首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell swelling, regulatory volume decrease (RVD), volume-sensitive Cl (Cl swell) current and taurine efflux after exposure to high concentrations of urea were characterized in fibroblasts Swiss 3T3, and results compared to those elicited by hyposmotic (30%) swelling. Urea 70, 100, and 150 mM linearly increased cell volume (8.25%, 10.6%, and 15.7%), by a phloretin-inhibitable process. This was followed by RVD by which cells exposed to 70, 100, or 150 mM urea recovered 27.6%, 38.95, and 74.1% of their original volume, respectively. Hyposmolarity (30%) led to a volume increase of 25.9% and recovered volume in 32.5%. 3H-taurine efflux was increased by urea with a sigmoid pattern, as 9.5%, 18.9%, 71.5%, and 89% of the labeled taurine pool was released by 70, 100, 150, or 200 mM urea, respectively. Only about 11% of taurine was released by 30% hyposmolarity reduction in spite of the high increase in cell volume. Urea-induced taurine efflux was suppressed by NPPB (100 μM) and markedly reduced by the tyrosine kinase-general blocker AG18. The Cl swell current was more rapidly activated and higher in amplitude in the hyposmotic than in the isosmotic/urea condition (urea 150 mM), but this was not sufficient to accomplish an efficient RVD. These results showed that at similar volume increase, cells swollen by urea showed higher taurine efflux, lower Cl swell current and more efficient RVD, than in those swollen by hyposmolarity. The correlation found between RVD efficiency and taurine efflux suggest a prominent role for organic over ionic osmolytes for RVD evoked by urea in isosmotic conditions.  相似文献   

2.
A variety of cells, including skate RBC, release osmolytes (e.g. taurine) when hypotonically swollen as part of a regulatory volume decrease. In this study we show that skate RBC also release ATP into the incubation medium under the same conditions. Furthermore extracellular ATP as well as other nucleotides likely to be released from the RBC, inhibit the hypotonically activated transport of taurine. Therefore, ATP and other nucleotides released from hypotonically stressed RBC have the potential to act as modulators of osmolyte release during hyposmotic stress.  相似文献   

3.
Amino acids play a role as osmolytes during the regulatory volume decrease subsequent to hyposmotic swelling, but less is known about its role when swelling occurs in isosmotic conditions. In this work we examined the efflux of labelled GABA, taurine and glutamate (traced as D-aspartate) from the chick retina, after isosmotic swelling evoked by KCl-containing solutions, and compared its features to those in hyposmotic swelling. In both conditions, GABA and taurine efflux were more sensitive to swelling than glutamate, as assessed by the activation threshold and the amount released. The amino acid efflux in hyposmotic media was decreased by DIDS, tamoxifen and NPPB, agents acting as Cl channels blockers, which also inhibit the osmosensitive Cl efflux. The component associated with swelling in the KCl-stimulated efflux was assessed by the reduction observed when Cl is replaced by an impermeant anion, or by the influence of hyperosmotic media. GABA and taurine efflux exhibited a large swelling-dependent component, which was lower for D-aspartate. This component was markedly decreased by NPPB, but this was due to an effect of the blocker preventing swelling. These results suggest that the influx of Cl, acting as K counterion, which is responsible for cell swelling, occurs through a pathway sensitive to NPPB, similarly to that activated by hyposmolarity. This finding may be of interest in studies aiming at preventing the cell edema which occurs in a number of pathologies.  相似文献   

4.
Volume-sensitive K transport in human erythrocytes   总被引:13,自引:5,他引:8       下载免费PDF全文
Studies have been carried out on human erythrocytes to examine the alterations of K transport induced by swelling or shrinking the cells by osmotic and isosmotic methods. Hypotonic swelling of erythrocytes (relative cell volume, 1.20) resulted in a striking, four- to fivefold augmentation in the ouabain-resistant K influx over the value obtained at a normal cell volume. Shrinking the cells in hypertonic media resulted in a small but statistically significant reduction in K influx. Three different methods of varying cell volume gave similar results. These include the addition of sucrose and of NaCl to hypotonic media and the isosmotic (nystatin) method. The major fraction of the K influx in swollen cells is specific in its requirement for Cl or Br and is not supported by thiocyanate, iodide, nitrate, methylsulfate, or acetate. Bumetanide (0.1 mM), MK-196 (0.2 mM), and piretanide (1 mM) are poorly effective in suppressing K uptake in swollen cells, but at higher concentrations, bumetanide (1 mM) inhibits 80% of the Cl-dependent K influx in swollen cells. The bumetanide concentration required to inhibit 50% of the Cl-dependent K influx is 0.17 mM. The volume-sensitive K influx is independent of both extracellular and intracellular Na, so that the (Na + K + 2Cl) cotransport pathway is not a likely mediator of the volume-sensitive K transport. A variety of inhibitors of the Ca-activated K channel are ineffective in suppressing swelling-induced K influx. Like K uptake, the efflux of K is also enhanced by cell swelling. Swelling-activated K efflux is Cl dependent, is independent of extracellular and intracellular Na, and is observed with both hypotonic and isosmotic methods of cell swelling. The activation of K efflux by cell swelling is observed in K-free media, which suggests that the volume-sensitive K transport pathway is capable of net K efflux. The addition of external K to hypotonic media resulted in an increase in K efflux compared with the efflux in K-free media, and this increase was probably due to K/K exchange. Thus, hypotonic or isosmotic swelling of human erythrocytes results in the activation of a ouabain-resistant, Cl-dependent, Na-independent transport pathway that is capable of mediating both net K efflux and K/K exchange.  相似文献   

5.
We investigated the role of taurine in cell homeostasis and characterized the taurine transport pathway in cultured kidney cells (A6). The taurine concentration in A6 cells varies with the osmolarity of the culture medium, suggesting that taurine participates in cell osmolarity. Under isosmotic conditions, 14C-taurine efflux through the apical membranes (aJtaur) was 6-7 times lower than that through the basolateral membranes (bJtaur). Under hyposmotic conditions, aJtaur remained almost unchanged. On the contrary, bJtaur increased 8 times in comparison with isosmotic conditions. In hyposmotic conditions, bJtaur was inhibited by 500 microM DIDS, 50 microM NPPB, 10 microM of the two oxonol derivatives DISBAC(2)3 and WW-791, and 100 microM ketoconazole. Conversely, 100 microM 1,9-dideoxyforskolin, 10 microM tamoxifen, 100 microM niflumic acid and 50 microM verapamil had no inhibitory effects. Cell volume regulation upon hyposmotic stress was also found to be inhibited by DISBAC(2)3 (K0.5 of 5+/-1 microM) and by ketoconazole. Nystatin was used to permeabilize the apical membranes with the aim to further characterize bJtaur. 14C-taurine transepithelial fluxes in nystatin-treated cells were found to be linear over taurine concentrations ranging from 3.5 microM to 35 mM. Clamping the transepithelial voltage at positive values (serosal side) slightly stimulated the 14C-taurine transport. Similar time courses of 14C-taurine, 36Cl and 86Rb transepithelial fluxes were found under osmotic stimulation followed by DIDS inhibition in nystatin-treated cells. In whole cell patch-clamp experiments, DISBAC(2)3 application resulted in a strong and reversible decrease of the global Cl- current which was stimulated by hyposmotic stress. Our study indicates that taurine participates in the control of A6 cell osmolarity and that the transporting taurine pathway (efflux) is on the basolateral membranes. In addition to usual chloride channel blockers, oxonol was found to be a potent blocker of the taurine transport and of the swelling-activated chloride current. Using a pharmacological approach, we could not distinguish between a common or different pathway for Cl- and taurine.  相似文献   

6.
There is evidence that depolarization of the pancreatic β cell by glucose involves cell swelling and activation of the volume-regulated anion channel (VRAC). However, it is unclear whether cell swelling per se or accompanying changes in intracellular osmolality and/or ionic strength are responsible for VRAC activation. VRAC activity was measured in rat β cells by conventional or perforated patch whole-cell recording. Cell volume was measured by video imaging. In conventional whole-cell recordings, VRAC activation was achieved by exposure of the cells to a hyposmotic bath solution, by application of positive pressure to the pipette, or by use of a hyperosmotic pipette solution. Increased concentrations of intracellular CsCl also caused channel activation, but with delayed kinetics. In perforated patch recordings, VRAC activation was induced by isosmotic addition of the permeable osmolytes urea, 3-Ο-methyl glucose, arginine, and NH4Cl. These effects were all accompanied by β-cell swelling. It is concluded that increased cell volume, whether accompanied by raised intracellular osmolality or ionic strength, is a major determinant of VRAC activation in the β cell. However, increased intracellular ionic strength markedly reduced the rate of VRAC activation. These findings are consistent with the hypothesis that the accumulation of glucose metabolites in the β cell, and the resultant increase in cell volume, provides a signal coupling glucose metabolism with VRAC activation.  相似文献   

7.
Cell-swelling, induced by a hyposmotic challenge, stimulated the efflux of L-carnitine from a human mammary cancer cell line, MDA-MB-231. The response was dependent upon the extent of the osmotic shock. Hyposmotically-activated L-carnitine efflux was inhibited by the anion transport blocker diiodosalicylate. The efflux of taurine from MDA-MB-231 cells was also stimulated by a hyposmotic shock via a pathway sensitive to diiodosalicylate. L-carnitine efflux from MDA-MB-231 cells was stimulated by isosmotic swelling in a manner which was inhibited by diiodosalicylate. The results suggest that L-carnitine may exit cells via a volume-sensitive pathway: it is possible that L-carnitine efflux may utilize the same pathway as amino acids. The efflux of L-carnitine via this route could have a major effect on the intracellular concentration of L-carnitine and could facilitate transepithelial L-carnitine transport.  相似文献   

8.
Previously, we reported that hyposmotic swelling evoked transient vascular smooth muscle cell (SMC) contraction that was completely abolished by L-type Ca(2+) channel blockers. In contrast, sustained contraction revealed in hyper- and isoosmotically-shrunken SMCs was insensitive to L-type channel blockers and was diminished in Ca(2+)-free medium by only 30-50%. Several research groups reported cell volume-dependent cytoskeleton network rearrangements. This study examines the role of cytoskeleton proteins in cell volume-dependent contraction of endothelium-denuded vascular smooth muscle rings (VSMR) from the rat thoracic aorta. Hyperosmotic shrinkage and hyposmotic swelling were triggered by modulation of medium osmolality; isosmotic shrinkage was induced by VSMR transfer from hypo- to isosmotic medium. The relative content of globular (G) and fibrillar (F) actin was estimated by fluorescence microscopy. Hyperosmotic shrinkage and hyposmotic swelling led to elevation of the F-actin/G-actin ratio by 2.5- and 1.8-fold respectively. Contraction of shrunken and swollen VSMR was insensitive to modulators of microtubules such as vinblastine, colchicine and docetaxel. Microfilament disassembly by cytochalasin B resulted in dramatic attenuation of the maximal amplitude of contraction of hyperosmotically-shrunken and hyposmotically-swollen VSMR, and almost completely abolished the contraction triggered by isosmotic shrinkage. These data suggest that both L-type Ca(2+) channel-mediated contraction of swollen vascular SMC and Ca(2+)(o)-insensitive contractions of shrunken cells are triggered by reorganization of the microfilament network caused by elevation of the F-actin/G-actin ratio.  相似文献   

9.
The sulfhydryl group reagent N-ethylmaleimide was found to inhibit in a dose dependent manner regulatory volume decrease of human peripheral lymphocytes swollen in buffered hyposmotic NaCl media. In hyposmotic KCl media NEM treated lymphocytes prevented an additional secondary swelling seen in control lymphocytes. The data suggest that N-ethylmaleimide acts on ion transport mechanisms involved in volume regulatory changes. This effect contrasts with the stimulation by N-ethylmaleimide of apparently volume sensitive K/Cl fluxes in certain mammalian red cells.  相似文献   

10.
Investigation into the Role of N-Acetylaspartate in Cerebral Osmoregulation   总被引:4,自引:3,他引:1  
Abstract: Marked abnormalities of the magnetic resonance intensity of N -acetylaspartate (NAA) have been reported in patients with various neurological disorders, but the neurochemical consequences of these alterations are difficult to assess because the function of NAA remains speculative. The purpose of this study was to examine whether NAA plays a role in protecting neurons against osmotic stress. Intracerebral microdialysis was used to expose a small region of the rat dorsolateral striatum to an increasingly hyposmotic environment and to measure resulting changes in NAA extracellular concentrations. NAA changes in the extracellular fluid (ECF) were compared with those of the amino acids, in particular, taurine, known to be involved in brain osmoregulation. Stepped increases in cellular hydration produced by hyposmotic perfusion media induced a marked increase in ECF NAA, reflecting a redistribution of NAA from intra-to extracellular space. Parallel experiments showed that, of all the extracellular amino acids measured, only taurine markedly increased with hyposmolar perfusion medium, indicating that the ECF NAA increase associated with hyposmotic stress was a specific response and not passive leakage out of the cells. As NAA is predominantly neuronal, it may contribute to the protection of neurons against swelling (i.e., regulatory volume decrease). In conditions with impaired blood-brain barrier and cytotoxic oedema, efflux of intracellular NAA subsequent to sustained cellular swelling might lead to a reduction in total brain NAA detectable by magnetic resonance spectroscopy. Alternatively, redistribution of NAA from intra-to extracellular space implies changes in its chemical environment that may alter its magnetic resonance visibility.  相似文献   

11.
The effect of hyposmotic and isosmotic cell swelling on the free intracellular calcium concentration ([Ca2+]i) in rat mammary acinar cells has been examined using the fura-2 dye technique. A hyposmotic shock (40% reduction) increased the [Ca2+]i in rat mammary acinar cells in a fashion which was transient; the [Ca2+]i returned to a value similar to that found under isomotic conditions within 180 sec. The increase in the [Ca2+]i was dependent upon the extent of the osmotic shock. The hyposmotically-activated increase in the [Ca2+]i could not be attributed to a reduction in extracellular Na+ or a change in the ionic strength of the incubation medium. Thapsigargin (1 M) enhanced the hyposmotically-activated increase in the [Ca2+]i. Isosmotic swelling of rat mammary acinar cells, using urea, had no significant effect on the [Ca2+]i. Similarly, a hyperosmotic shock did not affect the [Ca2+]i in rat mammary acinar cells. It appears that the effect of cell swelling on the [Ca2+]i in rat mammary acinar cells depends on how the cells are swollen (hyposmotic vs. isosmotic). This finding may have important physiological implications given that it is predicted that mammary cell volume will change in vivo under isomotic conditions.  相似文献   

12.
Regulatory volume decrease occurs in fish erythrocytes by the release of osmolytes via a channel involving the anion exchanger (AE), also known as band 3. This review focuses primarily on work done on red blood cells from the skate (Raja erinacea) to further understand the activation, regulation and identification of this osmolyte channel. A model is proposed in which the reduction in intracellular ionic strength that occurs with increased cell volume may change the interaction between AE dimers and other cytoplasmic proteins (band 4.1 and ankyrin), promoting the formation of a tetrameric osmolyte channel. Phosphorylation by two tyrosine kinases, p72syk and p56lyn, is linked to this oligomerization. The skate AE has been recently cloned, resulting in three different isoforms, one of which, skAE1, when expressed in Xenopus oocytes, demonstrates taurine transport.  相似文献   

13.
When swollen, skate red blood cells increase permeability and allow efflux of a number of solutes, including taurine. Hypoosmosis-induced taurine permeability appears to involve the red cell anion exchanger. However, three isoforms have been cloned from these cells. Therefore, to determine the ability of the individual isoform skate anion exchanger 1 (skAE1) to mediate hypoosmosis-induced taurine permeability as well as associated regulatory events, skAE1 was expressed in Xenopus oocytes. This study focused on investigating the role of tyrosine kinases and lipid rafts in the regulation of the channel. The results showed that tyrosine kinase inhibitors and lipid raft-disrupting agents inhibited the volume-sensitive organic osmolyte channel while protein tyrosine phosphatase inhibitors activated the channel in oocytes expressing skAE1. To study the role of lipid rafts in the activation of the volume-sensitive organic osmolyte channel, the cellular localization of skAE1 was investigated. Also, the role of tyrosine kinases was investigated by examining the tyrosine phosphorylation state of skAE1. Hypoosmotic stress induced mobilization of skAE1 into light membranes and the cell surface as well as tyrosine phosphorylation of skAE1. These events are involved in the activation of the volume-sensitive organic osmolyte channel in Xenopus oocytes expressing skAE1.  相似文献   

14.
When swollen, skate red blood cells increase permeability and allow efflux of a number of solutes, including taurine. Hypoosmosis-induced taurine permeability appears to involve the red cell anion exchanger. However, three isoforms have been cloned from these cells. Therefore, to determine the ability of the individual isoform skate anion exchanger 1 (skAE1) to mediate hypoosmosis-induced taurine permeability as well as associated regulatory events, skAE1 was expressed in Xenopus oocytes. This study focused on investigating the role of tyrosine kinases and lipid rafts in the regulation of the channel. The results showed that tyrosine kinase inhibitors and lipid raft-disrupting agents inhibited the volume-sensitive organic osmolyte channel while protein tyrosine phosphatase inhibitors activated the channel in oocytes expressing skAE1. To study the role of lipid rafts in the activation of the volume-sensitive organic osmolyte channel, the cellular localization of skAE1 was investigated. Also, the role of tyrosine kinases was investigated by examining the tyrosine phosphorylation state of skAE1. Hypoosmotic stress induced mobilization of skAE1 into light membranes and the cell surface as well as tyrosine phosphorylation of skAE1. These events are involved in the activation of the volume-sensitive organic osmolyte channel in Xenopus oocytes expressing skAE1.  相似文献   

15.
B Fiévet  N Gabillat  F Borgese    R Motais 《The EMBO journal》1995,14(21):5158-5169
Most, but not all, cell types release intracellular organic solutes (e.g. taurine) in response to cell swelling to achieve cell volume regulation. Although this efflux is blocked by classical inhibitors of the electroneutral anion exchanger band 3 (AE1), it is thought to involve an anion channel. The role of band 3 in volume-dependent taurine transport was determined by expressing, in Xenopus oocytes, band 3 from erythrocytes which do (trout) or do not (mouse) release taurine when swollen. AE1 of both species elicited anion exchange activity, but only trout band 3 showed chloride channel activity and taurine transport. Chimeras constructed from trout and mouse band 3 allowed the identification of some protein domains critically associated with channel activity and taurine transport. The data provide evidence that swelling-induced taurine movements occur via an anion channel which is dependent on, or controlled by, band 3. They suggest the involvement of proteins of the band 3 (AE) family in cell volume regulation.  相似文献   

16.
Direct hyposmotic stimulation of gastric acid secretion   总被引:1,自引:0,他引:1  
Gastric glands isolated from rabbit stomach were incubated in isosmotic medium or media made hyposmotic by 50-100 mOsm/kg. As indicated by radiolabeled aminopyrine accumulation, acid secretion was nearly 3 times greater in 200 mOsm/kg hyposmotic than in isosmotic medium after a 30-min incubation. The hyposmotic stimulation appeared within 2 min, peaked at 10-15 min and declined almost to the isosmotic control by 45 min. As estimated by the wet weight corrected for inulin extracellular space, the intracellular water of the glands also peaked at 15 min and returned to the isosmotic norm by 45 min. Hyposmotic stimulation of acid secretion directly involved the parietal cell, since parietal cells obtained from gastric glands were also stimulated. That the hyposmotic response was direct was indicated by omeprazole inhibition of aminopyrine accumulation in hyposmotic medium.  相似文献   

17.
Taurine concentration was reduced by 40 and 65%, respectively in rat cerebellar astrocytes grown in a chemically defined medium or in culture medium containing a blocker of taurine transport (GES). Cell volume in these taurine deficient cells was 10%–16% higher than in controls. When challenged by hyposmotic conditions, astrocytes release taurine and this efflux contributes to the volume regulatory decrease observed in these cells. Taurine deficient astrocytes showed a less efficient volume recovery as compared to controls with normal taurine levels. Exposed to 50% hyposmotic medium, astrocytes with normal taurine concentration recovered 60% of their original volume whereas taurine deficient cells recovered only 30–35%. Similarly, in 30% hyposmotic medium, taurine deficient astrocytes recovered only 40% as compared to 75% in controls. No compensatory increases in the efflux of other osmolytes (free amino acids or potassium) were observed during regulatory volume decrease in taurine deficient astrocytes.  相似文献   

18.
Tissue slices of shark rectal gland are studied to examine the kinetics of the cellular fluxes of taurine, a major intracellular osmolyte in this organ. Maintenance of high steady-state cell taurine (50 mM) is achieved by a ouabain-sensitive active Na+-dependent uptake process and a relatively slow efflux. Uptake kinetics are described by two saturable taurine transport components (high-affinity, Km 60 microM; and low-affinity, Km 9 mM). [14C]Taurine uptake is enhanced by external Cl-, inhibited by beta-alanine and unaffected by inhibitors of the Na+/K+/2Cl- co-transport system. Two cellular efflux components of taurine are documented. Incubation of slices in p-chloromercuribenzene sulfonate (1 mM) reduces taurine uptake, increases efflux of taurine and induces cell swelling. Studies of efflux in isotonic media with various cation and anion substitutions demonstrate that high-K+ markedly enhances taurine efflux irrespective of cell volume changes (i.e. membrane stretching is not involved). Moreover, iso-osmotic cell swelling induced in media containing propionate is not associated with enhanced efflux of taurine from the cells. It is suggested that external K+ exerts a specific effect on the cytoplasmic membrane to increase its permeability to taurine.  相似文献   

19.
This study describes the correlation between cell swelling-induced K+ efflux and volume regulation efficiency evaluated with agents known to modulate ion channel activity and/or intracellular signaling processes in a human bronchial epithelial cell line, 16HBE14o(-1). Cells on permeable filter supports, differentiated into polarized monolayers, were monitored continuously at room temperature for changes in cell height (T(c)), as an index of cell volume, whereas (86)Rb efflux was assessed for K+ channel activity. The sudden reduction in osmolality of both the apical and basolateral perfusates (from 290 to 170 mosmol/kg H(2)O) evoked a rapid increase in cell volume by 35%. Subsequently, the regulatory volume decrease (RVD) restored cell volume almost completely (to 94% of the isosmotic value). The basolateral (86)Rb efflux markedly increased during the hyposmotic shock, from 0.50 +/- 0.03 min(-1) to a peak value of 6.32 +/- 0.07 min(-1), while apical (86)Rb efflux was negligible. Channel blockers, such as GdCl(3) (0.5 mM), quinine (0.5 mM) and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB, 100 microM), abolished the RVD. The protein tyrosine kinase inhibitors tyrphostin 23 (100 microM) and genistein (150 microM) attenuated the RVD. All agents decreased variably the hyposmosis-induced elevation in (86)Rb efflux, whereas NPPB induced a complete block, suggesting a link between basolateral K(+) and Cl(-1) efflux. Forskolin-mediated activation of adenylyl cyclase stimulated the RVD with a concomitant increase in basolateral (86)Rb efflux. These data suggest that the basolateral extrusion of K+ and Cl(-1) from 16HBE14o(-1) cells in response to cell swelling determines RVD efficiency.  相似文献   

20.
Using the human mammary epithelial cell line MCF-7, we have investigated volume-activated changes in response to hyposmotic stress. Switching MCF-7 cells from an isosmotic to a hyposmotic solution resulted in an initial cell swelling response, followed by a regulatory volume decrease (RVD). This RVD response was inhibited by the nonselective K+ channel inhibitors Ba2+, quinine, and tetraethylammonium chloride, implicating K+ channel activity in this volume-regulatory mechanism. Additional studies using chromonol 293B and XE991 as inhibitors of the KCNQ1 K+ channel, and also a dominant-negative NH2-terminal truncated KCNQ1 isoform, showed complete abolition of the RVD response, suggesting that KCNQ1 plays an important role in regulation of cell volume in MCF-7 cells. We additionally confirmed that KCNQ1 mRNA and protein is expressed in MCF-7 cells, and that, when these cells are cultured as a polarized monolayer, KCNQ1 is located exclusively at the apical membrane. Whole cell patch-clamp recordings from MCF-7 cells revealed a small 293B-sensitive current under hyposmotic, but not isosmotic conditions, while recordings from mammalian cells heterologously expressing KCNQ1 alone or KCNQ1 with the accessory subunit KCNE3 reveal a volume-sensitive K+ current, inhibited by 293B. These data suggest that KCNQ1 may play important physiological roles in the mammary epithelium, regulating cell volume and potentially mediating transepithelial K+ secretion. potassium channel; volume regulation; mammary gland  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号