首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upon binding of their ligands, death receptors belonging to the tumor necrosis factor (TNF) receptor family initiate a signaling pathway leading to the activation of caspases and ultimately apoptosis. TNF, however, in parallel elicits survival signals, protecting many cell types from cell death that can only be induced by combined treatment with TNF and inhibitors of protein synthesis. Here, we report that in NIH3T3 cells, apoptosis in response TNF and cycloheximide is not inhibited by the broad spectrum caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD. fmk). Moreover, treatment with zVAD.fmk sensitizes the cells to the cytotoxic action of TNF. Sensitization was also achieved by overexpression of a dominant-negative mutant of Fas-associated death domain protein and, to a lesser extent, by specific inhibition of caspase-8. A similar, but weaker sensitization of zVAD.fmk to treatment with the TNF-related apoptosis-inducing ligand (TRAIL) or anti-CD95 antibody was demonstrated. The unexpected cell death in response to TNF and caspase inhibition occurs despite the activation of nuclear factor kappaB and c-Jun N-terminal kinases. The mode of cell death shows several signs of apoptosis including DNA fragmentation, although activation of caspase-3 was excluded. TNF/zVAD.fmk-induced cell death is preceded by an accumulation of cells in the G(2)/M phase of the cell cycle, indicating an important role of cell cycle progression. This hypothesis is further strengthened by the observation that arresting the cells in the G(1) phase of the cell cycle inhibited TNF/zVAD.fmk-induced cell death, whereas blocking them in the G(2)/M phase augmented it.  相似文献   

2.
Apoptosis is a major mechanism of treatment-induced T-cell depletion in leukemia and autoimmune diseases. While 'classical' apoptosis is considered to depend on caspase activation, caspase-independent death is increasingly recognized as an alternative pathway. Although the DNA-damaging drug cyclophosphamide (CY) is widely used for therapy of hematological malignancies and autoimmune disorders, the molecular mechanism of apoptosis induction remains largely unknown. Here, we report that treatment of Jurkat, cytotoxic, and primary leukemic T cells with an activated analog of CY, 4-hydroperoxy-cyclophosphamide (4-OOH-CY), induces caspase activation and typical features of apoptosis, although cell death was not prevented by caspase inhibition. Also depletion of murine thymocytes and splenocytes after CY treatment in vivo was not inhibited by Z-Val-Ala-DL-Asp-fluoromethylketone (Z-VAD.fmk). Caspase-8 and receptor-induced protein (RIP) were dispensable for 4-OOH-CY-mediated apoptosis, while overexpression of Bcl-2 was partially protective. 4-OOH-CY treatment induced reactive oxygen species production, upregulation of Bax, and nuclear relocation of the mitochondrial factors apoptosis-inducing factor (AIF) and endonuclease G (EndoG). The antioxidant N-acetyl-L-cysteine substantially inhibited conformational changes of Bax, loss of mitochondrial membrane potential, nuclear relocation of mitochondrial factors, and apoptosis induction in 4-OOH-CY-treated T cells. These results strongly indicate that oxidative damage-induced nuclear translocation of AIF and EndoG in 4-OOH-CY-treated T cells might represent an alternative death pathway in the absence of caspase activity.  相似文献   

3.
The replication of many viruses is absolutely dependent on proteolytic cleavage. Infected cells also use this biological mechanism to induce programmed cell death in response to viral infection. Specific inhibitors for both viral and cellular proteases are therefore of vital importance. We have recently shown that the general caspase inhibitor zVAD.fmk inhibits not only caspases, but also the 2Apro of human rhinoviruses (HRVs) (L. Deszcz, J. Seipelt, E. Vassilieva, A. Roetzer, and E. Kuechler, FEBS Lett. 560:51-55, 2004). Here, we describe a derivative of zVAD.fmk that inhibits HRV2 2Apro but that has no effect on caspase 9. This gain in specificity was achieved by replacing the aspartic acid of zVAD.fmk with methionine to generate zVAM.fmk. Methionine was chosen because an oligopeptide with methionine at the P1 position was a much better substrate than an oligopeptide with an alanine residue, which is found at the P1 position of the wild-type HRV2 2Apro cleavage site. zVAM.fmk inhibits the replication of HRV type 2 (HRV2), HRV14, and HRV16. In contrast to zVAD.fmk, however, zVAM.fmk did not inhibit apoptosis induced by puromycin in HeLa cells. zVAM.fmk inhibited in vitro the intermolecular cleavage of eukaryotic initiation factor 4GI (eIF4GI) by HRV2 2Apro at nanomolar concentrations. However, much higher concentrations of zVAM.fmk were required to inhibit HRV14 2Apro cleavage of eIF4GI. In contrast, intramolecular self-processing of HRV14 2Apro was much more susceptible to inhibition by zVAM.fmk than that of HRV2 2Apro, suggesting that zVAM.fmk inhibits HRV2 and HRV14 replication by targeting different reactions of the same proteinase.  相似文献   

4.
Effective execution of apoptosis requires the activation of caspases. However, in many cases, broad-range caspase inhibitors such as Z-VAD.fmk do not inhibit cell death because death signaling continues via basal caspase activities or caspase-independent processes. Although death mediators acting under caspase-inhibiting conditions have been identified, it remains unknown whether they trigger a physiologically relevant cell death that shows typical signs of apoptosis, including phosphatidylserine (PS) exposure and the removal of apoptotic cells by phagocytosis. Here we show that cells treated with ER stress drugs or deprived of IL-3 still show hallmarks of apoptosis such as cell shrinkage, membrane blebbing, mitochondrial release of cytochrome c, PS exposure and phagocytosis in the presence of Z-VAD.fmk. Cotreatment of the stressed cells with Z-VAD.fmk and the serine protease inhibitor Pefabloc (AEBSF) inhibited all these events, indicating that serine proteases mediated the apoptosis-like cell death and phagocytosis under these conditions. The serine proteases were found to act upstream of an increase in mitochondrial membrane permeability as opposed to the serine protease Omi/HtrA2 which is released from mitochondria at a later stage. Thus, despite caspase inhibition or basal caspase activities, cells can still be phagocytosed and killed in an apoptosis-like fashion by a serine protease-mediated mechanism that damages the mitochondrial membrane.  相似文献   

5.
The complete AIF cDNA comprising the amino-terminal mitochondrial localization sequence (MLS) and the oxidoreductase domain has been fused in its carboxyl terminus to enhanced green fluorescent protein (GFP), thereby engineering an AIF-GFP fusion protein that is selectively targeted to the mitochondrial intermembrane space. Upon induction of apoptosis, the AIF-GFP protein translocates together with cytochrome c (Cyt-c) to the extramitochondrial compartment. Microinjection of recombinant AIF leads to the release of AIF-GFP and Cyt-c-GFP, indicating that ectopic AIF can favor permeabilization of the outer mitochondrial membrane. These mitochondrial effects of AIF are caspase independent, whereas the Cyt-c-microinjection induced translocation of AIF-GFP and Cyt-c-GFP is suppressed by the pan-caspase inhibitor Z-VAD.fmk. Upon prolonged culture, transfection-enforced overexpression of AIF results in spontaneous translocation of AIF-GFP from mitochondria, nuclear chromatin condensation, and cell death. These effects are caspase independent and do not rely on the oxidoreductase function of AIF. Spontaneous AIF-GFP translocation and subsequent nuclear apoptosis can be retarded by overexpression of a Bcl-2 protein selectively targeted to mitochondria, but not by a Bcl-2 protein targeted to the endoplasmic reticulum. Overexpression of a mutant AIF protein in which the MLS has been deleted (AIF Delta 1-100) results in the primary cytosolic accumulation of AIF. AIF Delta 1-100-induced cell death is suppressed by neither Z-VAD.fmk or by Bcl-2. Thus, extramitochondrially targeted AIF is a dominant cell death inducer.  相似文献   

6.
Apoptosis-inducing factor (AIF) is a phylogenetically conserved redox-active flavoprotein that contributes to cell death and oxidative phosphorylation in Saccharomyces cerevisiae, Caenorhabditis elegans, mouse and humans. AIF has been characterized as a caspase-independent death effector that is activated by its translocation from mitochondria to the cytosol and nucleus. Here, we report the molecular characterization of AIF in Drosophila melanogaster, a species in which most cell deaths occur in a caspase-dependent manner. Interestingly, knockout of zygotic D. melanogaster AIF (DmAIF) expression using gene targeting resulted in decreased embryonic cell death and the persistence of differentiated neuronal cells at late embryonic stages. Although knockout embryos hatch, they undergo growth arrest at early larval stages, accompanied by mitochondrial respiratory dysfunction. Transgenic expression of DmAIF misdirected to the extramitochondrial compartment (DeltaN-DmAIF), but not wild-type DmAIF, triggered ectopic caspase activation and cell death. DeltaN-DmAIF-induced death was not blocked by removal of caspase activator Dark or transgenic expression of baculoviral caspase inhibitor p35, but was partially inhibited by Diap1 overexpression. Knockdown studies revealed that DeltaN-DmAIF interacts genetically with the redox protein thioredoxin-2. In conclusion, we show that Drosophila AIF is a mitochondrial effector of cell death that plays roles in developmentally regulated cell death and normal mitochondrial function.  相似文献   

7.
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that triggers caspase-independent apoptosis. We describe here the cloning and characterization of a novel AIF-homologous molecule designated AMID (AIF-homologous mitochondrion-associated inducer of death). AMID lacks a mitochondrial localization sequence but shares significant homology with AIF and NADH oxidoreductases from bacteria to mammalian species. Immunofluorescent staining and biochemical experiments indicated that AMID was co-localized with mitochondria. Overexpression of AMID induced cell death with characteristic apoptotic morphology. Furthermore, AMID-induced apoptosis was independent of caspase activation and p53 and was not inhibited by Bcl-2. These findings suggest that AMID induces a novel caspase-independent apoptotic pathway.  相似文献   

8.
Parkinson's disease is a debilitating neurodegenerative disease characterized by loss of midbrain dopaminergic neurons. These neurons are particularly sensitive to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes parkinsonian syndromes in humans, monkeys and rodents. Although apoptotic cell death has been implicated in MPTP/MPP+ toxicity, several recent studies have challenged the role of caspase-dependent apoptosis in dopaminergic neurons. Using the midbrain-derived MN9D dopaminergic cell line, we found that MPP+ treatment resulted in an active form of cell death that could not be prevented by caspase inhibitors or over-expression of a dominant negative inhibitor of apoptotic protease activating factor 1/caspase-9. Apoptosis inducing factor (AIF) is a mitochondrial protein that may mediate caspase-independent forms of regulated cell death following its translocation to the nucleus. We found that MPP+ treatment elicited nuclear translocation of AIF accompanied by large-scale DNA fragmentation. To establish the role of AIF in MPP+ toxicity, we constructed a DNA vector encoding a short hairpin sequence targeted against AIF. Reduction of AIF expression by RNA interference inhibited large-scale DNA fragmentation and conferred significant protection against MPP+ toxicity. Studies of primary mouse midbrain cultures further supported a role for AIF in caspase-independent cell death in MPP+-treated dopaminergic neurons.  相似文献   

9.
Nasirudeen AM  Tan KS 《Biochimie》2005,87(6):489-497
We demonstrated previously that a cytotoxic monoclonal antibody (MAb) 1D5 elicits a programmed cell death (PCD) response in Blastocystis hominis and showed that caspase-3-like protease influences but is not essential for PCD in MAb 1D5-treated B. hominis. We also showed that mitochondrial dysregulation played a role in cell death. In the current study, we further analyzed the signaling pathways involved in PCD mediated by MAb 1D5. B. hominis cells were treated with MAb 1D5 or control MAb 5, either with or without pretreatment with a pan-caspase inhibitor, zVAD.fmk, and/or a mitochondrial transition pore blocker, cyclosporine A (CA). Flow cytometric examination of cell size, mitochondrial membrane potential (delta psi(m)), caspase activation and in situ DNA fragmentation showed that zVAD.fmk and CA, used independently or in combination, failed to inhibit MAb 1D5-mediated PCD. Interestingly, cell exposure to either inhibitor resulted in partial inhibition of DNA fragmentation while combined exposure of cells to inhibitors abolished DNA fragmentation completely. This study sheds new light on the conserved nature of PCD pathways in parasitic protozoa and is also the first report describing caspase- and mitochondria-independent cell death pathways in a protozoan parasite.  相似文献   

10.
Although much emphasis has been laid on the role of caspase in cell death, recent data indicate that, in many instances, mammalian cell death is caspase-independent. Thus, in many examples of mammalian cell death the 'decision' between death and life is upstream or independent of caspase activation. Similarly, it is unclear whether PCD of plants and fungi involves the activation of caspase-like enzymes, and no caspase-like gene has thus far been cloned in these phyla. Apoptosis inducing factor (AIF) is a new mammalian, caspase-independent death effector which, upon apoptosis induction, translocates from its normal localization, the mitochondrial intermembrane space, to the nucleus. Once in the nucleus, AIF causes chromatin condensation and large scale DNA fragmentation to fragments of approximately 50 kbp. The AIF cDNA from mouse and man codes for a protein which possesses three domains (i) an amino-terminal presequence which is removed upon import into the intermembrane space of mitochondria; (ii) a spacer sequence of approximately 27 amino acids; and (iii) a carboxyterminal 484 amino acid oxidoreductase domain with strong homology to oxidoreductases from other vertebrates (X. laevis), non-vertebrate animals (C. elegans, D. melanogaster), plants, fungi, eubacteria, and archaebacteria. Functionally important amino acids involved in the interaction with the prosthetic groups flavin adenine nucleotide and nicotinamide adenine nucleotide are strongly conserved between AIF and bacterial oxidoreductase. Several eukaryotes possess a similar domain organisation in their AIF homologs, making them candidates to be mitochondrial oxidoreductases as well as caspase-independent death effectors. The phylogenetic implications of these findings are discussed.  相似文献   

11.
Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis.   总被引:57,自引:0,他引:57  
Apoptosis inducing factor (AIF) is a novel apoptotic effector protein that induces chromatin condensation and large-scale ( approximately 50 kbp) DNA fragmentation when added to purified nuclei in vitro. Confocal and electron microscopy reveal that, in normal cells, AIF is strictly confined to mitochondria and thus colocalizes with heat shock protein 60 (hsp60). On induction of apoptosis by staurosporin, c-Myc, etoposide, or ceramide, AIF (but not hsp60) translocates to the nucleus. This suggests that only the outer mitochondrial membrane (which retains AIF in the intermembrane space) but not the inner membrane (which retains hsp60 in the matrix) becomes protein permeable. The mitochondrio-nuclear redistribution of AIF is prevented by a Bcl-2 protein specifically targeted to mitochondrial membranes. The pan-caspase inhibitor Z-VAD. fmk does not prevent the staurosporin-induced translocation of AIF, although it does inhibit oligonucleosomal DNA fragmentation and arrests chromatin condensation at an early stage. ATP depletion is sufficient to cause AIF translocation to the nucleus, and this phenomenon is accelerated by the apoptosis inducer staurosporin. However, in conditions in which both glycolytic and respiratory ATP generation is inhibited, cells fail to manifest any sign of chromatin condensation and advanced DNA fragmentation, thus manifesting a 'necrotic' phenotype. Both in the presence of Z-VAD. fmk and in conditions of ATP depletion, AIF translocation correlates with the appearance of large-scale DNA fragmentation. Altogether, these data are compatible with the hypothesis that AIF is a caspase-independent mitochondrial death effector responsible for partial chromatinolysis.  相似文献   

12.
Caspase-independent death mechanisms have been shown to execute apoptosis in many types of neuronal injury. P53 has been identified as a key regulator of neuronal cell death after acute injury such as DNA damage, ischemia, and excitotoxicity. Here, we demonstrate that p53 can induce neuronal cell death via a caspase-mediated process activated by apoptotic activating factor-1 (Apaf1) and via a delayed onset caspase-independent mechanism. In contrast to wild-type cells, Apaf1-deficient neurons exhibit delayed DNA fragmentation and only peripheral chromatin condensation. More importantly, we demonstrate that apoptosis-inducing factor (AIF) is an important factor involved in the regulation of this caspase-independent neuronal cell death. Immunofluorescence studies demonstrate that AIF is released from the mitochondria by a mechanism distinct from that of cytochrome-c in neurons undergoing p53-mediated cell death. The Bcl-2 family regulates this release of AIF and subsequent caspase-independent cell death. In addition, we show that enforced expression of AIF can induce neuronal cell death in a Bax- and caspase-independent manner. Microinjection of neutralizing antibodies against AIF significantly decreased injury-induced neuronal cell death in Apaf1-deficient neurons, indicating its importance in caspase-independent apoptosis. Taken together, our results suggest that AIF may be an important therapeutic target for the treatment of neuronal injury.  相似文献   

13.
Unlike other immune cells, activation of macrophages by stimulating agents, such as lipopolysaccharide (LPS), confers significant resistance to many apoptotic stimuli, but the underlying mechanism of this phenomenon remains largely unknown. Here, we demonstrate that LPS-induced early caspase activation is essential for macrophage survival because blocking caspase activation with a pancaspase inhibitor (zVAD [benzyloxycarbonyl-Val-Ala-Asp]) rapidly induced death of activated macrophages. This type of death process by zVAD/LPS was principally mediated by intracellular generation of superoxide. STAT1 knockout macrophages demonstrated profoundly decreased superoxide production and were resistant to treatment with zVAD/LPS, indicating the crucial involvement of STAT1 in macrophage death by zVAD/LPS. STAT1 level and activity were reciprocally regulated by caspase activation and were associated with cell death. Activation of STAT1 was critically dependent upon serine phosphorylation induced by p38 mitogen-activated protein kinase (MAPK) because a p38 MAPK inhibitor nullified STAT1 serine phosphorylation, reactive oxygen species (ROS) production, and macrophage death by zVAD/LPS. Conversely, p38 MAPK activation was dependent upon superoxide and was also nullified in STAT1 knockout macrophages, probably due to impaired generation of superoxide. Our findings collectively indicate that STAT1 signaling modulates intracellular oxidative stress in activated macrophages through a positive-feedback mechanism involving the p38 MAPK/STAT1/ROS pathway, which is interrupted by caspase activation. Furthermore, our study may provide significant insights in regards to the unanticipated critical role of STAT1 in the caspase-independent death pathway.  相似文献   

14.
The neurotoxicity of amyloid-β (Aβ) involves caspase-dependent and -independent programmed cell death. The latter is mediated by the nuclear translocation of the mitochondrial flavoprotein apoptosis inducing factor (AIF). Nicotine has been shown to decrease Aβ neurotoxicity via inhibition of caspase-dependent apoptosis, but it is unknown if its neuroprotection is mediated through caspase-independent pathways. In the present study, pre-treatment with nicotine in rat cortical neuronal culture markedly reduced Aβ(1-42) induced neuronal death. This effect was accompanied by a significant reduction of mitochondrial AIF release and its subsequent nuclear translocation as well as significant inhibition of cytochrome c release and caspase 3 activation. Pre-treatment with selective α7nicotinic acetylcholine receptor(nAChR) antagonist (methyllycaconitine), but not the α4 nAChR antagonist (dihydro-β-erythroidine), could prevent the neuroprotective effect of nicotine on AIF release/translocation, suggesting that nicotine inhibits the caspase-independent death pathway in a α7 nAChR-dependent fashion. Furthermore, the neuroprotective action of nicotine on AIF release/translocation was suppressed by LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor. Pre-treatment with nicotine significantly restored Akt phosphorylation, an effector of PI3K, in Aβ(1-42) -treated neurons. These findings indicate that the α7 nAChR activation and PI3K/Akt transduction signaling contribute to the neuroprotective effects of nicotine against Aβ-induced cell death by modulating caspase-independent death pathways.  相似文献   

15.
Apoptosis inducing factor (AIF) is a mediator of caspase-independent cell death that is also necessary for mitochondrial energy production. How these seemingly opposite cellular functions of AIF are controlled is poorly understood. X-linked inhibitor of apoptosis (XIAP) is an endogenous inhibitor of caspases that also regulates several caspase-independent signaling pathways. The RING domain of XIAP possesses E3 ubiquitin ligase activity, though the importance of this function to signal regulation remains incompletely defined. XIAP binds and ubiquitinates AIF, and in this study, we determined the functional consequences of XIAP-mediated AIF ubiquitination. Unlike canonical ubiquitination, XIAP-dependent AIF ubiquitination did not lead to proteasomal degradation of AIF. Experiments using ubiquitin mutants demonstrated that the XIAP-dependent ubiquitin linkage was not formed through the commonly used lysine 48, suggesting a noncanonical ubiquitin linkage is employed. Further studies demonstrated that only lysine 255 of AIF was a target of XIAP-dependent ubiquitination. Using recombinant AIF, we determined that mutating lysine 255 of AIF interferes with the ability of AIF not only to bind DNA but also to degrade chromatin in vitro. These data indicate that XIAP regulates the death-inducing activity of AIF through nondegradative ubiquitination, further defining the role of XIAP in controlling AIF and caspase-independent cell death pathways.  相似文献   

16.
Responses of primary hippocampal and cortical neurons derived from male and female rats to cellular stressors were studied. It is demonstrated that 17β-estradiol (E2), a potent neuroprotectant, protected the female neurons but had no effects on the male neurons from CoCl2- and glutamate-induced toxicity. Agonists of the estrogen receptor (ER) subtypes ERα and ERβ, DPN and PPT, respectively, had similar effects to E2. By contrast, effects of E2 were abolished by the ER antagonist ICI-182780, further corroborating the neuroprotective role of ERs. In male neurons, CoCl2 predominately activated the apoptosis-inducing factor (AIF)-dependent pathway and AIF translocation from the cytosol to the nucleus. In comparison, CoCl2 activated the caspase pathway and cytochrome c release in female neurons. The inhibitors of these pathways, namely DiQ for AIF and zVAD for caspase, specifically rescued CoCl2-induced cell death in male and female neurons, respectively. When zVAD and ICI-182780, and E2 were applied in combination, it was demonstrated E2 acted on the caspase pathway leading to female-specific neuroprotection. Furthermore, the PI3 kinase (PI3K) inhibitor blocked the rescue effects of DiQ and zVAD on the male and female neurons, respectively, suggesting that PI3K is a common upstream regulator for both pathways. The present study suggested that both sex-specific and nonspecific mechanisms played a role in neuronal responses to stressors and protective reagents.  相似文献   

17.
Evasion of apoptosis, for example, by inhibitor of apoptosis (IAP) proteins, contributes to treatment resistance and poor outcome in acute myeloid leukemia (AML). Here we identify a novel synergistic interaction between the small-molecule second mitochondria-derived activator of caspases (Smac) mimetic BV6, which antagonizes X-linked IAP, cellular IAP (cIAP)1 and cIAP2, and the demethylating agents 5-azacytidine or 5-aza-2′-deoxycytidine (DAC) to induce cell death in AML cells, including apoptosis-resistant cells. Calculation of combination index (CI) confirms that this drug combination is highly synergistic (CI 0.02–0.4). In contrast, BV6 and DAC at equimolar concentrations do not cause synergistic toxicity against normal peripheral blood lymphocytes, pointing to some tumor cell selectivity. Molecular studies reveal that BV6 and DAC cooperate to trigger the activation of caspases, mitochondrial perturbations and DNA fragmentation, consistent with apoptotic cell death. However, the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) fails to protect against BV6/DAC-induced cell death and even significantly increases the percentage of Annexin-V/propidium iodide double-positive cells. Importantly, BV6/DAC-induced cell death in the presence of zVAD.fmk is significantly reduced by pharmacological inhibition of key components of necroptosis signaling, that is, receptor-interacting protein (RIP) 1 using necrostatin-1 or mixed lineage kinase domain-like protein (MLKL) using necrosulfonamide. This indicates a switch from BV6/DAC-induced cell death from apoptosis to necroptosis upon caspase inhibition. Thus, BV6 cooperates with demethylating agents to induce cell death in AML cells and circumvents apoptosis resistance via a switch to necroptosis as an alternative mode of cell death. The identification of a novel synergism of BV6 and demethylating agents has important implications for the development of new treatment strategies for AML.  相似文献   

18.
Wang L  Liu L  Shi Y  Cao H  Chaturvedi R  Calcutt MW  Hu T  Ren X  Wilson KT  Polk DB  Yan F 《PloS one》2012,7(5):e36418
Berberine, an isoquinoline alkaloid derived from plants, is a traditional medicine for treating bacterial diarrhea and intestinal parasite infections. Although berberine has recently been shown to suppress growth of several tumor cell lines, information regarding the effect of berberine on colon tumor growth is limited. Here, we investigated the mechanisms underlying the effects of berberine on regulating the fate of colon tumor cells, specifically the mouse immorto-Min colonic epithelial (IMCE) cells carrying the Apc(min) mutation, and of normal colon epithelial cells, namely young adult mouse colonic epithelium (YAMC) cells. Berberine decreased colon tumor colony formation in agar, and induced cell death and LDH release in a time- and concentration-dependent manner in IMCE cells. In contrast, YAMC cells were not sensitive to berberine-induced cell death. Berberine did not stimulate caspase activation, and PARP cleavage and berberine-induced cell death were not affected by a caspase inhibitor in IMCE cells. Rather, berberine stimulated a caspase-independent cell death mediator, apoptosis-inducing factor (AIF) release from mitochondria and nuclear translocation in a ROS production-dependent manner. Amelioration of berberine-stimulated ROS production or suppression of AIF expression blocked berberine-induced cell death and LDH release in IMCE cells. Furthermore, two targets of ROS production in cells, cathepsin B release from lysosomes and PARP activation were induced by berberine. Blockage of either of these pathways decreased berberine-induced AIF activation and cell death in IMCE cells. Thus, berberine-stimulated ROS production leads to cathepsin B release and PARP activation-dependent AIF activation, resulting in caspase-independent cell death in colon tumor cells. Notably, normal colon epithelial cells are less susceptible to berberine-induced cell death, which suggests the specific inhibitory effects of berberine on colon tumor cell growth.  相似文献   

19.
Caspase-independent apoptotic pathways in T lymphocytes: a minireview   总被引:5,自引:0,他引:5  
Cell death by apoptosis is involved in the maintenance of T cell receptor diversity, self tolerance, and T-cell number homeostasis. Until recently, apoptosis was thought to require caspase activation. Evidence is now accumulating that a caspase-independent pathway exists, shown by in vitro experiments with broad-range caspase inhibitors. Mature T lymphocytes readily undergo caspase-independent apoptosis in vitro, and recent data suggest that this type of apoptosis may be involved in the negative selection of thymocytes. Mitochondria likely release death triggers specific for both caspase-dependent and caspase-independent apoptotic pathways (cytochrome c and AIF respectively) in response to apoptotic stimuli. A caspase-independent pathway is triggered first in activated T lymphocytes subjected to apoptotic stimuli that do not rely on receptors with death domains. In this pathway, the early commitment phase to apoptosis involves cell shrinkage, peripheral DNA condensation and the translocation of mitochondrial AIF to the cytosol and nucleus. This process is reversible until mitochondrial cytochrome c is released and m dissipated. Only at this stage are caspases activated.  相似文献   

20.
The regulation of proliferation and cell death is vital for homeostasis, but the mechanism that coordinately balances these events in rheumatoid arthritis (RA) remains largely unknown. In RA, the synovial lining thickens in part through increased proliferation and/or decreased synovial fibroblast cell death. Here we demonstrate that the anti-apoptotic protein, Bcl-2, is highly expressed in RA compared with osteoarthritis synovial tissues, particularly in the CD68-negative, fibroblast-like synoviocyte population. To determine the importance of endogenous Bcl-2, an adenoviral vector expressing a hammerhead ribozyme to Bcl-2 (Ad-Rbz-Bcl-2) mRNA was employed. Ad-Rbz-Bcl-2 infection resulted in reduced Bcl-2 expression and cell viability in synovial fibroblasts isolated from RA and osteoarthritis synovial tissues. In addition, Ad-Rbz-Bcl-2-induced mitochondrial permeability transition, cytochrome c release, activation of caspases 9 and 3, and DNA fragmentation. The general caspase inhibitor zVAD.fmk blocked caspase activation, poly(ADP-ribose) polymerase cleavage, and DNA fragmentation, but not loss of transmembrane potential or viability, indicating that cell death was independent of caspase activation. Ectopically expressed Bcl-xL inhibited Ad-Rbz-Bcl-2-induced mitochondrial permeability transition and apoptosis in Ad-Rbz-Bcl-2-transduced cells. Thus, forced down-regulation of Bcl-2 does not induce a compensatory mechanism to prevent loss of mitochondrial integrity and cell death in human fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号