首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Previous work from our laboratory indicates that when rats are given a choice between a high-fat and a high-sucrose diet, opioid blockade with naltrexone (NTX) in a reward-related site (central amygdala) inhibits intake of the preferred diet only, whereas NTX injected into a homeostasis-related site, such as the hypothalamic paraventricular nucleus (PVN), inhibits intake of both diets. However, other work suggests that opioids increase intake of fat specifically. The present study further investigates the role of PVN opioids in food choices made by calorically-replete animals. We used a binge model with chow-maintained rats given 3-h access to a choice of a high-fat or high-sucrose diet 3 days a week. We hypothesized that intra-PVN injection of the mu-opioid agonist, DAMGO (0, 0.025, 0.25, and 2.5 nmol) would enhance, and NTX (0, 10, 30, and 100 nmol) would inhibit intake of both diets to an equal extent. We found that when animals were divided into groups according to sucrose or fat preference, DAMGO increased fat intake in fat-consuming animals, while having no effect on intake of either diet in sucrose-consuming animals. NTX, however, inhibited fat intake in both groups. Intra-PVN NTX did not inhibit intake of sucrose when presented in the absence of a fat choice, but did so when injected peripherally. Furthermore, intra-PVN and systemic NTX inhibited intake of chow by 24-h-food-deprived animals. These results indicate a complex role for PVN opioids in food intake with preference, nutrient type, and energy state affecting the ability of these compounds to change behavior.  相似文献   

2.
Enterostatin, a pentapeptide cleaved from procolipase, suppresses fat intake after peripheral and central administration. Chronic treatment of rats with enterostatin decreases body weight and body fat. The effect was greater than could be accounted by the reduction in food intake alone. Hence, we have investigated the effect of enterostatin on energy metabolism. Male Sprague-Dawley rats adapted to a high-fat diet were implanted with lateral cerebral ventricular or amygdala cannulas. The metabolic effects were determined by indirect calorimetry. After habituation to the test cages, fasted rats were injected with either saline vehicle or enterostatin given either intraperitoneally (100 nmol) or intracerebroventricularly (1 nmol) or into specific brain regions [amygdala (0.01 nmol) or paraventricular nucleus (PVN) (0.1 nmol)]. Respiratory quotient (RQ) and energy expenditure were monitored over 2 h. Intraperitoneal enterostatin reduced RQ (saline: 0.81 +/- 0.02 vs. enterostatin: 0.76 +/- 0.01) and increased energy expenditure by 44%. Intracerebroventricular enterostatin increased the energy expenditure without any effects on RQ, whereas PVN enterostatin increased metabolic rate, while preventing the increase in RQ observed in the control animals. In contrast, neither RQ nor energy expenditure was altered after enterostatin was injected into the amygdala. Enterostatin activated AMP-activated protein kinase in primary cultures of human myocytes in a dose- and time-dependent manner and increased the rate of fatty acid beta-oxidation. These findings suggest that enterostatin regulates energy expenditure and substrate partitioning through both peripheral and central effects.  相似文献   

3.
4.
To investigate a role for the brain-gut peptide neurotensin (NT) in ingestive behavior, changes in food and water intake of food-deprived rats were examined following injection of NT into the paraventricular hypothalamic nucleus (PVN) or the mesenteric vein. Unilateral PVN NT (2.5, 5.0, 10.0 micrograms/0.3 microliter) produced substantial dose-dependent reductions in total food intake 0.5, 1, and 4 hr postinjection. In contrast, PVN NT had no effect on water intake and produced no change in grooming, rearing, sleeping, resting or locomotor activity. Bilateral PVN NT at a high dose (10.0 micrograms/side) suppressed consumption of solid or liquid diet in food-deprived rats, but did not affect water intake in water-deprived rats. This specificity is consistent with a role for CNS NT in feeding behavior. Intravenous NT (1-1000 pmole/kg/min for 30 min) did not specifically suppress food intake; however, low doses did increase water intake in food-deprived rats. These findings do not support a role for plasma NT in feeding, but do suggest that it may play a role in drinking behavior.  相似文献   

5.
Brain-derived neurotrophic factor (BDNF) decreases food intake and body weight, but few central sites of action have been identified. The hypothalamic paraventricular nucleus (PVN) is important in energy metabolism regulation, and expresses both BDNF and its receptor. We tested three hypotheses: 1) PVN BDNF reduces feeding and increases energy expenditure (EE), 2) PVN BDNF-enhanced thermogenesis results from increased spontaneous physical activity (SPA) and resting metabolic rate (RMR), and 3) PVN BDNF thermogenic effects are mediated, in part, by uncoupling protein 1 (UCP1) in brown adipose tissue (BAT). BDNF (0.5 microg) was injected into the PVN of Sprague-Dawley rats; and oxygen consumption, carbon dioxide production, food intake, and SPA were measured for 24 h in an indirect calorimeter. SPA was also measured in open-field activity chambers for 48 h after BDNF injection. Animals were killed 6 or 24 h after BDNF injection, and BAT UCP1 gene expression was measured with quantitative real-time PCR. BDNF significantly decreased food intake and body weight gain 24 h after injection. Heat production and RMR were significantly elevated for 7 h immediately after BDNF injection. BDNF had no effect on SPA, but increased UCP1 gene expression in BAT at 6 h, but not 24 h after injection. In conclusion, PVN BDNF reduces body weight by decreasing food intake and increasing EE consequent to increased RMR, which may be due, in part, to BAT UCP1 activity. These data suggest that the PVN is an important site of BDNF action to influence energy balance.  相似文献   

6.
Objective: In order to circumvent the multiple peripheral effects of hyperleptinemia and leptin resistance, the efficacy of leptin transgene expression in the hypothalamic paraventricular nucleus (PVN) to reinstate the central energy homeostasis in obesity was examined. Research Methods and Procedures: A recombinant adeno‐associated viral vector encoding either leptin (rAAV‐lep) or green fluorescent protein (rAAV‐GFP) was microinjected into the PVN of obesity‐prone rats consuming a high‐fat diet (HFD). Results: rAAV‐lep, and not rAAV‐GFP, microinjection significantly reduced energy intake and enhanced energy expenditure, thereby resulting in normalization of weight and blood levels of leptin, insulin, free fatty acids, and glucose concomitant with enhanced ghrelin secretion during the extended period of observation. Discussion: Thus, we show, for the first time, that amelioration of leptin insufficiency with enhanced localized leptin availability in the PVN alone can reverse dietary obesity and the attendant hyperinsulinemia and concurrently block the central stimulatory effects of elevated endogenous ghrelin on food intake and adiposity.  相似文献   

7.
Objective: Chronic central administration of neuropeptide Y (NPY) has dramatic effects on energy balance; however, the exact role of the hypothalamic paraventricular nucleus (PVN) in this is unknown. The aim of this study was to further unravel the contribution of NPY signaling in the PVN to energy balance. Research Methods and Procedures: Recombinant adeno‐associated viral particles containing NPY (rAAV‐NPY) were injected in the rat brain with coordinates targeted at the PVN. For three weeks, body weight, food intake, endocrine parameters, body temperature, and locomotor activity were measured. Furthermore, effects on insulin sensitivity and expression of NPY, agouti‐related protein (AgRP), and pro‐opiomelanocortin in the arcuate nucleus were studied. Results: Food intake was increased specifically in the light period, and dark phase body temperature and locomotor activity were reduced. This resulted in obesity characterized by increased fat mass; elevated plasma insulin, leptin, and adiponectin; decreased AgRP expression in the arcuate nucleus; and decreased insulin sensitivity; whereas plasma corticosterone was unaffected. Discussion: These data suggest that increased NPY expression targeted at the PVN is sufficient to induce obesity. Interestingly, plasma concentrations of leptin and insulin were elevated before a rise in food intake, which suggests that NPY in the PVN influences leptin and insulin secretion independently from food intake. This strengthens the role of the PVN in regulation of energy balance by NPY.  相似文献   

8.
Peptide histidine isoleucine (PHI) and VIP are derived from the same precursor. While central VIP decreases food intake, potential effects of PHI on feeding have not been studied. In the current study, we found that PHI administered intracerebroventricularly (ICV) or into the hypothalamic paraventricular nucleus (PVN) or central nucleus of the amygdala (CeA) decreased food consumption in overnight-deprived rats. The magnitude of an anorexigenic response to PHI differed depending on the injection route: ICV-infused peptide evoked the most potent effect. We determined that that only PVN- and CeA-injected PHI did not have aversive consequences. In addition, we infused anorexigenic doses of PHI via the same routes and assessed Fos immunoreactivity of PVN oxytocin (OT) and vasopressin (VP) neurons using double immunohistochemistry. OT and VP are thought to promote feeding termination. PHI increased the percentage of Fos-positive OT neurons regardless of the injection route. PVN- and ICV-infused PHI induced activation of VP cells. We conclude that central PHI has an inhibitory influence on food intake in rats. The PVN, with OT and VP neurons, and CeA may be involved in the mediation of anorexigenic effects of PHI.  相似文献   

9.
It has been suggested that an opioidergic feeding pathway exists between the nucleus of the solitary tract (NTS) and the central nucleus of the amygdala. We studied the following three groups of rats: 1) artificial cerebrospinal fluid (CSF) infused in the NTS, 2) naltrexone (100 microg/day) infused for 13 days in the NTS, and 3) artificial CSF infused in the NTS of rats pair fed to the naltrexone-infused group. Naltrexone administration resulted in a decrease in body weight and food intake. Also, naltrexone infusion increased dynorphin, but not enkephalin, gene expression in the amygdala, independent of the naltrexone-induced reduction in food intake. Gene expression of neuropeptide Y in the arcuate nucleus and neuropeptide Y peptide levels in the paraventricular nucleus did not change because of naltrexone infusion. However, naltrexone induced an increase in serum leptin compared with pair-fed controls. Thus chronic administration of naltrexone in the NTS increased dynorphin gene expression in the amygdala, further supporting an opioidergic feeding pathway between these two brain sites.  相似文献   

10.
The steroid hormone estradiol decreases meal size by increasing the potency of negative-feedback signals involved in meal termination. We used c-Fos immunohistochemistry, a marker of neuronal activation, to investigate the hypothesis that estradiol modulates the processing of feeding-induced negative-feedback signals within the nucleus of the solitary tract (NTS), the first central relay of the neuronal network controlling food intake, and within other brain regions related to the control of food intake. Chow-fed, ovariectomized rats were injected subcutaneously with 10 microg 17-beta estradiol benzoate or sesame oil vehicle on 2 consecutive days. Forty-eight hours after the second injections, 0, 5, or 10 ml of a familiar sweet milk diet were presented for 20 min at dark onset. Rats were perfused 100 min later, and brain tissue was collected and processed for c-Fos-like immunoreactivity. Feeding increased the number of c-Fos-positive cells in the NTS, the paraventricular nucleus of the hypothalamus (PVN), and the central nucleus of the amygdala (CeA) in oil-treated rats. Estradiol treatment further increased this response in the caudal, subpostremal, and intermediate NTS, which process negative-feedback satiation signals, but not in the rostral NTS, which processes positive-feedback gustatory signals controlling meal size. Estradiol treatment also increased feeding-induced c-Fos in the PVN and CeA. These results indicate that modest amounts of food increase neuronal activity within brain regions implicated in the control of meal size in ovariectomized rats and that estradiol treatment selectively increases this activation. They also suggest that estradiol decreases meal size by increasing feeding-related neuronal activity in multiple regions of the distributed neural network controlling meal size.  相似文献   

11.
S F Leibowitz  L Hor 《Peptides》1982,3(3):421-428
Brain cannulated rats were injected with the opioid peptide beta-endorphin (beta-EP) directly into the hypothalamic paraventricular nucleus (PVN) where norepinephrine (NE) is most effective in stimulating eating behavior. Beta-Endorphin (1.0 nmole) reliably increased food intake in satiated animals, and this response was blocked by local administration of the selective opiate antagonist naloxone. The eating induced by beta-EP was positively correlated in magnitude with the NE response and, like NE, was antagonized by PVN injection of the alpha-noradrenergic blocker phentolamine. Naloxone had no effect on NE-induced eating, and the dopaminergic blocker fluphenazine failed to alter either beta-EP or NE eating. When injected simultaneously, at maximally effective doses, beta-EP and NE produced an eating response which was significantly larger than either of the responses elicited separately by beta-EP or NE and was essentially equal to the sum of these two responses. The evidence obtained in this study suggests that beta-EP and NE stimulate food ingestion through their action on PVN opiate and alpha-noradrenergic receptors, respectively, and that beta-EP's action is closely related to, and in part may be dependent upon, the PVN alpha-noradrenergic system for feeding control.  相似文献   

12.
Rats were given clonidine or its diluent, and allowed to eat freely from two isocaloric diets that differred in protein or carbohydrate content. Low clonidine doses (25–50 μg/kg) significantly increased total food and protein intake by rats given access to a high and a low protein diet. Several pairs of diets, differing in protein contents, were tested; clonidine's effect was greatest when a diet containing 30–45% protein was paired with one that was very low (5%) in protein. Higher clonidine doses (200 μg/kg) failed to modify either total food or protein intake. Clonidine had no effects on food or nutrient intake among animals given access to diets that differed in carbohydrate content (25 or 70% carbohydrate, plus 25% protein). In rats given access to only one diet, clonidine administration decreased food consumption when the diet was low in protein (5%), but increased consumption when the diet contained 25 or 50% protein. These data suggest that central noradrenergic synapses participate in the mechanisms controlling appetites for proteins. Clonidine may enhance protein intake by stimulating presynaptic alpha receptors, thus diminishing central noradrenergic tone. This effect on noradrenergic transmission is probably partly overcome by protein consumption, which increases brain tyrosine levels and thus can accelerate norepinephrine synthesis. Clonidine or related drugs may be useful clinically in treating diseases characterized by impaired appetite or increased need for protein.  相似文献   

13.
Norepinephrine (NE) injected into the paraventricular nucleus (PVN) of the hypothalamus of rats is a potent stimulant of food intake, more specifically ingestion of the carbohydrate nutrient. In 2 experiments of the present study, this effect was found to be dose-dependent, and the effectiveness of NE in potentiating total food consumption was greatly reduced when the carbohydrate diet was removed. In addition, experiments using a computer-automated data acquisition apparatus were performed to characterize, in detail, the impact of PVN injection of NE and peripheral administration of the α2-nor-adrenergic agonist clonidine (CLON) on the macrostructure of feeding behavior in animals given 3 pure macronutrient diets. These 2 compounds, injected at the onset of the nocturnal feeding cycle, had very similar effects on meal patterns, with both affecting nutrient intake by increasing meal size and duration rather than by increasing meal frequency. They both affected primarily the first meal of the dark cycle, selectively enhancing carbohydrate ingestion by increasing Kcal intake, percent composition in the total diet and feeding time, and also by decreasing the satiating impact of this macronutrient. These stimulatory effects of NE and CLON on carbohydrate ingestion during the first meal were followed by complete recovery over the next 1 to 2 hours after injection. In addition to these predominant effects on carbohydrate intake, PVN NE at the highest doses tested (10 and 20 nmoles) produced a small increase in fat intake, whereas peripheral CLON actually decreased intake of fat and protein over the 12-hour cycle. The similarities in the impact of NE and CLON on carbohydrate feeding patterns support the hypothesis that both agonists may be acting via the same PVN α2-noradrenergic system controlling ingestion of the carbohydrate-rich meals which predominate at dark onset.  相似文献   

14.
Recent studies show that brain-derived neurotrophic factor (BDNF) decreases feeding and body weight after peripheral and ventricular administration. BDNF mRNA and protein, and its receptor tyrosine kinase B (TrkB) are widely distributed in the hypothalamus and other brain regions. However, there are few reports on specific brain sites of actions for BDNF. We evaluated the effect of BDNF in the hypothalamic paraventricular nucleus (PVN) on feeding. BDNF injected unilaterally or bilaterally into the PVN of food-deprived and nondeprived rats significantly decreased feeding and body weight gain within the 0- to 24-h and 24- to 48-h postinjection intervals. Effective doses producing inhibition of feeding behavior did not establish a conditioned taste aversion. PVN BDNF significantly decreased PVN neuropeptide Y (NPY)-induced feeding at 1, 2, and 4 h following injection. BDNF administration in the PVN abolished food-restriction-induced NPY gene expression in the hypothalamic arcuate nucleus. In conclusion, BDNF in the PVN significantly decreases food intake and body weight gain, suggesting that the PVN is an important site of action for BDNF in its effects on energy metabolism. Furthermore, BDNF appears to interact with NPY in its anorectic actions, although a direct effect on NPY remains to be established.  相似文献   

15.
Growing evidence suggests that oxytocin plays an important role in the regulation of energy balance and that central oxytocin administration induces weight loss in diet-induced obese (DIO) animals. To gain a better understanding of how oxytocin mediates these effects, we examined feeding and neuronal responses to oxytocin in animals rendered obese following exposure to either a high-fat (HFD) or low-fat diet (LFD). Our findings demonstrate that peripheral administration of oxytocin dose-dependently reduces food intake and body weight to a similar extent in rats maintained on either diet. Moreover, the effect of oxytocin to induce weight loss remained intact in leptin receptor-deficient Koletsky (fa(k)/fa(k)) rats relative to their lean littermates. To determine whether systemically administered oxytocin activates hindbrain areas that regulate meal size, we measured neuronal c-Fos induction in the nucleus of the solitary tract (NTS) and area postrema (AP). We observed a robust neuronal response to oxytocin in these hindbrain areas that was unexpectedly increased in rats rendered obese on a HFD relative to lean, LFD-fed controls. Finally, we report that repeated daily peripheral administration of oxytocin in DIO animals elicited a sustained reduction of food intake and body weight while preventing the reduction of energy expenditure characteristic of weight-reduced animals. These findings extend recent evidence suggesting that oxytocin circumvents leptin resistance and induces weight-loss in DIO animals through a mechanism involving activation of neurons in the NTS and AP, key hindbrain areas for processing satiety-related inputs.  相似文献   

16.
Ghrelin is a 28-amino acid acylated peptide and is the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). The GHS-R is expressed in hypothalamic nuclei, including the arcuate nucleus (Arc) where it is colocalized with neuropeptide Y (NPY) neurons. In the present study, we examined the effects of ghrelin on feeding and energy substrate utilization (respiratory quotient; RQ) following direct injections into either the arcuate or the paraventricular nucleus (PVN) of the hypothalamus. Ghrelin was administered at the beginning of the dark cycle at doses of 15-60 pmol to male and female rats. In feeding studies, food intake was measured 2 and 4 h postinjection. Separate groups of rats were injected with ghrelin, and the RQ (VCO(2)/VO(2)) was measured using an open circuit calorimeter over a 4-h period. Both Arc and PVN injections of ghrelin increased food intake in male and female rats. Ghrelin also increased RQ, reflecting a shift in energy substrate utilization in favor of carbohydrate oxidation. Because these effects are similar to those observed after PVN injection of NPY, we then assessed the impact of coinjecting ghrelin with NPY into the PVN. When rats were pretreated with very low doses of ghrelin (2.5-10 pmol), NPY's (50 pmol) effects on eating and RQ were potentiated. Overall, these data are in agreement with evidence suggesting that ghrelin functions as a gut-brain endocrine hormone implicated in the regulation of food intake and energy metabolism. Our findings are also consistent with a possible interactive role of hypothalamic ghrelin and NPY systems.  相似文献   

17.
The present experiment examined whether neurons located in the paraventricular nucleus of the hypothalamus (PVN) respond to intestinal infusions of long-chain fatty acids. Single-unit recordings were made of neurons located in and adjacent to the PVN during jejunal administration of linoleic acid. Jejunal administration of linoleic acid increased single-unit activity of neurons located in the PVN but did not affect activity of neurons located in adjacent tissue outside the PVN. The largest increases in neuronal activity were observed in the anterior PVN (0.9-1.3 mm posterior to bregma) compared with the posterior PVN (1.8-2.1 mm posterior to bregma). Jejunal administration of saline failed to affect activity of neurons located either inside or outside the PVN. When the same neurons were subsequently tested for their response to intravenous administration of 2 microg/kg of CCK-8, excitatory responses were more frequently observed than inhibitory responses, but both types of responses were observed regardless of whether neurons were located inside or outside the PVN. In addition, there was no strong correlation between the magnitude of the neuronal response evoked by jejunal administration of linoleic acid compared with intravenous CCK-8. These data suggest that neurons located in the anterior PVN may play a role in the mediation of suppression of food intake produced by intestinal administration of lipids.  相似文献   

18.
Synergistic interaction between CCK and leptin to regulate food intake   总被引:12,自引:0,他引:12  
Leptin administered (either intracerebroventricularly, icv, or intraperitoneally, ip) acts in synergy with CCK to suppress food intake and body weight in lean mice or rats. The potentiating effect induced by the co-injection of ip CCK and leptin to inhibit food consumption in mice is mediated by the CCK-A receptor and capsaicin sensitive afferents. In vitro, studies in rats showed that a subset of gastric vagal afferent fibers responded to leptin injected directly into the gastric artery only after a prior intra-arterial CCK injection. Moreover, the tonic activity of gastric-related neurons in the nucleus tractus solitarius (NTS) increased when leptin was delivered into the gastric chamber of an in vitro stomach-brainstem preparation. CCK co-injected with leptin potentiated Fos expression selectively in the area postrema, NTS and paraventricular nucleus of the hypothalamus (PVN), which points to the PVN as part of the afferent and efferent limbs of the circuitry involved in the synergistic interaction between leptin and CCK. The dampening of CCK or leptin inhibitory action on ingestive behavior when either factor is not present or their receptors are non functional supports the notion that such leptin-CCK interaction may have a physiological relevance. These observations provide a mean through which leptin and CCK integrate short- and mid-term meal-related input signals into long-term control of energy balance.  相似文献   

19.
Dube MG  Kalra SP  Kalra PS 《Peptides》2006,27(9):2239-2248
Bilateral electrolytic lesions of the paraventricular nucleus of the hypothalamus (PVN) produce hyperphagia with excess weight gain. The orexigenic neuropeptide Y (NPY) system and the anorexigenic melanocortin system act in the PVN to regulate food intake, and participate in mediating the anorexic effects of leptin. We hypothesized that changes in the responsiveness of these systems may contribute to the hyperphagia observed in PVN-lesioned rats. Adult female Sprague-Dawley rats received either sham or electrolytic lesions in the PVN immediately followed by implantation of a guide cannula into the third cerebroventricle. Twenty-five days following surgery groups of sham and hyperphagic PVN-lesioned rats were injected intracerebroventricularly (i.c.v.) with either 118 pmole or 470 pmole of NPY and food intake was measured for 3 h. Food intake in response to NPY was nearly three-fold higher in PVN-lesioned rats as compared to sham rats. However, the response to 5 microg leptin i.c.v. was not different in lesioned versus sham rats. The effect of the melanocortin agonist MTII on food intake was tested in additional rats beginning either 7-14 days or 30-40 days following surgery. Doses of 0.1 nmole or 1.0 nmole of MTII were injected immediately before lights-off and food intake was measured at 2 h, 24 h and 48 h post-injection. Suppression of food intake in PVN-lesioned rats was not different from that in sham-lesioned rats. These data suggest that hyper-responsiveness to NPY may account in part for the hyperphagia observed in PVN-lesioned rats. Furthermore, based on the similarities of responses of PVN-lesioned and sham control rats to the anorexigenic agents MTII and leptin and the hypersensitivity of lesioned rats to NPY, we conclude that the PVN is not essential for NPY stimulation of food intake or for melanocortin suppression of food intake and that NPY and melanocortin receptors outside of the PVN are sufficient to produce these effects.  相似文献   

20.
Olszewski PK  Bomberg EM  Grace MK  Levine AS 《Peptides》2007,28(10):2084-2089
Alpha-melanocyte stimulating hormone (alpha-MSH) and ghrelin play significant yet opposite roles in the regulation of feeding: alpha-MSH inhibits, whereas ghrelin stimulates consumption. The two peptidergic systems may interact in the process of food intake control. A single report published thus far has shown that a synthetic agonist of the melanocortin receptors, MTII, injected in the hypothalamic paraventricular nucleus (PVN) decreases feeding generated by ghrelin. We found that very low doses of alpha-MSH and MTII administered ICV significantly reduced ghrelin-dependent hyperphagia. However, an endogenous molecule, alpha-MSH, infused in the PVN did not exert an inhibitory effect on ghrelin-induced consumption, whereas the effective dose of PVN MTII exceeded that necessary to decrease short-term deprivation-induced feeding. We conclude that it is likely that in feeding regulation alpha-MSH and ghrelin "interact" at the central nervous system level, but the involvement of the PVN in this interaction appears questionable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号