首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In an experiment to determine the influence of mycorrhizal colonization on root development, fertilized seedlings of cotton were grown in long tubular pots. Inoculation of soil with an isolate of Glomus mosseae at 10, 25 or 40 cm below the soil surface resulted in spread of arbuscular mycorrhizas up and down the root system, and localized elongation of roots following colonization. Specific root length was not influenced by colonization. Increases in local root density at the point of inoculation were observed, though total root mass in relation to shoot mass declined following initiation of mycorrhizas.  相似文献   

2.
丛枝菌根提高宿主植物抗旱性分子机制研究进展   总被引:8,自引:1,他引:8  
李涛  杜娟  郝志鹏  张莘  陈保冬 《生态学报》2012,32(22):7169-7176
丛枝菌根(arbuscular mycorrhiza, AM)对于植物适应各种逆境胁迫具有重要生态学意义。有关菌根共生体对植物抵御干旱胁迫的积极作用已有较多文献报道:无论在植物个体层面——AM调节植物水分生理,还是在生态层面——干旱条件下菌根真菌和宿主植物之间的互动关系,人们都已有一定的认识。然而,目前对于菌根植物适应干旱胁迫的生理和分子机制还缺乏系统深入的研究。综述了近年来相关研究成果,从干旱胁迫相关植物基因入手,讨论了AM对晚期胚胎富集蛋白(LEA)、脯氨酸合成限速酶△1-吡咯啉-5-羧酸合成酶(P5CS)、水孔蛋白(MIPs),及脱落酸合成途径重要酶9-顺式-环氧类胡萝卜素双加氧酶(NCED)编码基因的可能调控机制,旨在揭示AM共生体提高植物抗旱性的分子基础和实质贡献,同时通过分析当前研究工作薄弱之处及未来研究热点,期望推动相关研究进展。  相似文献   

3.
王玮  赵方贵  侯丽霞  车永梅  刘新 《生态学报》2013,33(23):7583-7589
以烟草(Nicotiana tabacum,品种CF90NF)为材料,利用分光光度法和荧光显微技术结合药理学实验,探讨在AM真菌摩西球囊霉(Glomus mosseae,G.m)与烟草共生过程中一氧化氮(nitric oxide, NO)的作用。结果表明,烟草侧根中含有一定水平的内源NO,苗期接种G.m 10天后,烟草根系NO含量显著增加,侧根中的NO荧光强度也在接种后10天达到最强;一定浓度的NO供体硝普钠(sodium nitroprusside,SNP)能促进G.m对烟草的侵染,而NO的清除剂2-4,4,5,5-苯-四甲基咪唑-1-氧-3-氧化物( 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxidepotassium salt,cPTIO)可明显减弱侧根和菌丝中的NO的荧光强度,降低AM真菌的侵染率,表明NO参与G.m与烟草的共生过程;在G.m与烟草的共生过程中,烟草根系硝酸还原酶(nitrate reductase,NR)活性与Nia-1的表达量明显升高,且NR的抑制剂钨酸钠(sodium tungstate,Na2WO4)可以降低烟草侧根中的荧光强度,但对菌丝中的NO的荧光强度无明显影响。由此推测,来自根系NR途径的NO参与AM真菌与烟草的共生过程,菌丝中可能存在其他来源的NO。  相似文献   

4.
We have recently cloned a cDNA encoding sucrose:fructan 6-fructosyltransferase (6-SFT), a key enzyme of fructan synthesis forming the β-2,6 linkages typical of the grass fructans, graminans and phleins [Sprenger et al. (1995) Proc. Natl. Acad. Sci. USA 92, 11652–11656]. Here we report functional expression of 6-SFT from barley in transgenic tobacco and chicory. Transformants of tobacco, a plant naturally unable to form fructans, synthesized the trisaccharide kestose and a series of unbranched fructans of the phlein type (β-2,6 linkages). Transformants of chicory, a plant naturally producing only unbranched fructans of the inulin type (β-2,1 linkages), synthesized in addition branched fructans of the graminan type, particularly the tetrasaccharide bifurcose which is also a main fructan in barley leaves.  相似文献   

5.
干旱胁迫条件下AMF促进小马鞍羊蹄甲幼苗生长的机理研究   总被引:1,自引:0,他引:1  
张亚敏  马克明  李芳兰  曲来叶 《生态学报》2016,36(11):3329-3337
采用温室水分控制试验,在干旱胁迫条件下,定量化研究优势丛枝菌根真菌(AMF)影响优势乡土植物小马鞍羊蹄甲(Bauhinia faberi var.microphylla)幼苗生长的机理,主要通过研究干旱胁迫条件下摩西球囊霉菌(Funneliformis mosseae)与小马鞍羊蹄甲的共生关系,阐明AMF在植物生长初期的作用。结果表明,干旱胁迫条件下,摩西球囊霉菌能够很好地侵染幼苗,侵染率高达89%—97%,并且不受水分条件影响。接种的幼苗最大光合速率、水分利用效率随着干旱胁迫程度从重度到轻度(水分从低到高)逐渐增大,相反地,叶片脯氨酸含量逐渐减小。接种显著地促进幼苗株高、叶片数、叶面积、根长、根面积等生长指标,提高幼苗各部分生物量、地上地下磷(P)含量。当含水量为60%田间持水量时,AMF促进小马鞍羊蹄甲幼苗吸收P的效果最好。接种还显著影响幼苗的生物量分配,在重度干旱胁迫时影响P分配,水分条件也显著影响幼苗的生物量分配。此外,接种和水分的交互作用对叶生物量、总生物量、生长指标以及地上部氮(N)总量影响显著。结果表明干旱胁迫条件下菌根效应显著,并在干旱条件下显著促进了小马鞍羊蹄甲幼苗的生长,这为进一步干旱河谷植被恢复提供了理论依据。  相似文献   

6.
以濒危植物七子花二年生幼苗为研究材料,采用盆栽试验方法,研究干旱胁迫和接种丛枝菌根真菌(AMF)处理对幼苗不同器官C、N、P化学计量关系和非结构性碳水化合物(NSC)含量的影响。试验共设计4个处理:对照(CK)、干旱胁迫(D)、接种AMF(AMF)、干旱胁迫和接种AMF(D+AMF)。结果表明: 在干旱胁迫下七子花根系AMF的侵染率显著下降,但接种AMF处理植株的株高、叶片数显著高于未接种处理。接种AMF显著提高了干旱胁迫下植株根、叶可溶性糖和NSC含量及茎、叶淀粉含量,且茎和叶可溶性糖与淀粉比显著下降。干旱胁迫导致植株C含量在根和叶中显著增加,P含量在茎中显著减少;与干旱胁迫相比,胁迫下接种AMF植株根、茎、叶P含量及叶C含量显著提高,而根C、N含量及茎C含量显著降低。胁迫下接种AMF植株根、茎C∶N、C∶P、N∶P和叶N∶P均显著低于单一胁迫处理。NSC与C∶N∶P计量比的相关性分析表明,根、叶P含量与可溶性糖和NSC含量呈显著正相关,茎P含量与淀粉和NSC含量呈显著正相关,各器官N∶P与NSC含量呈显著负相关。综上,干旱胁迫显著抑制了七子花幼苗的生长,接种AMF通过提高植株根和叶的可溶性糖含量、根的可溶性糖/淀粉,增加地上部分淀粉含量,促进P元素吸收和降低各器官N∶P来增强植株耐旱性,从而提高七子花幼苗在干旱环境中的存活率。  相似文献   

7.
R.M. Miller  M. Kling 《Plant and Soil》2000,226(2):295-309
The arbuscular mycorrhizal (AM) fungus contributes to system processes and functions at various hierarchical organizational levels, through their establishment of linkages and feedbacks between whole-plants and nutrient cycles. Even though these fungal mediated feedbacks and linkages involve lower-organizational level processes (e.g. photo-assimilate partitioning, interfacial assimilate uptake and transport mechanisms, intraradical versus extraradical fungal growth), they influence higher-organizational scales that affect community and ecosystem behavior (e.g. whole-plant photosynthesis, biodiversity, nutrient and carbon cycling, soil structure). Hence, incorporating AM fungi into research directed at understanding many of the diverse environmental issues confronting society will require knowledge of how these fungi respond to or initiate changes in vegetation dynamics, soil fertility or both. Within the last few years, the rapid advancement in the development of analytical tools has increased the resolution by which we are able to quantify the mycorrhizal symbiosis. It is important that these tools are applied within a conceptual framework that is temporally and spatially relevant to fungus and host. Unfortunately, many of the studies being conducted on the mycorrhizal symbiosis at lower organizational scales are concerned with questions directed solely at understanding fungus or host without awareness of what the plant physiologist or ecologist needs for integrating the mycorrhizal association into larger organizational scales or process levels. We show by using the flow of C from plant-to-fungus-to-soil, that through thoughtful integration, we have the ability to bridge different organizational scales. Thus, an essential need of mycorrhizal research is not only to better integrate the various disciplines of mycorrhizal research, but also to identify those relevant links and scales needing further investigation for understanding the larger-organizational level responses. The U.S. Government's right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
刘婷  唐明 《植物生态学报》2014,38(9):1001-1007
植物气孔与木质部导管及纤维的功能直接关系着植物的水分利用, 进而影响植物的生长。为研究丛枝菌根真菌(AMF)对杨树抗旱性的影响, 采用温室盆栽的方法, 研究两种水分条件下, 接种根内球囊霉(Rhizophagus irregularis)对速生杨107 Populus × canadensis (P. nigra × P. deltoides) ‘Neva’气孔及木质部微观结构的影响。结果表明: AMF的侵染显著提高了杨树幼苗地上和地下部分生物量, 对叶片气孔长度、茎部导管细胞直径和纤维细胞长度也有促进作用。AMF对生物量和导管细胞直径的增加幅度表现出干旱条件下>正常水分条件下, 而对气孔长度的提高幅度表现出干旱条件下<正常水分条件下。正常水分条件下, AMF增加了杨树叶片的气孔密度, 减小了纤维细胞直径, 对相对水分饱和亏缺无影响; 干旱条件下, AMF增加了纤维细胞直径, 降低了相对水分饱和亏缺, 对气孔密度无影响。综上所述, 干旱条件下, AMF对导管水分传输能力的促进作用明显增加, 而对气孔蒸腾能力的促进作用有所减少, 从而更利于杨树在遭遇干旱时保持水分, 减少干旱对菌根杨树造成的水分亏缺, 提高菌根杨树对干旱的耐受性。  相似文献   

9.
采用分室培养系统,模拟正常水分和干旱胁迫两种环境条件,探讨不同丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)对紫花苜蓿(Medicago sativa L.)生长和土壤水稳性团聚体的影响.试验条件下,Glomus intraradices对苜蓿根系的侵染率均显著高于Acaulospora scrobiculata和Diversispora spurcum接种处理.正常水分条件下,供试AM真菌均能显著提高植株生物量及磷浓度.干旱胁迫显著抑制了植株生长和菌根共生体发育,总体上菌根共生体对植株生长没有明显影响,接种D.spurcum甚至趋于降低植株生物量;同时,仅有G.intraradices显著提高了植株磷浓度.AM真菌主要影响到>2mm的水稳性团聚体数量,以G.intraradices作用效果最为显著.在菌丝室中,G.intraradices显著提高了总球囊霉素含量.研究表明AM真菌对土壤大团聚体形成具有积极作用,而菌根效应因土壤水分条件和不同菌种而异,干旱胁迫下仅有G.intraradices对土壤结构和植物生长表现出显著积极作用.在应用菌根技术治理退化土壤时,需要选用抗逆性强共生效率高的菌株,对于不同AM真菌抗逆性差异的生物学与遗传学基础尚需进一步研究.  相似文献   

10.
The adaptation capacity of olive trees to different environments is well recognized. However, the presence of microorganisms in the soil is also a key factor in the response of these trees to drought. The objective of the present study was to elucidate the effects of different arbuscular mycorrhizal (AM) fungi coming from diverse soils on olive plant growth and water relations. Olive plants were inoculated with native AM fungal populations from two contrasting environments, that is, semi‐arid – Freila (FL) and humid – Grazalema (GZ) regions, and subjected to drought stress. Results showed that plants grew better on GZ soil inoculated with GZ fungi, indicating a preference of AM fungi for their corresponding soil. Furthermore, under these conditions, the highest AM fungal diversity was found. However, the highest root hydraulic conductivity (Lpr) value was achieved by plants inoculated with GZ fungi and growing in FL soil under drought conditions. So, this AM inoculum also functioned in soils from different origins. Nine novel aquaporin genes were also cloned from olive roots. Diverse correlation and association values were found among different aquaporin expressions and abundances and Lpr, indicating how the interaction of different aquaporins may render diverse Lpr values.  相似文献   

11.
干旱胁迫下AMF对云南蓝果树幼苗生长和光合特征的影响   总被引:2,自引:0,他引:2  
张珊珊  康洪梅  杨文忠  向振勇 《生态学报》2016,36(21):6850-6862
采用盆栽试验与称重控水法,将土壤相对含水量分别控制在田间最大持水量的100%、91.68%、82.85%、60.00%、41.86%和21.28%,并在这6个不同的土壤相对含水量条件下,分别设添加苯菌灵(杀真菌剂)(低AMF)和不添加苯菌灵(高AMF)处理,研究干旱胁迫下AMF对极小种群野生植物云南蓝果树幼苗生长和光合特征的影响,揭示云南蓝果树濒危的微生物学机制,为云南蓝果树保护措施的制定与实施奠定基础。结果表明,添加苯菌灵处理显著降低了不同水分条件下的AMF侵染率,说明试验中AMF处理的实生苗在生长和光合特征上的差异是苯菌灵处理下侵染率下降导致的;随着干旱胁迫的加剧,云南蓝果树幼苗的根部AMF侵染率显著降低、叶面积等生长指标和净光合速率(Pn)等光合参数都发生显著变化;高AMF处理可以显著增加水分充足和轻度干旱胁迫条件下云南蓝果树幼苗的大部分生长指标和光合参数,而对重度胁迫下的云南蓝果树幼苗没有显著影响,说明重度干旱胁迫对其影响大于AMF的影响;另外,整合了可塑性指数分析和隶属函数分析两种方法对其抗旱性进行评价,云南蓝果树幼苗基本上无法通过调节形态和光合能力来适应水分环境的变化,但是高AMF处理可使云南蓝果树幼苗具有较强的可塑性和更强的抗旱性。实验结果为云南蓝果树的科学保育及种苗繁育提供了理论依据。  相似文献   

12.
张菲  邹英宁  吴强盛 《菌物学报》2019,38(11):2043-2050
测定分析了接种丛枝菌根(AM)真菌摩西管柄囊霉Funneliformis mosseae对正常供水与干旱处理的盆栽枳Poncirus trifoliata实生苗生长、活性氧代谢及抗氧化酶基因表达量的影响。结果表明,7周干旱处理显著降低了根系菌根侵染率。接种摩西管柄囊霉显著促进了干旱处理的枳植株生长,增加了根系体积和叶片相对含水量,显著降低了叶片脯氨酸含量,同时也上调了干旱处理的枳叶片精氨酸脱羧酶基因(PtADC1PtADC2)和超氧化物歧化酶基因(PtFe-SODPtMn-SOD)、过氧化物酶基因(PtPOD)和过氧化氢酶基因(PtCAT1)的表达,因而维持了一个相对更低的活性氧水平(如过氧化氢),有利于增强植株的抗旱性。  相似文献   

13.
于萌  张永帅  付伟  吴照祥  谢伟  张莘  郝志鹏  陈保冬 《菌物学报》2019,38(11):1976-1991
为探讨保水剂(super absorbent polymers,SAP)和丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)对植物生长和抗旱性的影响,以紫花苜蓿Medicago sativa为供试植物,开展了温室盆栽试验。植物播种时设置土壤添加和不添加聚丙烯酰胺型SAP(BJ2101)处理,以及接种和不接种异形根孢囊霉Rhizophagus irregularis处理,通过称重法维持12%的土壤含水量(正常供水),植物生长30d,各处理一半植物接受干旱胁迫(6%的土壤含水量),另一半仍正常供水,持续30d后收获。结果表明,在干旱胁迫下,接种AMF显著增加了紫花苜蓿的植株干重,促进了植物对矿质元素的吸收,提高了叶片中叶绿素和脯氨酸含量,增强了植物的抗旱性。SAP抑制了R. irregularis对植物根系的侵染;与单接种AMF相比,SAP和AMF的联合施用降低了紫花苜蓿的生物量,影响了植物对矿质元素的吸收。本研究中,SAP和AMF的联合施用并没有表现出协同增效作用,这一方面可能是因为研究设定的土壤水分管理模式,另一方面SAP与AMF共同施用的适宜条件还需进一步探索优化。  相似文献   

14.
为了探明丛枝菌根真菌(AMF)与木棉(Bombax ceiba Linn.)抗旱性的关系,采用盆栽法对不同干旱胁迫条件下接菌组(1 g土壤含100个AMF孢子)和未接菌组木棉叶绿素荧光参数进行了比较分析.结果表明:中度干旱胁迫(土壤相对含水量45%~50%)和重度干旱胁迫(土壤相对含水量30%~35%)条件下接菌组的初始荧光(Fo)均低于未接菌组;与对照(土壤相对含水量65%~70%)相比,重度干旱胁迫5、15和35 d,接菌组的Fo值分别升高了10.39%、20.93%和14.14%,未接菌组的Fo值分别升高了26.95%、48.75%和71.35%.接菌组的PSⅡ最大光化学效率(Fv/Fm)和PSⅡ潜在活性(Fv/Fo)在中度和重度干旱胁迫5、15和35 d均高于未接菌组.与对照相比,重度干旱胁迫5、15和35 d,接菌组的Fv/Fm值分别降低了9.09%、6.85%和22.06%,未接菌组的Fv/Fm值分别降低了10.67%、16.21%和52.78%;接菌组的Fv/Fo值分别降低了28.14%、22.43%和46.01%,未接菌组的Fv/Fo值分别降低了28.38%、48.20%和75.96%.总体来看,在中度和重度干旱胁迫条件下,接菌组的PSⅡ实际光量子产量〔Y(Ⅱ)〕、PSⅡ非调节性能量耗散的量子产量〔Y(NO)〕、光化学淬灭系数(qP)和光合电子传递速率(ETR)高于对照,而PSⅡ调节性能量耗散的量子产量〔Y(NPQ)〕和非光化学淬灭系数(qN)低于对照;未接菌组的Y(Ⅱ)、qP、qN和ETR值低于对照,而Y(NO)和Y(NPQ)值则高于对照.研究结果显示:AMF能够减轻干旱尤其是重度干旱胁迫条件下木棉受伤害和光抑制的程度,并提高其叶片PSⅡ反应中心的活性,从而增强木棉在干旱胁迫条件下的生存能力.  相似文献   

15.
Transgenic tobaccoNicotiana tabacum L. var. SR1) plants that over-express theEscherichia coli trehalose-6-phosphate synthase (TPS) gene(otsA) synthesized small amounts of trehalose (<400 μg g-1 leaf) while non-transformants produced no detectable trehalose. Some transgenic plants expressing a high level ofotsA exhibited stunted growth and morphologically altered leaves. We tested F22 homozygous plants devoid of phenotypic changes to determine their physiological responses to dehydration and salinity stresses. All transgenic plants maintained better leaf turgidity under a limited water supply or after treatment with polyethylene glycol (PEG). Furthermore, fresh weight was maintained at higher levels after either treatment. The initial leaf water potential was higher in transgenic plants than non-transformants, but, in both plant types, was decreased to a comparable degree following dehydration. When grown with 250 mM NaCl, transgenic plants exhibited a significant delay in leaf withering and chlorosis, as well as more efficient seed germination. Our results suggest that either trehalose or trehalose-6-phosphate can act as an osmoprotective molecule without maintaining water potential, in contrast to other osmolytes. Furthermore, both appear to protect young embryos under unfavorable water status to ensure subsequent germination.  相似文献   

16.
Bryla  David R.  Duniway  John M. 《Plant and Soil》1997,197(1):95-103
The influence of arbuscular mycorrhizal fungi on drought tolerance and recovery was studied in safflower (Carthamus tinctorius L.) and wheat (Triticum aestivum L.). Plants were grown with and without the mycorrhizal fungus, Glomus etunicatum Becker & Gerd., in nutrient-amended soil under environmentally-controlled conditions to yield mycorrhizal and nonmycorrhizal with similar leaf areas, root length densities, dry weights, and adequate tissue phosphorus. When drought stress was induced, mycorrhizal infection did not affect changes in leaf water, osmotic or pressure potentials, or osmotic potentials of leaf tissue rehydrated to full turgor in either safflower or wheat. Furthermore, in safflower, infection had little effect on drought tolerance as indicated by the level of leaf necrosis. Mycorrhizal wheat plants, however, had less necrotic leaf tissue than uninfected plants at moderate levels of drought stress (but not at severe levels) probably due to enhanced phosphorus nutrition. To determine the effects of infection on drought recovery, plants were rewatered at a range of soil water potentials from –1 to –4 MPa. We found that although safflower tended to recover more slowly from drought after rewatering than wheat, mycorrhizal infection did not directly affect drought recovery in either plant species. Daily water use after rewatering was reduced and was correlated to the extent that leaves were damaged by drought stress in both plant species, but was not directly influenced by the mycorrhizal status of the plants.  相似文献   

17.
Drought is the main limiting factor for plant growth in karst areas with a fragile ecological environment. Cinnamomum migao H.W. Li is an endemic medicinal woody plant present in the karst areas of southwestern China, and it is endangered due to poor drought tolerance. Arbuscular mycorrhizal fungi (AMF) are known to enhance the drought tolerance of plants. However, few studies have examined the contribution of AMF in improving the drought tolerance of C. migao seedlings. Therefore, we conducted a series of experiments to determine whether a single inoculation and coinoculation of AMF (Claroideoglomus lamellosum and Claroideoglomus etunicatum) enhanced the drought tolerance of C. migao. Furthermore, we compared the effects of single inoculation and coinoculation with different inoculum sizes (20, 40, 60, and 100 g; four replicates per treatment) on mycorrhizal colonization rate, plant growth, photosynthetic parameters, antioxidant enzyme activity, and malondialdehyde (MDA) and osmoregulatory substance contents. The results showed that compared with nonmycorrhizal plants, AMF colonization significantly improved plant growing status; net photosynthetic rate; superoxide dismutase, catalase, and peroxidase activities; and soluble sugar, soluble protein, and proline contents. Furthermore, AMF colonization increased relative water content and reduced MDA content in cells. These combined cumulative effects of AMF symbiosis ultimately enhanced the drought tolerance of seedlings and were closely related to the inoculum size. With an increase in inoculum size, the growth rate and drought tolerance of plants first increased and then decreased. The damage caused by drought stress could be reduced by inoculating 40–60 g of AMF, and the effect of coinoculation was significantly better than that of single inoculation at 60 g of AMF, while the effect was opposite at 40 g of AMF. Additionally, the interaction between AMF and inoculum sizes had a significant effect on drought tolerance. In conclusion, the inoculation of the AMF (Cl. lamellosum and Cl. etunicatum) improved photosynthesis, activated antioxidant enzymes, regulated cell osmotic state, and enhanced the drought tolerance of C. migao, enabling its growth in fragile ecological environments.  相似文献   

18.
Plant mycorrhizal associations influence the accumulation and persistence of soil organic matter and could therefore shape ecosystem biogeochemical responses to global changes that are altering forest composition. For instance, arbuscular mycorrhizal (AM) tree dominance is increasing in temperate forests, and ericoid mycorrhizal (ErM) shrubs can respond positively to canopy disturbances. Yet how shifts in the co-occurrence of trees and shrubs with different mycorrhizal associations will affect soil organic matter pools remains largely unknown. We examine the effects of ErM shrubs on soil carbon and nitrogen stocks and indicators of microbial activity at different depths across gradients of AM versus ectomycorrhizal (EcM) tree dominance in three temperate forest sites. We find that ErM shrubs strongly modulate tree mycorrhizal dominance effects. In surface soils, ErM shrubs increase particulate organic matter accumulation and weaken the positive relationship between soil organic matter stocks and indicators of microbial activity. These effects are strongest under AM trees that lack fungal symbionts that can degrade organic matter. In subsurface soil organic matter pools, by contrast, tree mycorrhizal dominance effects are stronger than those of ErM shrubs. Ectomycorrhizal tree dominance has a negative influence on particulate and mineral-associated soil organic matter pools, and these effects are stronger for nitrogen than for carbon stocks. Our findings suggest that increasing co-occurrence of ErM shrubs and AM trees will enhance particulate organic matter accumulation in surface soils by suppressing microbial activity while having little influence on mineral-associated organic matter in subsurface soils. Our study highlights the importance of considering interactions between co-occurring plant mycorrhizal types, as well as their depth-dependent effects, for projecting changes in soil carbon and nitrogen stocks in response to compositional shifts in temperate forests driven by disturbances and global change.  相似文献   

19.
To study the response of non-mycorrhizal and mycorrhizal maize plants to drought, the changes in the pools of non-structural carbohydrates and amino acids were analysed in leaves and roots of two maize cvs. Plants well colonized by the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) (60% of root length infected) and comparable non-mycorrhizal plants were subjected to moderate drought stress by reducing the water supply. This stress induced a conspicuous increase in the trehalose pool in the mycorrhizal roots, probably because it was accumulated by the fungal symbiont. Furthermore, glucose and fructose were accumulated in leaves and roots of non-mycorrhizal plants but not in the mycorrhizal ones. Starch disappeared completely from the leaves of both mycorrhizal and non-mycorrhizal plants in response to drought. Activities of soluble acid invertase and trehalase were also measured. Acid invertase activity increased during drought in the leaves of both non-mycorrhizal and mycorrhizal plants whilst in the roots it was unaffected in non-mycorrhizal plants and decreased in the mycorrhizal ones. Without drought stress, trehalase activity was considerably higher in the leaves and roots of mycorrhizal plants than in those of non-mycorrhizal plants. It increased conspicuously during drought, primarily in the leaves of non-mycorrhizal plants. A drought-induced accumulation of amino acids as well as imino acids was found in roots and leaves of both mycorrhizal and non-mycorrhizal plants; leaves of mycorrhizal plants accumulated more imino acids than those of non-mycorrhizal ones. Our results show that drought stress and the presence of a mycorrhizal fungus have a considerable effect on carbon partitioning, imino acid and amino acid accumulation in maize plants.  相似文献   

20.
冉琼  钟章成 《生态学报》2015,35(2):460-467
利用盆栽试验,探讨了AM真菌在模拟岩溶区干旱、高钙及其双重胁迫的土壤基质中对玉米幼苗光合生长的影响。结果表明:玉米幼苗的菌根侵染率在不同处理下的大小顺序为对照干旱双重胁迫高钙。无论接种与否,干旱、高钙及其双重胁迫均导致玉米幼苗生物量、净光合速率下降。未接种AM真菌条件下,玉米幼苗生物量在干旱、高钙及其双重胁迫下较对照分别低3.2%、63.7%、76.0%,净光合速率较对照分别低33.4%、86.9%、98.8%;接种AM真菌条件下,玉米幼苗生物量在干旱、高钙及其双重胁迫下较对照分别低16.3%、78.4%、80.2%,净光合速率较对照分别低9.7%、92.8%、91.7%。与同种条件下的非菌根植株相比,干旱及双重胁迫下的菌根植株生物量、叶绿素含量、光合蒸腾速率、最大光化学效率,以及P吸收均呈上升趋势;高钙胁迫下的菌根植株叶绿素含量、最大光化学效率有所增加,但生物量、光合蒸腾速率以及N、P的吸收未体现菌根促进效应。AM真菌与干旱及双重胁迫的交互作用对玉米幼苗的净光合速率影响显著,与高钙交互作用对玉米幼苗净光合速率无显著影响。AM真菌能够通过促进玉米幼苗N、P吸收及叶绿素含量增加,光化学效率、气孔导度增大,从而提高玉米幼苗光合作用能力促进生长。实验结果对岩溶生态系统中合理利用菌根技术及制定合理的农业生产措施具有重要的理论和实践意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号