首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are cardiac hormones that are involved in water and electrolyte homeostasis in heart failure. Although both hormones exert almost identical biological actions, the differential regulation of cardiac ANP and BNP mRNA in compensated and overt heart failure is not known. To study the hypothesis that cardiac BNP is more specifically induced in overt heart failure, a large aortocaval shunt of 30 days duration was produced in rats and compared with compensated heart failure. Compensated heart failure was induced either by a small shunt of 30 days duration or by a large shunt of 3 days duration. Both heart failure models were characterized by increased cardiac weight, which was significantly higher in the large-shunt model, and central venous pressure. Left ventricular end-diastolic pressure was elevated only in the overt heart failure group (control: 5.7 +/- 0. 7; small shunt: 8.6 +/- 0.9; large shunt 3 days: 8.5 +/- 1.7; large shunt 30 days: 15.9 +/- 2.6 mmHg; P < 0.01). ANP and BNP plasma concentrations were elevated in both heart failure models. In compensated heart failure, ANP mRNA expression was induced in both ventricles. In contrast, ventricular BNP mRNA expression was not upregulated in any of the compensated heart failure models, whereas it increased in overt heart failure (left ventricle: 359 +/- 104% of control, P < 0.001; right ventricle: 237 +/- 33%, P < 0.01). A similar pattern of mRNA regulation was observed in the atria. These data indicate that, in contrast to ANP, cardiac BNP mRNA expression might be induced specifically in overt heart failure, pointing toward the possible role of BNP as a marker of the transition from compensated to overt heart failure.  相似文献   

2.
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are cardiac hormones that regulate blood pressure and volume, and exert their biological actions via the natriuretic peptide receptor-A gene (Npr1). Mice lacking Npr1 (Npr(-/-)) have marked cardiac hypertrophy and fibrosis disproportionate to their increased blood pressure. This study examined the relationships between ANP and BNP gene expression, immunoreactivity and fibrosis in cardiac tissue, circulating ANP levels, and ANP and BNP mRNA during embryogenesis in Npr1(-/-) mice. Disruption of the Npr1 signaling pathway resulted in augmented ANP and BNP gene and ANP protein expression in the cardiac ventricles, most pronounced for ANP mRNA in females [414 +/- 57 in Npr1(-/-) ng/mg and 124 +/- 25 ng/mg in wild-type (WT) by Taqman assay, P < 0.001]. This increased expression was highly correlated to the degree of cardiac hypertrophy and was localized to the left ventricle (LV) inner free wall and to areas of ventricular fibrosis. In contrast, plasma ANP was significantly greater than WT in male but not female Npr1(-/-) mice. Increased ANP and BNP gene expression was observed in Npr1(-/-) embryos from 16 days of gestation. Our study suggests that cardiac ventricular expression of ANP and BNP is more closely associated with local hypertrophy and fibrosis than either systemic blood pressure or circulating ANP levels.  相似文献   

3.
Both cardiotrophin-1 (CT-1) and B-type or brain natriuretic peptide (BNP) are activated by cardiomyocyte stretch, and gene expression of CT-1 and BNP are augmented in the heart in experimental and human congestive heart failure (CHF). The goal of this study was to define cardiac gene expression of CT-1 and BNP by Northern blot analysis in normal (n=5), early left ventricular dysfunction (ELVD, n=5) and overt CHF dogs (n=5), in which ventricular function is progressively decreased. CT-1 mRNA was detected in both atria and ventricles in normal dogs. Ventricular CT-1 mRNA production increased in ELVD, and it further increased in overt CHF. Ventricular BNP mRNA remained below or at the limit of detection in normal and ELVD models, and it markedly increased in overt CHF. This study reports differential regulation of gene expression of CT-1 and BNP in the heart during the progression of CHF, and demonstrates that ventricular CT-1 gene activation precedes ventricular BNP gene activation.  相似文献   

4.
Both atrial (ANP) and brain (BNP) natriuretic peptide affect development of cardiac hypertrophy and fibrosis via binding to natriuretic peptide receptor (NPR)-A in the heart. A putative clearance receptor, NPR-C, is believed to regulate cardiac levels of ANP and BNP. The renin-angiotensin system also affects cardiac hypertrophy and fibrosis. In this study we examined the expression of genes for the NPRs in rats with pressure-overload cardiac hypertrophy. The ANG II type 1 receptor was blocked with losartan (10 mg.kg(-1).day(-1)) to investigate a possible role of the renin-angiotensin system in regulation of natriuretic peptide and NPR gene expression. The ascending aorta was banded in 84 rats during Hypnorm/Dormicum-isoflurane anesthesia; after 4 wk the rats were randomized to treatment with losartan or placebo. The left ventricle of the heart was removed 1, 2, or 4 wk later. Aortic banding increased left ventricular expression of NPR-A and NPR-C mRNA by 110% (P < 0.001) and 520% (P < 0.01), respectively, after 8 wk; as expected, it also increased the expression of ANP and BNP mRNAs. Losartan induced a slight reduction of left ventricular weight but did not affect the expression of mRNAs for the natriuretic peptides or their receptors. Although increased gene expression does not necessarily convey a higher concentration of the protein, the data suggest that pressure overload is accompanied by upregulation of not only ANP and BNP but also their receptors NPR-A and NPR-C in the left ventricle.  相似文献   

5.
We tested the hypotheses that hypoxic exposure is associated with exacerbated pulmonary hypertension and right ventricular (RV) enlargement, reduced atrial natriuretic peptide (ANP) clearance receptor (NPR-C) expression, and enhanced B-type natriuretic peptide (BNP) expression in the absence of ANP. Male wild-type [ANP(+/+)], heterozygous [ANP(+/-)], and homozygous [ANP(-/-)] mice were studied after a 5-wk hypoxic exposure (10% O(2)). Hypoxia increased RV ANP mRNA and plasma ANP levels only in ANP(+/+) and ANP(+/-) mice. Hypoxia-induced increases in RV pressure were significantly greater in ANP(-/-) than in ANP(+/+) or ANP(+/-) mice (104 +/- 17 vs. 45 +/- 10 and 63 +/- 7%, respectively) as were increases in RV mass (38 +/- 4 vs. 26 +/- 5 and 29 +/- 4%, respectively). NPR-C mRNA levels were greatly reduced in the kidney, lung, and brain by hypoxia in all three genotypes. RV BNP mRNA and lung and kidney cGMP levels were increased in hypoxic mice. These findings indicate that disrupted ANP expression worsens hypoxic pulmonary hypertension and RV enlargement but does not alter hypoxia-induced decreases in NPR-C and suggest that compensatory increases in BNP expression occur in the absence of ANP.  相似文献   

6.
Exercise training results in cardiovascular and metabolic adaptations that may be beneficial in menopausal women by reducing blood pressure, insulin resistance, and cholesterol level. The adaptation of the cardiac hormonal systems oxytocin (OT), natriuretic peptides (NPs), and nitric oxide synthase (NOS) in response to exercise training was investigated in intact and ovariectomized (OVX) rats. Ovariectomy significantly augmented body weight (BW), left ventricle (LV) mass, and intra-abdominal fat pad weight and decreased the expression of oxytocin receptor (OTR), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and guanylyl cyclase-A (GC-A), in the right atrium (RA) and LV, indicating estrogenic control of these genes. These effects of ovariectomy were counteracted by 8-wk-long exercise training which decreased fat pad weight (33.4 +/- 2.3 to 23.4 +/- 3.1 g, n = 8, P < 0.05), plasma free fatty acids (0.124 +/- 0.033 to 0.057 +/- 0.010 mM, n = 8, P < 0.01), and plasma triacylglycerol (0.978 +/- 0.174 to 0.588 +/- 0.115 mM, n = 8, P < 0.05). Chronic exercise tended to decrease BW and stimulated ANP (4- to 5-fold) and OTR gene expression in the LV and RA and BNP and inducible NOS (iNOS) mRNA in the LV. In sham-operated rats, exercise augmented ANP expression in the RA, downregulated GC-A mRNA in the LV and RA, but increased its expression threefold in the RA of OVX animals. Endothelial NOS and iNOS expression was enhanced in the left atrium of sham-operated rats. Altogether, these data indicate that in OVX animals, chronic exercise significantly enhances cardiac OT, NPs, and NOS, thus implicating all three hormonal systems in the beneficial effects of exercise training.  相似文献   

7.
Angiotensin II can induce cardiac hypertrophy by stimulating the release of growth factors. ACE inhibitors reduce angiotensin II levels and cardiac hypertrophy, but their effects on the healthy heart are largely unexplored. We hypothesized that ACE inhibition decreases left ventricular mass in normotensive animals and that this is associated with altered expression of cardiac fetal genes, growth factors, and endothelial nitric oxide synthase (eNOS). Wistar rats (n = 7 per group) were orally administered with enalapril twice daily for a total daily dose of 5 mg·kg(-1)·d(-1) (ENAP5) or 15 mg·kg(-1)·d(-1) (ENAP15) or vehicle. Systolic blood pressure was measured by the tail-cuff method. Left ventricular expression of cardiac myosin heavy chain-α (MYH6) and -β (MYH7), atrial natriuretic peptide (ANP), endothelin-1 (ET-1), transforming growth factor β-1 (TGFβ-1), cardiotrophin-1 (CT-1), and renal renin were examined by real-time PCR, and eNOS using Western blot. Blood pressure was decreased only in ENAP15 animals (p < 0.05 vs. Control), whereas left ventricular mass decreased after both doses of enalapril (p < 0.05 vs. Control). MYH7 and ANP were reduced in ENAP15, while no changes in ET-1, TGFβ-1, CT-1, and MYH6 mRNA or eNOS protein were observed. Renal renin dose-dependently increased after enalapril treatment. Enalapril significantly decreased left ventricular mass even after 1 week treatment in the normotensive rat. This was associated with a decreased expression of the fetal genes MYH7 and ANP, but not expression of ET-1, CT-1, or TGFβ-1.  相似文献   

8.
Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) are two hormones produced and secreted by the heart to control blood pressure, body fluid homeostasis and electrolyte balance. Each peptide binds to a common family of 3 receptors (GC-A, GC-B and C-receptor) with varying degrees of affinity. The proANP gene disrupted mouse model provides an excellent opportunity to examine the regulation and expression of BNP in the absence of ANP. A new radioimmunoassay (RIA) was developed in order to measure mouse BNP peptide levels in the plasma, atrium and ventricle of the mouse. A detection limit of 3–6 pg/tube was achieved by this assay. Results show that plasma and ventricular level of BNP were unchanged among the three genotypes of mice. However, a significant decrease in the BNP level was noted in the atrium. The homozygous mutant (ANP–/–) had undetectable levels of BNP in the atrium, while the heterozygous (ANP+/–) and wild-type (ANP+/+) mice had 430 and 910 pg/mg in the atrium, respectively. Northern Blot analysis shows the ANP–/– mice has a 40% reduction of BNP mRNA level in the atrium and a 5-fold increase in the ventricle as compared with that of the ANP+/+ mouse. Our data suggest that there is a compensatory response of BNP expression to proANP gene disruption. Despite the changes in the atrial and ventricular tissue mRNA and peptide levels, the plasma BNP level remains unaltered in the ANP–/– mice. We conclude that the inability of BNP to completely compensate for the lack of ANP eventually leads to chronic hypertension in the proANP gene disrupted mice.  相似文献   

9.
In addition to cardiac myocyte hypertrophy, proliferation and increased extracellular matrix production of cardiac fibroblasts occur in response to cardiac overload. This remodeling of the cardiac interstitium is a major determinant of pathologic hypertrophy leading to ventricular dysfunction and heart failure. Atrial and brain natriuretic peptides (ANP and BNP) are cardiac hormones produced primarily by the atrium and ventricle, respectively. Plasma ANP and BNP concentrations are elevated in patients with hypertension, cardiac hypertrophy, and acute myocardial infarction, suggesting their pathophysiologic roles in these disorders. ANP and BNP exhibit diuretic, natriuretic, and vasodilatory activities via a guanylyl cyclase-coupled natriuretic peptide receptor subtype (guanylyl cyclase-A or GC-A). Here we report the generation of mice with targeted disruption of BNP (BNP-/- mice). We observed focal fibrotic lesions in ventricles from BNP-/- mice with a remarkable increase in ventricular mRNA expression of ANP, angiotensin converting enzyme (ACE), transforming growth factor (TGF)-beta3, and pro-alpha1(I) collagen [Col alpha1(I)], which are implicated in the generation and progression of ventricular fibrosis. Electron microscopic examination revealed supercontraction of sarcomeres and disorganized myofibrils in some ventricular myocytes from BNP-/- mice. No signs of cardiac hypertrophy and systemic hypertension were noted in BNP-/- mice. In response to acute cardiac pressure overload induced by aortic constriction, massive fibrotic lesions were found in all the BNP-/- mice examined, accompanied by further increase of mRNA expression of TGF-beta3 and Col alpha1(I). We postulate that BNP acts as a cardiocyte-derived antifibrotic factor in the ventricle.  相似文献   

10.
The effects on myocardial function and loading conditions of clinically relevant doses of the natriuretic peptides (NP) have not been established. The actions of single doses (100 ng x kg(-1) x min(-1) iv over 30 min) of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP) were studied in conscious normal dogs and in dogs with pacing-induced heart failure. All three NP reduced end-diastolic pressure in normal dogs, and ANP and BNP reduced end-diastolic volume. In heart failure ANP and BNP reduced EDP, and ANP reduced EDV. Arterial elastance was unchanged in normal dogs and in dogs with heart failure. ANP increased end-systolic elastance (E(es)) in normal dogs, whereas BNP tended to increase E(es) (P = 0.06). In dogs with heart failure, no inotropic effect was seen. In normal dogs, all NP reduced the time constant of isovolumic relaxation (tau), and ANP and BNP reduced tau in dogs with heart failure. Increases in plasma cGMP in dogs with heart failure were blunted. The NP reduced preload and enhanced systolic and diastolic function in normal dogs. Effects of ANP and BNP on preload and diastolic function were maintained in heart failure. Lack of negative inotropic effects in heart failure supports the validity of the NP as therapeutic agents.  相似文献   

11.
We demonstrated previously that atrial natriuretic peptide (ANP) enhances reflex bradycardia to intravenous serotonin [5-hydroxytryptamine (5-HT)] (von Bezold-Jarisch reflex) in rats. To determine whether 1) ANP affects this cardiopulmonary vagal reflex in another species and 2) B-type (BNP) and C-type (CNP) natriuretic peptides share with ANP the ability to modulate this reflex, we used intravenous phenylbiguanide (PBG), a 5-HT(3) agonist, as the stimulus to evoke a von Bezold-Jarisch reflex (dose-related, reproducible bradycardia) in conscious adult sheep (n = 5). Three doses of PBG (13 +/- 3, 20 +/- 3, and 31 +/- 4 microg/kg) injected into the jugular vein caused reflex cardiac slowing of -7 +/- 1, -15 +/- 2, and -36 +/- 3 beats/min, respectively, under control conditions. These doses of PBG were repeated during infusions of ANP, BNP, or CNP (10 pmol. kg(-1). min(-1) iv), or vehicle (normal saline). Each of the natriuretic peptides significantly (P < 0.05) enhanced the sensitivity of bradycardic responses to PBG by 94 +/- 8% (ANP), 142 +/- 55% (BNP), and 61 +/- 16% (CNP). Thus not only did ANP sensitize cardiopulmonary chemoreceptor activation in a species with resting heart rate close to that in humans, but BNP and CNP also enhanced von Bezold-Jarisch reflex activity in conscious sheep.  相似文献   

12.
A hallmark of overt congestive heart failure (CHF) is attenuated cGMP production by endogenous atrial natriuretic peptide (ANP) with renal resistance to ANP. ANP and brain natriuretic peptides (BNP) are of myocardial origin, whereas urodilatin (Uro) is thought to be derived from kidney. All three peptides are agonists to the natriuretic peptide-A receptor. Our objective was to compare the cardiorenal and humoral actions of ANP, BNP, and Uro in experimental overt CHF. We determined cardiorenal and humoral actions of 90 min of intravenous equimolar infusion of ANP, BNP, and Uro (2 and 10 pmol.kg-1.min-1) in three separate groups of anesthetized dogs with rapid ventricular pacing-induced overt CHF (240 beats/min for 10 days). BNP resulted in increases in urinary sodium excretion (U(Na)V) (2.2+/-0.7 to 164+/-76 microeq/min, P<0.05) and glomerular filtration rate (GFR) (27+/-4 to 52+/-11 ml/min, P<0.05) that were greater than those with Uro (P<0.05), whereas ANP did not result in increases in U(Na)V or GFR. Increases in plasma cGMP (25+/-2 to 38+/-2 pmol/ml, P<0.05) and urinary cGMP excretion with BNP (1,618+/-151 to 6,124+/-995 pmol/min, P<0.05) were similar to those with Uro; however, there was no change with ANP. Cardiac filling pressures were reduced in all three groups. These studies also support the conclusion that in experimental overt CHF, renal resistance to natriuretic peptides in increasing rank order is BNP相似文献   

13.
14.
Clinical heart failure, often the result of myocardial infarction, may be preceded by a period of compensated left ventricular impairment. There is substantial need for an experimental model that reflects this human condition. In sheep, coronary artery ligation produced consistent left ventricular anteroapical myocardial infarctions resulting in chronic (5 wk), stable hemodynamic changes compared with sham controls, including reductions in ejection fraction (51 +/- 2 vs. 30 +/- 5%, P < 0.001), cardiac output (6.3 +/- 0.2 vs. 5.1 +/- 0.2 l/min, P < 0.01), and arterial pressure (93 +/- 2 vs. 79 +/- 3 mmHg, P < 0.001), and increases in cardiac preload (left atrial pressure, 3.3 +/- 0.1 vs. 8.3 +/- 1.3 mmHg, P < 0.001). These changes were associated with acute and sustained increases in plasma concentrations of atrial natriuretic peptide (ANP; 5 wk, 11 +/- 2 vs. 27 +/- 5 pmol/l, P < 0.001), brain natriuretic peptide (BNP; 3 +/- 0.2 vs. 11 +/- 2 pmol/l, P < 0.001), and amino-terminal pro-brain natriuretic peptide (NT-BNP; 17 +/- 3 vs. 42 +/- 12 pmol/l, P < 0.001). Significant correlations were observed between plasma levels of the natriuretic peptides (ANP, day 7 to week 5 samples; BNP and NT-BNP, day 1 to week 5 samples) and changes in left ventricular volumes and ejection fraction. In contrast, renin activity, aldosterone, catecholamines, and endothelin were not chronically elevated postinfarction and were not related to indexes of ventricular function. Coronary artery ligation in sheep produces the pathological, hemodynamic, and neurohormonal characteristics of compensated left ventricular impairment secondary to myocardial infarction. Plasma concentrations of the cardiac natriuretic peptides are sensitive markers of left ventricular dysfunction. This is a reproducible model that reflects the clinical condition and should prove suitable for investigating the pathophysiology of, and experimental therapies in, early left ventricular dysfunction.  相似文献   

15.
Left ventricular assist device (LVAD) implantation and heart transplantation (HTx) are established therapeutic approaches in the treatment of end-stage heart failure. The postoperative humoral responses to the two treatments have not yet been compared. All patients were treated with inhaled nitric oxide (iNO) on weaning from cardiopulmonary bypass as they presented with pulmonary hypertension. We investigated atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), cGMP, endothelin (ET)-1, big endothelin (big ET), and hemodynamic parameters after LVAD implantation (15 patients; age 51 +/- 8 years) or HTx (10 patients; age 53 +/- 6 years) preoperatively, on cardiopulmonary bypass and postoperatively up to 72 hrs after cessation of iNO. Preoperatively, cardiac index (CI), pulmonary artery pressure, pulmonary capillary wedge pressure (PCWP), central venous pressure (CVP), and mean atrial pressure (MAP) were similar for both groups. Similarly, ANP, BNP, cGMP, ET-1, and big ET were comparable before surgery. Seventy-two hours after weaning from iNO, the administered epinephrine dose was higher in the HTx group (P = 0.003); whereas the CVP (P = 0.04) and pulmonary vascular resistance (PVR; P = 0.03) were lower. The following humoral parameters differed markedly: ANP (preoperatively: LVAD, 99 +/- 123 pg/ml; HTx, 197 +/- 199 pg/ml; P = 0.14; vs. 72 hrs after iNO: LVAD, 110 +/- 106 pg/ml; HTx, > 640 +/- 0 pg/ml; P = 0.003) and cGMP (preoperatively: LVAD, 4.4 +/- 5.8 pg/ml; HTx, 5.0 +/- 3.0 pg/ml; P = 0.35; vs. 72 hrs after iNO: LVAD, 8.0 +/- 10.8 pg/ml; HTx, 26.2 +/- 15.8 pg/ml; P = 0.02). Although the hemodynamic effects of both LVAD implantation and HTx in the treatment of end-stage heart failure are comparable, except for the effects on CVP and PVR, the humoral responses with respect to ANP and cGMP were strikingly different. These effects are independent of volume status, iNO, and ETs, suggesting a physiologic response to maintain circulatory homeostasis.  相似文献   

16.
Atrial natriuretic peptide (ANP) is an important regulator of blood pressure (BP). One of the mechanisms whereby ANP impacts BP is by stimulation of nitric oxide (NO) production in different tissues involved in BP control. We hypothesized that ANP-stimulated NO is impaired in the kidneys of spontaneously hypertensive rats (SHR) and this contributes to the development and/or maintenance of high levels of BP. We investigated the effects of ANP on the NO system in SHR, studying the changes in renal nitric oxide synthase (NOS) activity and expression in response to peptide infusion, the signaling pathways implicated in the signaling cascade that activates NOS, and identifying the natriuretic peptide receptors (NPR), guanylyl cyclase receptors (NPR-A and NPR-B) and/or NPR-C, and NOS isoforms involved. In vivo, SHR and Wistar-Kyoto rats (WKY) were infused with saline (0.05 ml/min) or ANP (0.2 μg·kg(-1)·min(-1)). NOS activity and endothelial (eNOS), neuronal (nNOS), and inducible (iNOS) NOS expression were measured in the renal cortex and medulla. In vitro, ANP-induced renal NOS activity was determined in the presence of iNOS and nNOS inhibitors, NPR-A/B blockers, guanine nucleotide-regulatory (G(i)) protein, and calmodulin inhibitors. Renal NOS activity was higher in SHR than in WKY. ANP increased NOS activity, but activation was lower in SHR than in WKY. ANP had no effect on expression of NOS isoforms. ANP-induced NOS activity was not modified by iNOS and nNOS inhibitors. NPR-A/B blockade blunted NOS stimulation via ANP in kidney. The renal NOS response to ANP was reduced by G(i) protein and calmodulin inhibitors. We conclude that ANP interacts with NPR-C, activating Ca-calmodulin eNOS through G(i) protein. NOS activation also involves NPR-A/B. The NOS response to ANP was diminished in kidneys of SHR. The impaired NO system response to ANP in SHR participates in the maintenance of high blood pressure.  相似文献   

17.
The natriuretic peptide family comprises atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), dendroaspis natriuretic peptide (DNP), and urodilatin. The activities of natriuretic peptides and endothelins are strictly associated with each other. ANP and BNP inhibit endothelin-1 (ET-1) production. ET-1 stimulates natriuretic peptide synthesis. All natriuretic peptides are synthesized from polypeptide precursors. Changes in natriuretic peptides and endothelin release were observed in many cardiovascular diseases: e.g. chronic heart failure, left ventricular dysfunction and coronary artery disease.  相似文献   

18.
The present study examined whether natriuretic peptide expression in the scar of post-myocardial infarcted (MI) rats was derived at least in part by residing myofibroblasts. ANP and BNP mRNA levels were significantly increased in the non-infarcted left ventricle and scar of 1-week post-MI male rats, as compared to the left ventricle of normal rats. The infarct region contained myofibroblasts and contracted cardiac myocytes residing predominantly in the epicardial border zone. In primary passage scar-derived myofibroblasts, alpha-myosin heavy chain mRNA was undetectable, whereas ANP, BNP, as well as adrenomedullin and corin mRNA expression persisted. In 1-3 day cultured primary passage myofibroblasts, prepro-ANP, mature ANP, and BNP staining was observed in the cytoplasm/perinuclear region co-incident with unorganized alpha-smooth muscle actin. Following 4-7 days in culture, myofibroblasts expressed organized alpha-smooth muscle actin filaments. However, natriuretic peptides were predominantly detected in the nucleus and cytoplasm, and thin filaments occupying the perinuclear region were positive for prepro-ANP and BNP. Isoproterenol treatment of first passage scar myofibroblasts increased protein synthesis and induced BNP mRNA expression, whereas ANP mRNA levels remained unchanged. By contrast, neither ANP nor BNP mRNAs were induced following exposure to AII despite increased protein synthesis. These data highlight the novel observation that scar myofibroblasts synthesized ANP, BNP, adrenomedullin, and expressed the pro-convertase corin. Constitutive and sympathetic-driven natriuretic peptide synthesis by myofibroblasts may in part influence reparative fibrosis.  相似文献   

19.
Effects of four doses (0.1, 0.2, 1.0 and 2.0 nmol/kg) of brain natriuretic peptide (BNP) on natriuresis and blood pressure were investigated in anesthetized spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY). An intravenous injection of 1.0 and 2.0 nmol/kg of BNP caused a significant increase of natriuresis and reduction of blood pressure in SHR and WKY. These effects were essentially identical to the effects of atrial natriuretic peptide (ANP). Remarkable bioactivity elicited by BNP rasises the possibility that BNP has a role in the regulation of blood pressure and water-electrolyte balance. On the other hand, when the effects of BNP on both strains of rats were compared with those of alpha-human ANP reported previously, the hypotensive effect of BNP was less than those of alpha-human ANP only in SHR. It is suggested that BNP might have different bioactivity than that of ANP in SHR.  相似文献   

20.
吴志俊  金玮  张凤如  刘艳 《遗传》2012,34(2):127-133
利钠肽家族是一组由心肌细胞分泌的激素, 主要包括A型、B型和C型利钠肽, 具有相似的基因结构和生理学效应, 可对心血管系统产生血压调节、抗心肌肥厚、抗心肌纤维化和抗心肌弛缓等保护作用。利钠肽受体A、B和C亦介导多种生理活性, 调节心血管稳态。利钠肽受体A选择性结合A型、B型利钠肽。利钠肽受体B结合C型利钠肽。利钠肽受体C结合各型利钠肽, 通过受体介导的内化和退化作用清除血液循环中利钠肽。对利钠肽家族及其受体基因单核甘酸多态性及功能研究显示, 其与多种心血管疾病(房颤、高血压、心力衰竭等)的易感性相关。利钠肽家族及其受体基因缺失的转基因小鼠表现为心肌肥厚、心肌纤维化, 与高血压、心肌病及心力衰竭的发生发展相关。各种导致心肌肥厚和缺血性损伤的刺激均参与利钠肽及其受体基因的表达调控。临床将脑钠肽作为左室功能障碍和心力衰竭失代偿的一个预测指标。静脉注射重组脑钠肽已经成为治疗急性心力衰竭的有效手段。深入了解利钠肽家族基因变异及其信号调控有助于探索心血管疾病的病理生理机制, 为临床诊疗开辟新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号