首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In protein analysis using mass spectrometry, proteins are usually separated by electrophoresis and digested within the gel with proteases such as trypsin. However, analysis of lipid-modified proteins is difficult due to the low recovery of lipid-modified peptide fragments from the gel as well as their low ionization efficiency during mass spectrometry. In this study, we developed a simple extraction method with n-dodecyl-β-d-maltoside following chloroform/methanol extraction that efficiently elutes lipid-modified fragments from gels. This method allowed us to analyze the structure of lipid-modified fragments, suggesting the applicability of the method for analysis of lipid-modified fragments by mass spectrometry.  相似文献   

2.
Supercritical fluid chromatography separations and supercritical fluid chromatography chemical ionization mass spectrometry analysis of permethylated and pertrimethylsilylated oligosaccharides are reported. Supercritical fluid chromatography was carried out using a DB-5 coated capillary column with carbon dioxide as a mobile phase. Peralkylated oligosaccharides were detected by flame ionization and by chemical ionization mass spectrometry using the GC interface. Analysis of permethylated malto-oligosaccharides, as well as oligomannosides from mannosidosis, was achieved by chemical ionization mass spectrometry with ammonia and provided the pseudo-molecular ions (M+H)+ and (M+NH4)+, in addition to some other fragments which allow interpretations of the structure of different oligosaccharides. The good resolution and sensitivity obtained emphasize the potential of supercritical fluid chromatography mass spectrometry for rapid separations and analysis of complex glycan mixtures.  相似文献   

3.
The complete primary structures of both the main amyloid fibril protein component (AL-DIA) and the soluble Bence Jones protein (BJP-DIA) obtained from the same patient with AL-amyloidosis are reported for the first time. The amino acid sequences were determined by automated Edman degradation following proteolytic digestion of the isolated proteins and HPLC separation of the resulting fragments and by amino-terminal sequencing after treatment with pyroglutamate aminopeptidase. Sequencing data were confirmed by amino acid analysis and plasma desorption mass spectrometry (PDMS). Molecular weights of the complete proteins were determined by laser desorption mass spectrometry. The amyloid fibril preparation contained a complete monoclonal lambda immunoglobulin light chain (subgroup 1.2) as well as different-sized fragments thereof which were identified by immunoblotting and amino-terminal sequencing following immobilization of electrophoretically-separated proteins on poly(vinylidene difluoride) (PVDF) membranes. The soluble urinary Bence Jones protein (BJP-DIA) was a dimer of monoclonal L-chains with a primary structure identical to that of the amyloid L-chain (AL-DIA) and thus represented the amyloid precursor protein.  相似文献   

4.
The biotransformation of heparinase-derived heparin fragments was examined via a combined approach using 35S-labeled heparin fragments as well as unlabeled chemically defined heparin fragments. Rats dosed with either [35S]di-, tetra-, hexa-, or octasaccharide fragments (2 mg/kg body weight, intravenously) excreted 63-69% of the injected radioactivity into the urine within 24 h with two-thirds being excreted during the first 6 h. Gel permeation chromatography of the urinary material shows that the tetra- and octasaccharides have undergone minor (approximately 5%) depolymerization whereas no change was observed for the di- and hexasaccharides. No N-desulfation was demonstrated for any of the substances. The hexa- and octasaccharide metabolites present in the urine 24 h after dosing exhibited the same antifactor Xa activity as that of the injected material. A chemically defined trisulfated disaccharide and a hexasulfated tetrasaccharide were prepared and dosed in a similar manner. Only one metabolite was recovered from animals dosed with disaccharide. This compound was characterized by anion exchange chromatography, proton nuclear magnetic resonance spectroscopy, Fourier transform infrared spectrometry, and mass spectrometry and shown to be identical to the injected disaccharide. Five metabolites were isolated from the urine of rats dosed with the hexasulfated tetrasaccharide. The major metabolite, consisting of at least 65% of the total, was characterized as described for the disaccharide and shown to be identical to the injected compound. The remaining material appeared to be disaccharides and, possibly, a tetrasaccharide conjugate. Taken together, our results show that the heparinase-derived heparin fragments are very resistant to biotransformation compared with heparin and endogenous heparin fragments. These fragments may therefore be useful in defining structure activity relationships in vivo.  相似文献   

5.
As experimental technologies for characterization of proteomes emerge, bioinformatic analysis of the data becomes essential. Separation and identification technologies currently based on two-dimensional gels/mass spectrometry provide the inherent analytical power required. This strategy involves protein spot digestion and accurate mass mapping together with computational interrogation of available data bases for protein functional identification. When either no exact match is found or when the possible matches only partially account for molecular weights actually observed, peptide sequencing by tandem mass spectrometry has emerged as the methodology of choice to provide the basic additional information required. To evaluate the capabilities of bioinformatics methods employed for identifying homologs of a protein of interest, we attempted to identify the major proteins from the 20 S proteasome of Trypanosoma brucei using sequence information determined using mass spectrometry. The results suggest that neither the traditional query engines, BLAST and FASTA, nor specialized software developed for analysis of sequence information obtained by mass spectrometry are able to identify even closely related sequences at statistically significant scores. To address this deficit, new bioinformatics approaches were developed for concomitant use of the multiple fragments of short sequence typically available from methods of tandem mass spectrometry. These approaches rely on the occurrence of congruence across searches of multiple fragments from a single protein. This method resulted in sharply better statistical significance values for correct hits in the data base output relative to that achieved for independent searches using single sequence fragments.  相似文献   

6.
7.
The carboxypeptidase inhibitor from potatoes has been used to demonstrate the utility of gas chromatography-mass spectrometry for the determination of the primary structure of such large polypeptides. Two mixtures of oligopeptide fragments, obtained by limited acid hydrolysis and enzymatic digestion of this polypeptide, were transformed into the corresponding mixtures of O-trimethyl-silylated trifluoro-dideuteroethyl polyamino alcohols which were then analyzed by gas chromatography-mass spectrometry. The resulting mass spectral and retention index data allowed the identification of 61 oligopeptide fragments which were assembled by the computer by positioning all 39 amino acid residues in a unique sequence (with the exception of the assignment of the primary amide groups of Asn and Gln).  相似文献   

8.
Chemical cross-linking combined with mass spectrometry provides a powerful method for identifying protein-protein interactions and probing the structure of protein complexes. A number of strategies have been reported that take advantage of the high sensitivity and high resolution of modern mass spectrometers. Approaches typically include synthesis of novel cross-linking compounds, and/or isotopic labeling of the cross-linking reagent and/or protein, and label-free methods. We report Xlink-Identifier, a comprehensive data analysis platform that has been developed to support label-free analyses. It can identify interpeptide, intrapeptide, and deadend cross-links as well as underivatized peptides. The software streamlines data preprocessing, peptide scoring, and visualization and provides an overall data analysis strategy for studying protein-protein interactions and protein structure using mass spectrometry. The software has been evaluated using a custom synthesized cross-linking reagent that features an enrichment tag. Xlink-Identifier offers the potential to perform large-scale identifications of protein-protein interactions using tandem mass spectrometry.  相似文献   

9.
Sera from lung cancer patients contain antibodies against tumor-associated antigens. Specific amino acid sequences of the complementarity-determining regions (CDRs) in the antigen-binding fragment (Fab) of these antibodies have potential as lung cancer biomarkers. Detection and identification of CDRs by mass spectrometry can significantly be improved by reduction of the complexity of the immunoglobulin molecule. Our aim was to molecular dissect IgG into κ and λ fragments to reduce the complexity and thereby identify substantially more CDRs than by just total Fab isolation. We purified Fab, Fab-κ, Fab-λ, κ and λ light chains from serum from 10 stage I lung adenocarcinoma patients and 10 matched controls from the current and former smokers. After purification, the immunoglobulin fragments were enzymatically digested and measured by high-resolution mass spectrometry. Finally, we compared the number of CDRs identified in these immunoglobulin fragments with that in the Fab fragments. Twice as many CDRs were identified when Fab-κ, Fab-λ, κ and λ (3330) were combined than in the Fab fraction (1663) alone. The number of CDRs and κ:λ ratio was statistically similar in both cases and controls. Molecular dissection of IgG identifies significantly more CDRs, which increases the likelihood of finding lung cancer-related CDR sequences.  相似文献   

10.
Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) has gained popularity as a facile method of examining RNA structure both in vitro and in vivo, exploiting accessibility of the ribose 2′-OH to acylation by N-methylisatoic anhydride (NMIA) in unpaired or flexible configurations. Subsequent primer extension terminates at the site of chemical modification, and these products are fractionated by high-resolution gel electrophoresis. When applying SHAPE to investigate structural features associated with the wild-type and analog-substituted polypurine tract (PPT)–containing RNA/DNA hybrids, their size (20–25 base pairs) rendered primer extension impractical. As an alternative method of detection, we reasoned that chemical modification could be combined with tandem mass spectrometry, relying on the mass increment of RNA fragments containing the NMIA adduct (Mr = 133 Da). Using this approach, we demonstrate both specific modification of the HIV-1 PPT RNA primer and variations in its acylation pattern induced by replacing template nucleotides with a non-hydrogen-bonding thymine isostere. Our selective 2′-hydroxyl acylation analyzed by mass spectrometry strategy (SHAMS) should find utility when examining the structure of small RNA fragments or RNA/DNA hybrids where primer extension cannot be performed.  相似文献   

11.
Pan H  Smith DL 《Biochemistry》2003,42(19):5713-5721
Pulsed hydrogen exchange mass spectrometry has been used to investigate folding of rabbit muscle aldolase, an alpha/beta-barrel protein exhibiting the classic TIM structure. Aldolase unfolded in GdHCl refolded as the denaturant concentration was reduced by dialysis. Samples withdrawn during dialysis were pulse-labeled with deuterium to identify unfolded regions in structural forms highly populated during the folding process. Intact, labeled aldolase was digested into fragments, which were analyzed by HPLC electrospray ionization mass spectrometry to detect the H/D exchange along the aldolase backbone. For some concentrations of GdHCl, bimodal distributions of deuterium were found for most peptic fragments, indicating that regions represented by these fragments were either unfolded or folded in the intact polypeptide prior to labeling. The extent of folding was determined from these mass spectra, as well as by CD (220 nm) and enzymatic activity. These results show that folding to the active form involves three domains and two intermediates. Approximately 110 residues fold to highly compact forms in each step. These results also show that each folding domain includes widely separated regions of the backbone. When compared with the results of a previous study of aldolase unfolding, these results show that the folding and unfolding domains include most of the same residues. However, three short segments change domains depending on whether the process is folding or unfolding. These changes are attributed to the very stable quaternary structure of rabbit muscle aldolase.  相似文献   

12.
The Ste20-related kinase SPAK regulates sodium, potassium, and chloride transport in a variety of tissues. Recently, SPAK fragments, which lack the catalytic domain and are inhibitory to Na+ transporters, have been detected in kidney. It has been hypothesized that the fragments originate from alternative translation start sites, but their precise origin is unknown. Here, we demonstrate that kidney lysate possesses proteolytic cleavage activity toward SPAK. Ion exchange and size exclusion chromatography combined with mass spectrometry identified the protease as aspartyl aminopeptidase. The presence of the protease was verified in the active fractions, and recombinant aspartyl aminopeptidase recapitulated the cleavage pattern observed with kidney lysate. Identification of the sites of cleavage by mass spectrometry allowed us to test the function of the smaller fragments and demonstrate their inhibitory action toward the Na+-K+-2Cl cotransporter, NKCC2.  相似文献   

13.
A method for analysis of the type, purity, and possible structural modifications of insulins of bovine, porcine, and human origin was proposed. It is based on a combination of narrow-bore reversed-phase HPLC and mass spectrometry. The hydrolysis of insulins with highly specific Glu-protease V8 from Staphylococcus aureus followed by peptide mapping of the hydrolysis products and mass spectrometry of the isolated fragments helps rapidly and reliably localize and identify substitutions of amino acid residues in insulin structure by using insulin samples of less than 1 nmol.  相似文献   

14.
The use of matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) to acquire spectral profiles has become a common approach to detect proteomic biomarkers of disease. MALDI-MS signals may represent both intact proteins as well as proteolysis products. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis can tentatively identify the corresponding proteins Here, we describe the application of a data analysis utility called FragMint, which combines MALDI-MS spectral data with LC-MS/MS based protein identifications to generate candidate protein fragments consistent with both types of data. This approach was used to identify protein fragments corresponding to spectral signals in MALDI-MS analyses of unfractionated human serum. The serum also was analyzed by one-dimensional SDS-PAGE and bands corresponding to the MALDI-MS signal masses were excised and subjected to in-gel digestion and LC-MS/MS analysis. Database searches mapped all of the identified peptides to abundant blood proteins larger than the observed MALDI-MS signals. FragMint identified fragments of these proteins that contained the MS/MS identified sequences and were consistent with the observed MALDI-MS signals. This approach should be generally applicable to identify protein species corresponding to MALDI-MS signals.  相似文献   

15.
The DNA-repair protein XPA is required to recognize a wide variety of bulky lesions during nucleotide excision repair. Independent NMR solution structures of a human XPA fragment comprising approximately 40% of the full-length protein, the minimal DNA-binding domain, revealed that one-third of this molecule was disordered. To better characterize structural features of full-length XPA, we performed time-resolved trypsin proteolysis on active recombinant Xenopus XPA (xXPA). The resulting proteolytic fragments were analyzed by electrospray ionization interface coupled to a Fourier transform ion cyclotron resonance mass spectrometry and SDS-PAGE. The molecular weight of the full-length xXPA determined by mass spectrometry (30922.02 daltons) was consistent with that calculated from the sequence (30922.45 daltons). Moreover, the mass spectrometric data allowed the assignment of multiple xXPA fragments not resolvable by SDS-PAGE. The neural network program Predictor of Natural Disordered Regions (PONDR) applied to xXPA predicted extended disordered N- and C-terminal regions with an ordered internal core. This prediction agreed with our partial proteolysis results, thereby indicating that disorder in XPA shares sequence features with other well-characterized intrinsically unstructured proteins. Trypsin cleavages at 30 of the possible 48 sites were detected and no cleavage was observed in an internal region (Q85-I179) despite 14 possible cut sites. For the full-length xXPA, there was strong agreement among PONDR, partial proteolysis data, and the NMR structure for the corresponding XPA fragment.  相似文献   

16.
B Domon  C E Costello 《Biochemistry》1988,27(5):1534-1543
Glycosphingolipids and gangliosides have been investigated by using fast atom bombardment high-performance tandem mass spectrometry (FABMS/MS). Homologous compounds have been investigated in order to ascertain the fragmentation. Collision-induced dissociation spectra of the molecular species in the positive ion mode mainly afford information on the ceramide constitution (aglycon as a whole, N-acyl residue, and long-chain base), whereas negative ion spectra show fragments informative of the sugar sequence and the degree of branching of the carbohydrate. In the case of gangliosides carrying a complex oligosaccharide moiety, collision spectra of fragment ions have been performed in order to gain additional structural data. The advantage of tandem mass spectrometry over conventional fast atom bombardment mass spectrometry (FABMS) consists in the fact that collision spectra of the individual components from mixtures, as usually encountered with these kinds of samples, can be recorded. Furthermore, the exclusion of most of the interfering signals from the matrix allows the identification of pertinent fragments at low mass.  相似文献   

17.
S-Aminoethylated-alpha A and -beta A globin tryptic peptides separated by reversed-phase high-performance liquid chromatography have been analysed by plasma desorption mass spectrometry. Almost all the expected alpha A and beta A tryptic fragments were tentatively assigned relative to the known globin chain sequences based on the molecular weight obtained by plasma desorption mass spectrometric analysis of the purified peptides. The application of plasma desorption mass spectrometry for structure elucidation of a haemoglobin alpha-chain variant revealed the first case of Hb Hasharon in Hungary.  相似文献   

18.
A method for analysis of the type, purity, and possible structural modifications of insulins of bovine, porcine, and human origin was proposed. It is based on a combination of narrow-bore reversed-phase HPLC and mass spectrometry. The hydrolysis of insulins with highly specific Glu-protease V8 fromStaphylococcus aureus followed by peptide mapping of the hydrolysis products and mass spectrometry of the isolated fragments helps rapidly and reliably localize and identify substitutions of amino acid residues in insulin structure by using insulin samples of less than 1 nmol.  相似文献   

19.
Drug toxicity observed in animal studies during drug development accounts for the discontinuation of many drug candidates, with the kidney being a major site of tissue damage. Extensive investigations are often required to reveal the mechanisms underlying such toxicological events and in the case of crystalline deposits the chemical composition can be problematic to determine. In the present study, we have used mass spectrometry imaging combined with a set of advanced analytical techniques to characterize such crystalline deposits in situ. Two potential microsomal prostaglandin E synthase 1 inhibitors, with similar chemical structure, were administered to rats over a seven day period. This resulted in kidney damage with marked tubular degeneration/regeneration and crystal deposits within the tissue that was detected by histopathology. Results from direct tissue section analysis by matrix-assisted laser desorption ionization mass spectrometry imaging were combined with data obtained following manual crystal dissection analyzed by liquid chromatography mass spectrometry and nuclear magnetic resonance spectroscopy. The chemical composition of the crystal deposits was successfully identified as a common metabolite, bisulphonamide, of the two drug candidates. In addition, an un-targeted analysis revealed molecular changes in the kidney that were specifically associated with the area of the tissue defined as pathologically damaged. In the presented study, we show the usefulness of combining mass spectrometry imaging with an array of powerful analytical tools to solve complex toxicological problems occurring during drug development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号