首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant ovine Ala-leptin (GenBank Accession No. U84247, of ovine leptin), previously prepared in our laboratory in prokaryotic expression plasmid pMON3401, was mutated using a mutagenesis kit to prepare plasmids encoding for bovine (GenBank Accession No. U50365) and porcine (GenBank Accession No. U59894) leptins and for porcine leptin analogue W4R/R5K. Escherichia coli cells transformed with these plasmids overexpressed large amounts of these proteins upon induction with nalidixic acid. The expressed proteins, found in inclusion bodies, were refolded and purified to homogeneity using subsequently anion- and cation-exchange chromatography. All three purified proteins showed a single band of the expected molecular mass of 16 kDa in SDS-PAGE in the presence of reducing agent and were composed of 90-100% monomers. Proper refolding was evidenced by comparing their CD spectra to those of previously prepared chicken and ovine leptins and to commercially available human leptin. The amino acid content of the purified proteins closely resembled the predicted composition. The biological activity of bovine leptin, porcine leptin, and porcine leptin analogue W4R/R5K was evidenced by their ability to stimulate proliferation of leptin-sensitive BAF/3 cells transfected with a long form of human leptin receptor. All three proteins, as well as ovine and chicken leptins, but not human leptin, exhibited a very high degree of cross-immunoreactivity against antiserum raised against ovine leptin in rabbits. In contrast, none or very low cross-immunoreactivity was observed against antiserum raised against ovine leptin in goats.  相似文献   

2.
Prokaryotic expression vector pMON3401 encoding full size A(−1) chicken leptin (AF012727) was prepared by PCR of previously described cDNA.Escherichia colicells transformed with this vector overexpressed large amounts of chicken leptin upon induction with nalidixic acid. The expressed protein found in the inclusion bodies was refolded and purified to homogeneity on a Q-Sepharose column, yielding two electrophoretically pure fractions (leptin-1 and leptin-2), eluted from the column by 100 and 125 mM NaCl. Both fractions showed a single band of the expected molecular mass of 16 kDa and were composed of over 95% of monomeric protein. The biological activity of both fractions, resulting from proper renaturation, was further evidenced by their ability to stimulate proliferation of leptin-sensitive BAF/3 cells transfected with a long form of human leptin–receptor construct and by lowering the food intake of starved chicken following intravenal or intraperitoneal injections.  相似文献   

3.
A subdomain of the human leptin receptor encoding part of the extracellular domain (amino acids 428 to 635) was subcloned, expressed in a prokaryotic host, and purified to homogeneity, as evidenced by SDS-PAGE, with over 95% monomeric protein. The purified leptin-binding domain (LBD) exhibited the predicted beta structure, was capable of binding human, ovine, and chicken leptins, and formed a stable 1:1 complex with all mammalian leptins. The binding kinetics, assayed by surface plasmon resonance methodology, showed respective k(on) and k(off) values (mean +/- S.E.) of 1.20 +/- 0.23 x 10(-5) mol(-1) s(-1) and 1.85 +/- 0.30 x 10(-3) s(-1) and a K(d) value of 1.54 x 10(-8) m. Similar results were achieved with conventional binding experiments. LBD blocked leptin-induced, but not interleukin-3-induced, proliferation of BAF/3 cells stably transfected with the long form of human leptin receptor. The modeled LBD structure and the known three-dimensional structure of human leptin were used to construct a model of 1:1 LBD.human leptin complex. Two main residues, Phe-500, located in loop L3, and Tyr-441, located in L1, are suggested to contribute to leptin binding.  相似文献   

4.
Superactive ovine leptin antagonist (SOLA) was prepared by rational mutagenesis of the ovine leptin antagonist L39A/D40A/F41A mutant prepared previously in our lab by mutating wild type leptin to D23L/L39A/D40A/F41A. SOLA was expressed in Escherichia coli as insoluble inclusion bodies, refolded and purified to homogeneity (as evidenced by SDS-PAGE and analytical gel filtration) by ion-exchange chromatography. The purified protein was mono-pegylated at its N terminus by 20-kDa linear pegylation reagent. The D23L mutation resulted in ca. 5- to 6-fold increased affinity toward soluble human leptin binding domain and 6- to 8-fold increased inhibitory activity in two different in vitro bioassays. This increase was similar, though not identical, to our previous results with superactive mouse and human leptin antagonists. Pegylation decreased overall activity by 5- to 8-fold, but as shown previously for superactive mouse leptin antagonist, the prolonged half life in the circulation will likely result in higher activity in vivo. As amino acids 6-31 (VQDDTKTLIKTIVTRINDISHTQSVS), making up a main part of the first α-helix, are identical in human, mouse, rat, ovine, bovine and pig leptins, we anticipate that D23L mutations of the respective leptins will result in similar increases in affinity and consequent activity of other leptin antagonists.  相似文献   

5.
在前期研究中,已发现人瘦素(leptin)在体外再折叠过程中会形成稳定的二聚体,但其二聚化机制尚不清楚. 本研究旨在分析瘦素二聚体的结构特性,并重点研究体外再折叠过程中瘦素二聚化的机制. 相较与瘦素单体,瘦素二聚体保留了约75%免疫活性及15%受体结合活性,同时显示出明显慢的天然电泳迁移率. 圆二色性分析显示,二聚体基本保留了单体α螺旋索结构特征. 还原性及非还原性凝胶电泳分析和自由巯基测定结果表明,瘦素二聚体是由一对分子间二硫键连接2个单体而成的.为了确定瘦素二聚化过程中起主导作用的分子间二硫键,利用PCR定点突变技术构建了C96S和C146S两个突变体瘦素. 通过分析C96S及C146S突变体瘦素的体外再折叠特性及过程,并与野生型瘦素相比较,揭示C96S瘦素的二聚体显示出与野生型瘦素二聚体相似的特性,而C146S瘦素不能形成结构稳定的二聚体. 以上研究结果表明,Cys146-Cys146分子间二硫键在人瘦素二聚化过程中起主导作用.  相似文献   

6.
Expression plasmids encoding mouse and rat leptins and their L39A/D40A/F41A muteins were prepared. The proteins were expressed in Escherichia coli, refolded and purified to homogeneity, yielding electrophoretically pure, over 98% monomeric protein. Circular dichroism (CD) analysis revealed that the mutations hardly affect the leptins' secondary structure, and they were similar to previously reported CD spectra for human leptin. Both mouse and rat leptins were biologically active in promoting proliferation in BAF/3 cells stably transfected with the long form of human leptin receptor. The mutations did not change the binding properties to BAF/3 cells as compared, respectively, to non-mutated mouse, rat or human leptins, or their ability to form 1:1 complexes with the leptin-binding domain of chicken leptin receptor. In contrast, their biological activity, tested in a BAF/3 proliferation assay, was abolished and both became potent antagonists. As the LDF (amino acids 39-41) sequence is preserved in all known leptins, the present results substantiate the hypothesis that this sequence plays a pivotal role in leptins' site III and that interaction of leptin with its receptors resembles the corresponding interactions of interleukin-6 and granulocyte colony-stimulating factor their receptors.  相似文献   

7.
Mammalian thioredoxin reductase [EC 1.6.4.5], a homodimeric flavoprotein, has a marked similarity to glutathione reductase. The two cysteines in the N-terminal FAD domain (-Cys59-x-x-x-x-Cys64-) and histidine (His472) are conserved between them at corresponding positions, but the mammalian thioredoxin reductase contains a C-terminal extension of selenocysteine (Sec or U) at the penultimate position and a preceding cysteine (-Gly-Cys497-Sec498-Gly). Introduction of mutations into the cloned rat thioredoxin reductase gene revealed that residues Cys59, Cys64, His472, Cys497, and Sec498, as well as the sequence of Cys497 and Sec498 were essential for thioredoxin-reducing activity. To analyze the catalytic mechanism of the mammalian thioredoxin reductase, the wild-type, U498C, U498S, C59S, and C64S were overproduced in a baculovirus/insect cell system and purified. The wild-type thioredoxin reductase produced in this system, designated as WT, was found to lack the Sec residue and to terminate at Cys497. A Sec-containing thioredoxin reductase, which was purified from COS-1 cells transfected with the wild-type cDNA, was designated as SecWT and was used as an authentic enzyme. Among mutant enzymes, only U498C retained a slight thioredoxin-reducing activity at about three orders magnitude lower than SecWT. WT, U498C, and U498S showed some 5,5'-dithiobis(2-nitrobenzoic acid)-reducing activity and transhydrogenase activity, and C59S and C64S had substantially no such activities. These data and spectral analyses of these enzymes suggest that Cys59 and Cys64 at the N-terminus, in conjunction with His472, function as primary acceptors for electrons from NADPH via FAD, and that the electrons are then transferred to Cys497-Sec498 at the C-terminus for the reduction of oxidized thioredoxin in the mammalian thioredoxin reductase.  相似文献   

8.
Kurokawa T  Uji S  Suzuki T 《Peptides》2005,26(5):745-750
We identified cDNA coding for a homologue to mammalian leptin in puffer, Takifugu rubripes, using genomic synteny around the human leptin gene. In addition to significant sequence homologies, the puffer leptin (pLEP) displays characteristic structural features in common with mammalian leptin. The pLEP mRNA was expressed mostly in the liver that contained abundant lipids. In addition, homologues to pLEP were found in the databanks for three fish species (salmon, medaka, and Tetraodon) and two amphibians (salamander and Xenopus). The phylogenetic analysis shows rapid rates of molecular divergence among leptins from different vertebrate classes, but not between mammals and avians.  相似文献   

9.
Recombinant bovine Ala-prolactin (PRL) (GenBank Accession No. V00112) in prokaryotic expression plasmid pMON3401 was mutated using a mutagenesis kit, to prepare plasmid encoding ovine PRL (oPRL) (GenBank Accession No. M27057) Escherichia coli cells transformed with this latter plasmid overexpressed large amounts of oPRL upon induction with nalidixic acid. The expressed protein, found in inclusion bodies, was refolded and purified to homogeneity on a Q-Sepharose column, yielding an electrophoretically pure fraction composed of over 98% monomeric protein of the expected molecular mass of 23 kDa. The biological activity of the recombinant oPRL after proper renaturation was evidenced in vitro by its ability to stimulate proliferation of rat lymphoma Nb2 cells possessing PRL receptors, to stimulate luciferase activity in HEK 293 cells transiently transfected with oPRL receptors, and to induce progesterone secretion in primary cultures of luteal cells obtained from midpregnant ewes. In contrast to ovine growth hormone or ovine placental lactogen, recombinant oPRL had no galactopoietic effect in lactating ewes.  相似文献   

10.
Hyperthermophilic archaea have an unusual phosphatase that exhibits activity toward both inositol-1-phosphate and fructose-1,6-bisphosphate, activities carried out by separate gene products in eukaryotes and bacteria. The structures of phosphatases from Archaeoglobus fulgidus (AF2372) and Methanococcus jannaschii (MJ0109), both anaerobic organisms, resemble the dimeric unit of the tetrameric pig kidney fructose bisphosphatase (FBPase). A striking feature of AF2372, but not of MJ0109, is that the sulfhydryl groups of two cysteines, Cys150 and Cys186, are in close proximity (4 A). A similar arrangement of cysteines has been observed in chloroplast FBPases that are regulated by disulfide formation controlled by redox signaling pathways (ferredoxin/thioredoxin). This mode of regulation has not been detected in any other FBPase enzymes. Biochemical assays show that the AF2372 phosphatase activity can be abolished by incubation with O(2). Full activity is restored by incubation with thiol-containing compounds. Neither the C150S variant of AF2372 nor the equivalent phosphatase from M. jannaschii loses activity with oxidation. Oxidation experiments using Escherichia coli thioredoxin, in analogy with the chloroplast FBPase system, indicate an unexpected mode of regulation for AF2372, a key phosphatase in this anaerobic sulfate reducer.  相似文献   

11.
Recombinant bovine Ala-prolactin (PRL) (GenBank Accession No. V00112) in prokaryotic expression plasmid pMON3401 was mutated using a mutagenesis kit, to prepare plasmid encoding ovine PRL (oPRL) (GenBank Accession No. M27057) Escherichia coli cells transformed with this latter plasmid overexpressed large amounts of oPRL upon induction with nalidixic acid. The expressed protein, found in inclusion bodies, was refolded and purified to homogeneity on a Q-Sepharose column, yielding an electrophoretically pure fraction composed of over 98% monomeric protein of the expected molecular mass of approximately 23 kDa. The biological activity of the recombinant oPRL after proper renaturation was evidenced in vitro by its ability to stimulate proliferation of rat lymphoma Nb(2) cells possessing PRL receptors, to stimulate luciferase activity in HEK 293 cells transiently transfected with oPRL receptors, and to induce progesterone secretion in primary cultures of luteal cells obtained from midpregnant ewes. In contrast to ovine growth hormone or ovine placental lactogen, recombinant oPRL had no galactopoietic effect in lactating ewes.  相似文献   

12.
Arylformamidase (AFMID) is the second enzyme of the kynurenine pathway metabolizing tryptophan to nicotinic acid and nicotinamide adenine dinucleotide cofactors. Inhibition of AFMID by organophosphorus insecticides in developing chicken embryos is correlated with lowered NAD levels and severe teratogenesis. The cDNA sequence previously identified for mouse liver AFMID (AF399717) (MW 34229) was cloned and expressed in Escherichia coli. Residues identified as potential catalytic triad members (S162, D247, and H279) through sequence motif and homology modeling were mutated to alanine to probe their contributions to enzyme activity. The wild-type and mutant AFMIDs were expressed as amino terminal 6 x His-tagged recombinant proteins to facilitate purification. Three chromatography steps isolated highly purified proteins for enzyme activity comparisons. Expressed AFMID showed high activity, 42+/-1 micromol/min/mg protein, for its natural substrate, N-formyl-l-kynurenine. The same K(m) (0.18--0.19 mM) was observed for expressed and native cytosolic AFMID. The single mutants (S162A, D247A, and H279A) lost essentially all (>99%) activity. The predicted catalytic triad of S162, D247, and H279 is therefore confirmed by site-directed mutagenesis.  相似文献   

13.
Nicotinamide adenine dinucleotide (NAD) derives from quinolinic acid which is synthesized in Escherichia coli from l-aspartate and dihydroxyacetone phosphate through the concerted action of l-aspartate oxidase and the [4Fe-4S] quinolinate synthase (NadA). Here, we addressed the question of the identity of the cluster ligands. We performed in vivo complementation experiments as well as enzymatic, spectroscopic and structural in vitro studies using wild-type vs. Cys-to-Ala mutated NadA proteins. These studies reveal that only three cysteine residues, the conserved Cys113, Cys200 and Cys297, are ligands of the cluster. This result is in contrast to the previous proposal that pointed the three cysteines of the C(291)XXC(294)XXC(297) motif. Interestingly, we demonstrated that Cys291 and Cys294 form a disulfide bridge and are important for activity.  相似文献   

14.
Leptin is a hormone involved in feeding and body weight regulation in vertebrates, but the relationship between energy status and leptin has not been clearly established in fish. The aim of this study was to investigate in a teleost, the goldfish (Carassius auratus), the tissue expression pattern of two leptins (gLep-aI and gLep-aII) and leptin receptor (gLepR); and the effect of feeding on expression of these genes. Leptin system expression in goldfish was firstly analyzed in fish under overfeeding (2 weeks) or fasting (1 week), and secondly, at different postfeeding times (0, 3, 6, 9 and 12 h). Goldfish has two Lep-a paralog genes, gLep-aI was widely expressed in central and peripheral tissues, whereas gLep-aII was preferentially expressed in brain. This different distribution pattern of leptins suggests that they can play different physiological roles in goldfish. The gLepR mRNA was ubiquitous expressed, with the highest expression in the telencephalon and hypothalamus. No significant differences in the leptin system expression were found among control, overfed and fasting groups, suggesting an apparent lack of correlation between nutritional status and leptin system in goldfish. Hepatic expression of gLep-aI significantly increased 9 h after feeding time, while hypothalamic leptin system expression did not change after feeding. In summary, leptin in goldfish could signal short-term changes in food intake, as postprandial satiety, but seems to be independent of fasting/overfeeding conditions in this teleost. The widespread distribution of leptins and leptin receptor in goldfish strongly supports that this hormone may have pleitropic actions in fish.  相似文献   

15.
Since its discovery in mammals as a key-hormone in reproduction and metabolism, leptin has been identified in an increasing number of tetrapods and teleosts. Tetrapods possess only one leptin gene, while most teleosts possess two leptin genes, as a result of the teleost third whole genome duplication event (3R). Leptin acts through a specific receptor (LEPR). In the European and Japanese eels, we identified two leptin genes, and for the first time in vertebrates, two LEPR genes. Synteny analyses indicated that eel LEPRa and LEPRb result from teleost 3R. LEPRb seems to have been lost in the teleost lineage shortly after the elopomorph divergence. Quantitative PCRs revealed a wide distribution of leptins and LEPRs in the European eel, including tissues involved in metabolism and reproduction. Noticeably, leptin1 was expressed in fat tissue, while leptin2 in the liver, reflecting subfunctionalization. Four-month fasting had no impact on the expression of leptins and LEPRs in control European eels. This might be related to the remarkable adaptation of silver eel metabolism to long-term fasting throughout the reproductive oceanic migration. In contrast, sexual maturation induced differential increases in the expression of leptins and LEPRs in the BPG-liver axis. Leptin2 was strikingly upregulated in the liver, the central organ of the reproductive metabolic challenge in teleosts. LEPRs were differentially regulated during sexual maturation, which may have contributed to the conservation of the duplicated LEPRs in this species. This suggests an ancient and positive role of the leptin system in the vertebrate reproductive function. This study brings new insights on the evolutionary history of the leptin system in vertebrates. Among extant vertebrates, the eel represents a unique case of duplicated leptins and leptin receptors as a result of 3R.  相似文献   

16.
Mutation g.15409C>G, n.422C>G (p.S141C) in homo-and heterozygous forms of the human LEP gene was identified among some patients of the high mountain village of Karaul, Ashkhabad oblast, Turkmenistan, some of which suffer from obesity. It causes the substitution S120C in the secreted leptin. The mature leptin molecule (146 aa) has only two Cys residues (96C and 146C) forming an S-S bridge, which is important for the hormone function. A third mutation, 120C, in the molecule might disturb the correct formation of the S-S bond and could alter the leptin activity.  相似文献   

17.
The chicken major histocompatibility complex (MHC), the B complex, is being intensively analysed at the DNA level. To further probe the molecular structure of chicken MHC class II genes, cDNA clones coding for chicken MHC class II (B-L) p chain molecules were isolated from an inbred G-B2 Leghorn chicken spleen and liver. Twenty-nine cDNA clones were isolated from the spleen and eight cDNA clones were isolated from the liver. Based on restriction maps, most clones could be clustered into one family of genes. Four cDNA clones were sequenced (S7, S10 and S19 from the spleen and L1, which was identical to S19, from the liver). Complete amino acid sequences of B-Lβ chain molecules were predicted from the nucleotide sequences of the cDNA clones. Although both the nature and the location of the conserved residues were similar in chicken and mammalian sequences, some species-specific differences were found, suggesting that the structures of the B-L molecules of this haplotype are similar, but not identical, to their mammalian counterparts.  相似文献   

18.
Leptin is a hormone that plays a central role in the regulation of food intake and energy expenditure. Originally discovered in mature white adipocytes, it was subsequently isolated from the gastric mucosa. This tissue contains a large number of epithelial endocrine and exocrine cells secreting leptin in the blood stream and in the gastric lumen, respectively. Light and electron microscopy have shown that adipocytes and gastric epithelial cells contain leptin along their rough endoplasmic reticulum-Golgi-granules secretory pathway. Both tissues synthesize a soluble form of the leptin receptor that is secreted bound to leptin in the blood and into the gastric juice. This soluble receptor protect leptin and enhances its half-life. Despite the similarities in the mechanisms of leptin secretion by adipocytes and gastric epithelial cells, they are in fact radically different. In gastric cells leptin follows a rapid regulated secretion pathway whereas adipocytes secrete leptin in a constitutive slow fashion. These differences can be explained by the specific roles play by leptin originating from these two different tissues. Gastric leptin is involved in the short-term regulation of digestion, including delay of gastric emptying, absorption of nutrients by the intestinal wall and secretion of gastric, intestinal and pancreatic hormones. On the other hand, leptin secreted by white adipocytes acts primarily on the hypothalamus for the long-term regulation of food intake. Therefore, the coordination of adipose and gastric leptins ensures the proper management of food processing and energy storage.  相似文献   

19.
Cholesterol 7alpha-hydroxylase (cholesterol-NADPH oxidoreductase, EC 1.14.13.17, 7alpha-hydroxylating) is known to have extremely sensitive sulfhydryl group(s). It is believed that a cysteine residue that has a sulfhydryl group plays an important role in the decrease of this enzyme activity. The amino acid sequences of cholesterol 7alpha-hydroxylase of five different mammalian species, human, rat, rabbit, hamster and mouse, revealed that these mammalian species contain eight cysteine residues that are well conserved. To identify which cysteine residues are responsible for the extremely high lability, we used the technique of the site-directed mutagenesis. Eight mutated genes of human cholesterol 7alpha-hydroxylase in which one codon for a cysteine residue was changed to that for alanine were prepared and expressed in COS-1 cells. The protein mass and enzyme activity of cholesterol 7alpha-hydroxylse obtained from these eight mutated genes were determined. While all mutated genes expressed the enzyme mass, two mutated genes did not express protein capable of catalyzing 7alpha-hydroxylation of cholesterol: in one mutant a codon for the 7th cysteine residue (Cys 444) was substituted to that for alanine and in the other mutant a codon for the 8th cysteine residue (Cys 476) was changed similarly. These results suggest that the 7th and 8th cysteine residues are important for expression of the enzyme activity. Based on the fact that Cys 444 exists in the heme binding region, Cys 476 was suggested to be responsible for enzyme lability.  相似文献   

20.
Trypanosoma brucei, the causative agent of African sleeping sickness, encodes three nearly identical genes for cysteine-homologues of the selenocysteine-containing glutathione peroxidases. The enzymes, which are essential for the parasites, lack glutathione peroxidase activity but catalyse the trypanothione/Tpx (tryparedoxin)-dependent reduction of hydroperoxides. Cys47, Gln82 and Trp137 correspond to the selenocysteine, glutamine and tryptophan catalytic triad of the mammalian selenoenzymes. Site-directed mutagenesis revealed that Cys47 and Gln82 are essential. A glycine mutant of Trp137 had 13% of wild-type activity, which suggests that the aromatic residue may play a structural role but is not directly involved in catalysis. Cys95, which is conserved in related yeast and plant proteins but not in the mammalian selenoenzymes, proved to be essential as well. In contrast, replacement of the highly conserved Cys76 by a serine residue resulted in a fully active enzyme species and its role remains unknown. Thr50, proposed to stabilize the thiolate anion at Cys47, is also not essential for catalysis. Treatment of the C76S/C95S but not of the C47S/C76S double mutant with H2O2 induced formation of a sulfinic acid and covalent homodimers in accordance with Cys47 being the peroxidative active site thiol. In the wild-type peroxidase, these oxidations are prevented by formation of an intramolecular disulfide bridge between Cys47 and Cys95. As shown by MS, regeneration of the reduced enzyme by Tpx involves a transient mixed disulfide between Cys95 of the peroxidase and Cys40 of Tpx. The catalytic mechanism of the Tpx peroxidase resembles that of atypical 2-Cys-peroxiredoxins but is distinct from that of the selenoenzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号