共查询到20条相似文献,搜索用时 15 毫秒
1.
Dragon S Rahman MS Yang J Unruh H Halayko AJ Gounni AS 《American journal of physiology. Lung cellular and molecular physiology》2007,292(4):L1023-L1029
Recent studies into the pathogenesis of airway disorders such as asthma have revealed a dynamic role for airway smooth muscle cells in the perpetuation of airway inflammation via secretion of cytokines and chemokines. In this study, we evaluated whether IL-17 could enhance IL-1beta-mediated CXCL-8 release from human airway smooth muscle cells (HASMC) and investigated the upstream and downstream signaling events regulating the induction of CXCL-8. CXCL-8 mRNA and protein induction were assessed by real-time RT-PCR and ELISA from primary HASMC cultures. HASMC transfected with site-mutated activator protein (AP)-1/NF-kappaB CXCL-8 promoter constructs were treated with selective p38, MEK1/2, and phosphatidylinositol 3-kinase (PI3K) inhibitors to determine the importance of MAPK and PI3K signaling pathways as well as AP-1 and NF-kappaB promoter binding sites. We demonstrate IL-17 induced and synergized with IL-1beta to upregulate CXCL-8 mRNA and protein levels. Erk1/2 and p38 modulated IL-17 and IL-1beta CXCL-8 promoter activity; however, IL-1beta also activated the PI3K pathway. The synergistic response mediating CXCL-8 promoter activity was dependent on both MAPK and PI3K signal transduction pathways and required the cooperation of AP-1 and NF-kappaB cis-acting elements upstream of the CXCL-8 gene. Collectively, our observations indicate MAPK and PI3K pathways regulate the synergy of IL-17 and IL-1beta to enhance CXCL-8 promoter activity, mRNA induction, and protein synthesis in HASMC via the cooperative activation of AP-1 and NF-kappaB trans-acting elements. 相似文献
2.
Chambers LS Black JL Ge Q Carlin SM Au WW Poniris M Thompson J Johnson PR Burgess JK 《American journal of physiology. Lung cellular and molecular physiology》2003,285(3):L619-L627
The protease-activated receptor-2 (PAR-2) is present on human airway smooth muscle (ASM) cells and can be activated by mast cell tryptase, trypsin, or an activating peptide (AP). Trypsin induced significant increases in PGE2 release from human ASM cells after 6 and 24 h and also induced cyclooxygenase (COX)-2 mRNA expression and COX-2 protein. Tryptase and the PAR-2 AP did not alter PGE2 release or COX-2 protein levels, suggesting a lack of PAR-2 involvement. When we compared results in asthmatic and nonasthmatic muscle cells, both trypsin and bradykinin induced less PGE2 from asthmatic ASM cells, and bradykinin induced significantly less COX-2 mRNA in asthmatic cells. Significantly less PGE2 was released from proliferating ASM cells from asthmatic patients. In conclusion, trypsin induces PGE2 release and COX-2 in human ASM cells, which is unlikely to be via PAR-2 activation. In addition, ASM cells from asthmatic patients produce significantly less PGE2 and COX-2 compared with nonasthmatic cells. These findings may contribute to the increase in muscle mass evident in asthmatic airways. 相似文献
3.
4.
Pera T Atmaj C van der Vegt M Halayko AJ Zaagsma J Meurs H 《American journal of physiology. Lung cellular and molecular physiology》2012,303(3):L272-L278
Chronic obstructive pulmonary disease (COPD) is an inflammatory disease, characterized by a progressive decline in lung function. Airway smooth muscle (ASM) mass may be increased in COPD, contributing to airflow limitation and proinflammatory cytokine production. Cigarette smoke (CS), the major risk factor of COPD, causes ASM cell proliferation, as well as interleukin-8 (IL-8)-induced neutrophilia. In various cell types, transforming growth factor-β-activated kinase 1 (TAK1) plays a crucial role in MAP kinase and NF-κB activation, as well as IL-8 release induced by IL-1β, TNF-α, and lipopolysaccharide. The role of TAK1 in CS-induced IL-8 release is not known. The aim of this study was to investigate the role of TAK1 in CS-induced NF-κB and MAP kinase signaling and IL-8 release by human ASM cells. Stimulation of these cells with CS extract (CSE) increased IL-8 release and ERK-1/2 phosphorylation, as well as Iκ-Bα degradation and p65 NF-κB subunit phosphorylation. CSE-induced ERK-1/2 phosphorylation and Iκ-Bα degradation were both inhibited by pretreatment with the specific TAK1 inhibitor LL-Z-1640-2 (5Z-7-oxozeaenol; 100 nM). Similarly, expression of dominant-negative TAK1 inhibited CSE-induced ERK-1/2 phosphorylation. In addition, inhibitors of TAK1 and the NF-κB (SC-514; 50 μM) and ERK-1/2 (U-0126; 3 μM) signaling inhibited the CSE-induced IL-8 release by ASM cells. These data indicate that TAK1 plays a major role in CSE-induced ERK-1/2 and NF-κB signaling and in IL-8 release by human ASM cells. Furthermore, they identify TAK1 as a novel target for the inhibition of CS-induced inflammatory responses involved in the development and progression of COPD. 相似文献
5.
6.
Lahiri T Moore PE Baraldo S Whitehead TR McKenna MD Panettieri RA Shore SA 《American journal of physiology. Lung cellular and molecular physiology》2002,283(6):L1239-L1246
IL-1beta inhibits isoproterenol (ISO)-induced relaxation of cultured human airway smooth muscle (HASM) cells. The purpose of this study was to determine whether IL-1beta can also suppress ISO-induced cAMP response element (CRE)-dependent gene expression. ISO (10 microM) caused a marked increase in CRE-binding protein (CREB) phosphorylation, which was attenuated by IL-1beta (2 ng/ml). This effect of IL-1beta was abolished by the cyclooxygenase (COX) inhibitor indomethacin. To examine CRE-driven gene expression, we transiently transfected HASM cells with a construct containing CRE upstream of a luciferase reporter gene. ISO (6 h) caused a sixfold increase in luciferase activity. IL-1beta (24 h) alone also increased luciferase activity, although to a lesser extent (2-fold). However, the ability of ISO to elicit luciferase expression was markedly reduced in cells treated with IL-1beta. Indomethacin, the MEK and p38 inhibitors U-0126 and SB-203580, the protein kinase A inhibitor H-89, and dexamethasone each completely abolished the ability of IL-1beta to induce CRE-driven gene expression but only slightly increased the ability of ISO to induce CRE-driven gene expression in IL-1beta-treated cells. IL-1beta also attenuated dibutyryl cAMP-induced CRE-driven gene expression, but not dibutyryl cAMP-induced CREB phosphorylation. Tumor necrosis factor-alpha (10 ng/ml) also attenuated ISO-induced CRE-driven gene expression, even though it was without effect on ISO-induced cAMP formation or ISO-induced CREB phosphorylation. The results suggest that IL-1beta and tumor necrosis factor-alpha may attenuate the ability of beta-agonists to induce expression of genes with CRE in their regulatory regions at least in part through events downstream of CREB phosphorylation. 相似文献
7.
Cohen P Rajah R Rosenbloom J Herrick DJ 《American journal of physiology. Lung cellular and molecular physiology》2000,278(3):L545-L551
Both insulin-like growth factor binding protein-3 (IGFBP-3) and transforming growth factor-beta (TGF-beta) have been separately shown to have cell-specific growth-inhibiting or growth-potentiating effects. TGF-beta stimulates IGFBP-3 mRNA and peptide expression in several cell types, and TGF-beta-induced growth inhibition and apoptosis have been shown to be mediated through the induction of IGFBP-3. However, a link between the growth stimulatory effects of TGF-beta and IGFBP-3-induction has not been shown. In this study, we investigated the role of IGFBP-3 in mediating TGF-beta1-induced cell growth using human airway smooth muscle (ASM) cells as our model. TGF-beta1 (1 ng/ml) treatment induced a 10- to 20-fold increase in the levels of expression of IGFBP-3 mRNA and protein. Addition of either IGFBP-3 or TGF-beta1 to the growth medium resulted in an approximately twofold increase in cell proliferation. Coincubation of ASM cells with IGFBP-3 antisense (but not sense) oligomers as well as with an IGFBP-3 neutralizing antibody (but not with control IgG) blocked the growth induced by TGF-beta1 (P < 0.001). Several IGFBP-3-associated proteins were observed in ASM cell lysates, which may have a role in the cellular responses to IGFBP-3. These findings demonstrate that IGFBP-3 is capable of mediating the growth stimulatory effect of TGF-beta in ASM cells. 相似文献
8.
Xie S Sukkar MB Issa R Oltmanns U Nicholson AG Chung KF 《American journal of physiology. Lung cellular and molecular physiology》2005,288(1):L68-L76
Transforming growth factor (TGF)-beta may play an important role in airway remodeling, and the fibrogenic effect of TGF-beta may be mediated through connective tissue growth factor (CTGF) release. We investigated the role of MAPKs and phosphatidylinositol 3-kinase (PI3K) and the effects of inflammatory cytokines on TGF-beta-induced CTGF expression in human airway smooth muscle cells (ASMC). We examined whether Smad signal was involved in the regulatory mechanisms. TGF-beta 1 induced a time- and concentration-dependent expression of CTGF gene and protein as analyzed by real-time RT-PCR and Western blot. Inhibition of ERK and c-jun NH(2)-terminal kinase (JNK), but not of p38 MAPK and PI3K, blocked the effect of TGF-beta 1 on CTGF mRNA and protein expression and on Smad2/3 phosphorylation. T helper lymphocyte 2-derived cytokines, IL-4 and IL-13, attenuated TGF-beta 1-stimulated mRNA and protein expression of CTGF and inhibited TGF-beta 1-stimulated ERK1/2 and Smad2/3 activation in ASMC. The proinflammatory cytokines tumor necrosis factor-alpha and IL-1 beta reduced TGF-beta 1-stimulated mRNA expression of CTGF but did not inhibit TGF-beta-induced Smad2/3 phosphorylation. TGF-beta 1-stimulated CTGF expression is mediated by mechanisms involving ERK and JNK pathways and is downregulated by IL-4 and IL-13 through modulation of Smad and ERK signals. 相似文献
9.
The thrombin/proteinase-activated receptors (PARs) have been shown to regulate smooth muscle cell proliferation, migration, and vascular maturation. Thrombin up-regulates expression of several proteins including cyclooxygenase (COX)-2 in vascular smooth muscle cells (VSMCs) and contributes to vascular diseases. However, the mechanisms underlying thrombin-regulated COX-2 expression in VSMCs remain unclear. Western blotting, RT-PCR, and EIA kit analyses showed that thrombin induced the expression of COX-2 mRNA and protein and PGE(2) release in a time-dependent manner, which was attenuated by inhibitors of PKC (GF109203X and rottlerin), c-Src (PP1), EGF receptor (EGFR; AG1478) and MEK1/2 (U0126), or transfection with dominant negative mutants of PKC-delta, c-Src or extracellular regulated kinase (ERK) and ERK1 short hairpin RNA interference (shRNA). These results suggest that transactivation of EGFR participates in COX-2 expression induced by thrombin in VSMCs. Accordingly, thrombin stimulated phosphorylation of ERK1/2 which was attenuated by GF109203X, rottlerin, PP1, GM6001, CRM197, AG1478, or U0126, respectively. Furthermore, this up-regulation of COX-2 mRNA and protein was blocked by selective inhibitors of AP-1 and NF-kappaB, curcumin and helenalin, respectively. Moreover, thrombin-stimulated activation of NF-kappaB, AP-1, and COX-2 promoter activity was blocked by the inhibitors of c-Src, PKC, EGFR, MEK1/2, AP-1 and NF-kappaB, suggesting that thrombin induces COX-2 promoter activity mediated through PKC(delta)/c-Src-dependent EGFR transactivation, MEK-ERK1/2, AP-1, and NF-kappaB. These results demonstrate that in VSMCs, activation of ERK1/2, AP-1 and NF-kappaB pathways was essential for thrombin-induced COX-2 gene expression. Understanding the regulation of COX-2 expression and PGE(2) release by thrombin/PARs system on VSMCs may provide potential therapeutic targets of vascular inflammatory disorders including arteriosclerosis. 相似文献
10.
11.
Sturrock A Huecksteadt TP Norman K Sanders K Murphy TM Chitano P Wilson K Hoidal JR Kennedy TP 《American journal of physiology. Lung cellular and molecular physiology》2007,292(6):L1543-L1555
Transforming growth factor-beta1 (TGF-beta1) plays a pivotal role in increasing airway smooth muscle mass in severe asthma by inducing proliferation and hypertrophy of human airway smooth muscle. The mechanism(s) for these effects of TGF-beta1 have not been fully elucidated. In this study, we demonstrate that TGF-beta1 is a potent inducer of expression of the nonphagocyte NAD(P)H oxidase catalytic homolog Nox4, diphenylene iodonium-inhibitable reactive oxygen species production, proliferation, and hypertrophy in cultured human airway smooth muscle cells. By confocal microscopy, TGF-beta1-induced Nox4 was localized with the endoplasmic reticulum and the nucleus, implying a role for Nox4 in regulation of both the cell cycle and protein synthesis. Consistent with this hypothesis, TGF-beta1 increased retinoblastoma protein phosphorylation at both Ser807/811 and Ser780. Silencing Nox4 prevented TGF-beta1-mediated retinoblastoma protein phosphorylation, proliferation, and cell hypertrophy. TGF-beta1 also increased phosphorylation of eukaryotic translation initiation factor 4E binding protein-1 at Thr37/46, and this was likewise blocked by silencing Nox4. This is the first report to suggest a functional role for Nox4 in cell cycle transition and to demonstrate that Nox4 influences the pathobiochemistry of asthma by generating reactive oxygen species that promote TGF-beta1-induced proliferation and hypertrophy of human airway smooth muscle. 相似文献
12.
Faffe DS Whitehead T Moore PE Baraldo S Flynt L Bourgeois K Panettieri RA Shore SA 《American journal of physiology. Lung cellular and molecular physiology》2003,285(4):L907-L914
The chemokine thymus- and activation-regulated chemokine (TARC) induces selective migration of Th2, but not Th1, lymphocytes and is upregulated in the airways of asthmatic patients. The purpose of this study was to determine whether human airway smooth muscle (HASM) cells produce TARC. Neither IL-4, IL-13, IL-1beta, IFN-gamma, nor TNF-alpha alone stimulated TARC release into the supernatant of cultured HASM cells. However, both IL-4 and IL-13 increased TARC protein and mRNA expression when administered in combination with TNF-alpha but not IL-1beta or IFN-gamma. Macrophage-derived chemokine was not expressed under any of these conditions. TARC release induced by TNF-alpha + IL-13 or TNF-alpha + IL-4 was inhibited by the beta-agonist isoproterenol and by other agents that activate protein kinase A, but not by dexamethasone. To determine whether polymorphisms of the IL-4Ralpha have an impact on the ability of IL-13 or IL-4 to induce TARC release, HASM cells from multiple donors were genotyped for the Ile50Val, Ser478Pro, and Gln551Arg polymorphisms of the IL-4Ralpha. Our data indicate that cells expressing the Val50/Pro478/Arg551 haplotype had significantly greater IL-13- or IL-4-induced TARC release than cells with other IL-4Ralpha genotypes. These data indicate that Th2 cytokines enhance TARC expression in HASM cells in an IL-4Ralpha genotype-dependent fashion and suggest that airway smooth muscle cells participate in a positive feedback loop that promotes the recruitment of Th2 cells into asthmatic airways. 相似文献
13.
Ute Oltmanns Kian F Chung Matthew Walters Matthias John Jane A Mitchell 《Respiratory research》2005,6(1):74
Background
Cigarette smoke is the leading risk factor for the development of chronic obstructive pulmonary disease (COPD) an inflammatory condition characterised by neutrophilic inflammation and release of proinflammatory mediators such as interleukin-8 (IL-8). Human airway smooth muscle cells (HASMC) are a source of proinflammatory cytokines and chemokines. We investigated whether cigarette smoke could directly induce the release of chemokines from HASMC.Methods
HASMC in primary culture were exposed to cigarette smoke extract (CSE) with or without TNFα. Chemokines were measured by enzyme-linked immunosorbent assay (ELISA) and gene expression by real time polymerase chain reaction (PCR). Data were analysed using one-way analysis of variance (ANOVA) followed by Bonferroni''s t testResults
CSE (5, 10 and 15%) induced IL-8 release and expression without effect on eotaxin or RANTES release. At 20%, there was less IL-8 release. TNFα enhanced CSE-induced IL-8 release and expression. However, CSE (5–30%) inhibited TNFα-induced eotaxin and RANTES production. The effects of CSE on IL-8 release were inhibited by glutathione (GSH) and associated with the induction of the oxidant sensing protein, heme oxygenase-1.Conclusion
Cigarette smoke may directly cause the release of IL-8 from HASMC, an effect enhanced by TNF-α which is overexpressed in COPD. Inhibition of eotaxin and RANTES by cigarette smoke is consistent with the predominant neutrophilic but not eosinophilic inflammation found in COPD. 相似文献14.
Sara S Roscioni Loes EM Kistemaker Mark H Menzen Carolina RS Elzinga Reinoud Gosens Andrew J Halayko Herman Meurs Martina Schmidt 《Respiratory research》2009,10(1):1-17
Background
Platelet-derived growth factor A (PDGF-A) signals solely through PDGF-Rα, and is required for fibroblast proliferation and transdifferentiation (fibroblast to myofibroblast conversion) during alveolar development, because pdgfa-null mice lack both myofibroblasts and alveoli. However, these PDGF-A-mediated mechanisms remain incompletely defined. At postnatal days 4 and 12 (P4 and P12), using mouse lung fibroblasts, we examined (a) how PDGF-Rα correlates with ki67 (proliferation marker) or alpha-smooth muscle actin (αSMA, myofibroblast marker) expression, and (b) whether PDGF-A directly affects αSMA or modifies stimulation by transforming growth factor beta (TGFβ).Methods
Using flow cytometry we examined PDGF-Rα, αSMA and Ki67 in mice which express green fluorescent protein (GFP) as a marker for PDGF-Rα expression. Using real-time RT-PCR we quantified αSMA mRNA in cultured Mlg neonatal mouse lung fibroblasts after treatment with PDGF-A, and/or TGFβ.Results
The intensity of GFP-fluorescence enabled us to distinguish three groups of fibroblasts which exhibited absent, lower, or higher levels of PDGF-Rα. At P4, more of the higher than lower PDGF-Rα + fibroblasts contained Ki67 (Ki67+), and Ki67+ fibroblasts predominated in the αSMA + but not the αSMA- population. By P12, Ki67+ fibroblasts comprised a minority in both the PDGF-Rα + and αSMA+ populations. At P4, most Ki67+ fibroblasts were PDGF-Rα + and αSMA- whereas at P12, most Ki67+ fibroblasts were PDGF-Rα- and αSMA-. More of the PDGF-Rα + than - fibroblasts contained αSMA at both P4 and P12. In the lung, proximate αSMA was more abundant around nuclei in cells expressing high than low levels of PDGF-Rα at both P4 and P12. Nuclear SMAD 2/3 declined from P4 to P12 in PDGF-Rα-, but not in PDGF-Rα + cells. In Mlg fibroblasts, αSMA mRNA increased after exposure to TGFβ, but declined after treatment with PDGF-A.Conclusion
During both septal eruption (P4) and elongation (P12), alveolar PDGF-Rα may enhance the propensity of fibroblasts to transdifferentiate rather than directly stimulate αSMA, which preferentially localizes to non-proliferating fibroblasts. In accordance, PDGF-Rα more dominantly influences fibroblast proliferation at P4 than at P12. In the lung, TGFβ may overshadow the antagonistic effects of PDGF-A/PDGF-Rα signaling, enhancing αSMA-abundance in PDGF-Rα-expressing fibroblasts. 相似文献15.
16.
Delvecchio CJ Bilan P Radford K Stephen J Trigatti BL Cox G Parameswaran K Capone JP 《Molecular endocrinology (Baltimore, Md.)》2007,21(6):1324-1334
Human (h) airway smooth muscle (ASM) cells are important mediators of the inflammatory process observed in asthma and other respiratory diseases. We show here that primary hASM cells express liver X receptor (LXR; alpha and beta subtypes), an oxysterol-activated nuclear receptor that controls expression of genes involved in lipid and cholesterol homeostasis, and inflammation. LXR was functional as determined by transient assays using LXR-responsive reporter genes and by analysis of mRNA and protein expression of endogenous LXR target genes in cells exposed to LXR agonists. LXR activation induced expression of the ATP-binding cassette transporters ABCA1 and ABCG1 and increased efflux of cholesterol to apolipoprotein AI and high-density lipoprotein acceptors, pointing to a role for hASM cells in modulating cholesterol homeostasis in the airway. Under inflammatory conditions, hASM cells release a variety of chemokines and cytokines that contribute to inflammatory airway diseases. Activation of LXR inhibited the expression of multiple cytokines in response to proinflammatory mediators and blocked the release of both granulocyte macrophage colony-stimulating factor and granulocyte colony stimulating factor. LXR activation also inhibited proliferation of hASM cells and migration toward platelet-derived growth factor chemoattractant, two important processes that contribute to airway remodeling. Our findings reveal biological roles for LXR in ASM cells and suggest that modulation of LXR activity offers prospects for new therapeutic approaches in the treatment of asthma and other inflammatory respiratory diseases. 相似文献
17.
18.
Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells 总被引:21,自引:0,他引:21
Asokananthan N Graham PT Fink J Knight DA Bakker AJ McWilliam AS Thompson PJ Stewart GA 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(7):3577-3585
Epithelia from many tissues express protease-activated receptors (PARs) that play a major role in several different physiological processes. In this study, we examined their capacity to modulate IL-6, IL-8, and PGE(2) production in both the A459 and BEAS-2B cell lines and primary human bronchial epithelial cells (HBECs). All three cell types expressed PAR-1, PAR-2, PAR-3, and PAR-4, as judged by RT-PCR and immunocytochemistry. Agonist peptides corresponding to the nascent N termini of PAR-1, PAR-2, and PAR-4 induced the release of cytokines from A549, BEAS-2B, and HBECs with a rank order of potency of PAR-2 > PAR-4 > PAR-1 at 400 microM. PAR-1, PAR-2, and PAR-4 also caused the release of PGE(2) from A549 and HBECs. The PAR-3 agonist peptide was inactive in all systems tested. PAR-1, PAR-2, or PAR-4, in combination, caused additive IL-6 release, but only the PAR-1 and PAR-2 combination resulted in an additive IL-8 response. PAR peptide-induced responses were accompanied by changes in intracellular calcium ion concentrations. However, Ca(2+) ion shutoff was approximately 2-fold slower with PAR-4 than with PAR-1 or PAR-2, suggesting differential G protein coupling. Combined, these data suggest an important role for PAR in the modulation of inflammation in the lung. 相似文献
19.
Changes in regional O(2) tension that occur during fracture and skeletal unloading may stimulate local bone cell activity and ultimately regulate bone maintenance and repair. The mechanisms by which bone cells sense and respond to changes in O(2) tension are unclear. In this study we investigated the effects of low O(2) on activation of the hypoxia response element (HRE), prostaglandin E(2) (PGE(2)) production, PGE(2) receptor (EP) expression and proliferation in MC3T3-E1 osteoblastic cells. Cells were cultured for up to 72 h in 2% O(2) (considered hypoxic), 5% O(2) (in the range of normal O(2) tension in vivo) or 21% O(2) (commonly used for cell culture). Cells cultured in 2% O(2) showed activation of the HRE, increased PGE(2) release, increased EP1 expression, and reduced cell proliferation compared to cells grown at 21% O(2). Similarly, cells cultured in 5% O(2) showed increased expression of EP1 and a trend toward a decrease in proliferation, but no activation of the HRE or increase in PGE(2) levels. Expression of EP2, EP3 and EP4 were not affected by O(2) tension. The differences in EP receptor profile observed in cells grown at 5% compared to 21% O(2) suggest that bone cell phenotype may be altered under routine cell culture conditions. Furthermore, our data suggest that hypoxia-dependent PGE(2) production and EP1 expression in bone cells may play a role in bone remodeling and repair in regions of compromised or damaged bone, where O(2) tension is low. 相似文献
20.
Robinson WP Douillet CD Milano PM Boucher RC Patterson C Rich PB 《American journal of physiology. Heart and circulatory physiology》2006,290(5):H1988-H1996
Aortic smooth muscle cell release of matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) has been implicated in aortic aneurysm pathogenesis, but proximal modulation of release is poorly understood. Extracellular nucleotides regulate vascular smooth muscle cell metabolism in response to physiochemical stresses, but nucleotide modulation of MMP and/or TIMP release has not been reported. We hypothesized that nucleotides modulate MMP-2 and TIMP-2 release from human aortic smooth muscle cells (HASMCs) via distinct purinergic receptors and signaling pathways. We exposed HASMCs to exogenous ATP and other nucleotides with and without interleukin-1beta (IL-1beta). HASMCs were pretreated in some experiments with apyrase, which degrades ATP, and inhibitors of ERK1/2, JNK, and p38 MAPK. MMP-2 and TIMP-2 released into supernatant were assessed using ELISA and Western blotting. ATP, adenosine, and UTP significantly stimulated MMP-2 release in the presence of IL-1beta (300 nM ATP: 181 +/- 22%, P = 0.003; 30 microm adenosine: 244 +/- 150%, P = 0.001; and 200 microm UTP: 153 +/- 40%, P = 0.015; vs. 100% constitutive). ATP also stimulated MMP-2 release in the absence of IL-1beta (100 microm ATP: 148 +/- 38% vs. 100% constitutive). Apyrase significantly reduced ATP-stimulated MMP-2 release (apyrase + 500 nM ATP: 59 +/- 3% vs. 124 +/- 7% with 500 nM ATP). Rank-order agonist potency for MMP-2 release was consistent with ATP activation of PAY and PAY receptors. ATP induced phosphorylation of intracellular JNK, and inhibition of the JNK pathway blocked ATP-stimulated MMP-2 release, indicating signaling via this pathway. Nucleotides are thus novel stimulants of MMP-2 release from HASMCs and may provide a mechanistic link between physiochemical stress in the aorta and aneurysms, especially in the context of inflammation. 相似文献