   

18.
Antibodies were formed against the myosin light chains isolated from chicken fast skeletal, slow skeletal, and cardiac muscle and the antigenicities of the light chains were compared by double immunodiffusion and immunoelectrophoresis. It was shown that fast light chains are immunologically different from light chains of slow and cardiac myosin, while the slow and cardiac muscle light chains have similar immunological characteristics; that is, the light chains of apparent molecular weight about 27,000 daltons in SDS-acrylamide gel electrophoresis of slow and cardiac muscle are immunologically indistinguishable, and the other light chains of apparent molecular weight about 19,000 daltons of both muscles include a common antigenic site.  相似文献   

19.
Vertebrate skeletal fast-twitch muscle myosin subfragment 1 is comprised of a heavy polypeptide chain of 95,000 daltons and one alkali light chain of either 21,000 daltons (A1) or 16,500 daltons (A2). In the present study, the heavy chain of subfragment 1 has been separated from the alkali light chain under nondenaturing conditions resembling those in vivo. The heavy chain exhibits the same ATPase activity as myosin subfragment 1, indicating that the heavy chain alone contains the catalytic site for ATP hydrolysis and that the alkali light chains are nonessential for activity. The free heavy chain associates readily at 4 degrees C or 37 degrees C with free A1 or A2 to form the subfragment 1 isozymes SF1(A1) or SF1(A2) respectively. Actin activates the MgATPase activity of the heavy chain in the same manner as occurs with the native isozyme, indicating that the heavy chain possesses the actin binding domain.  相似文献   

20.
The pattern of incorporation of [14C]N-ethylmaleimide (MalNEt) into gizzard myosin indicates the presence of two classes of thiols: rapidly and slowly modified. The first class contains two thiol residues, SH-A and SH-B, located in the myosin rod and the 17-kDa light chain, respectively, while the second contains at least two thiols located in the myosin heavy chain. Changes in ATPase activities upon modification occur rapidly or slowly, paralleling reaction of either the first or second class of thiols. Rapid changes include increases in the Ca2+- and Mg2+-activated activities of myosin alone, measured at ionic strengths below 0.3 M, and an increase and a decrease in the actin-activated activity of dephosphorylated and phosphorylated myosin, respectively. Modification of SH-A and SH-B with MalNEt is accompanied by stabilization of myosin filaments, seen as an increase in light-scattering intensity, and by destabilization of the folded, 10 S conformation of the myosin monomer. In the presence of 0.175 M NaCl and 1 mM MgATP, unmodified and MalNEt-modified myosin sediment in the ultracentrifuge as single components at 10.0 S and 6.0 S, respectively. The MalNEt-induced increase in the Ca2+- or Mg2+-activated ATPase activity, measured in the absence of actin, can be attributed either to stabilization of filaments or to destabilization of the 10 S conformation, depending on the ionic strength of the assay. Modification of the second class of thiols is accompanied by a decrease in K+-EDTA-activated activity and an increase in Ca2+-activated activity measured above 0.3 M NaCl, where myosin neither forms filaments nor assumes the 10 S conformation. These slow changes are characteristic of blocking the SH-1 thiols of skeletal-muscle myosin, but in gizzard myosin are attributable to modification of a less reactive thiol, SH-C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号